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Introduction: When constructing machine learning and deep neural networks,

the domain shift problem on di�erent subjects complicates the subject

independent electroencephalography (EEG) emotion recognition. Most of the

existing domain adaptationmethods either treat all source domains as equivalent

or train source-specific learners directly, misleading the network to acquire

unreasonable transfer knowledge and thus resulting in negative transfer.

Methods: This paper incorporates the individual di�erence and group

commonality of distinct domains and proposes a multi-source information-

shared network (MISNet) to enhance the performance of subject independent

EEG emotion recognition models. The network stability is enhanced by

employing a two-stream training structurewith loop iteration strategy to alleviate

outlier sources confusing the model. Additionally, we design two auxiliary loss

functions for aligning the marginal distributions of domain-specific and domain

shared features, and then optimize the convergence process by constraining

gradient penalty on these auxiliary loss functions. Furthermore, the pre-training

strategy is also proposed to ensure that the initial mapping of shared encoder

contains su�cient emotional information.

Results: We evaluate the proposed MISNet to ascertain the impact of several

hyper-parameters on the domain adaptation capability of network. The ablation

experiments are conducted on two publically accessible datasets SEED and

SEED-IV to assess the e�ectiveness of each loss function.

Discussion: The experimental results demonstrate that by disentangling private

and shared emotional characteristics from di�erential entropy features of EEG

signals, the proposed MISNet can gain robust subject independent performance

and strong domain adaptability.

KEYWORDS

EEG signals, emotion recognition, transfer learning, multi-source domain, domain

adaptation

1 Introduction

Emotion is critical in influencing people’s decision-making, social interaction

and evaluation of things (Dolan, 2002). By incorporating emotional analysis

into human-machine interactions, the machines can better understand humanity

and become more natural (Picard, 2001). Numerous studies have been

conducted on emotion recognition based on various modes, such as facial

expressions (Ko, 2018), speech (Schuller, 2018) and electrophysiological signals.
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Electroencephalography (EEG) stands out among these signals

due to its objective properties and high temporal resolution

benefits (Yang et al., 2021). Specifically, EEG-based affective

brain-computer-interfaces (aBCIs) (Mühl et al., 2014) aim to

detect affective states from EEG signals and use them in various

applications, such as estimating driver drowsiness to improve

driving safety (Wu et al., 2016; Cui et al., 2019; Jiang et al., 2020)

and establishing an objective detection system for depression (Cai

et al., 2020) or post-traumatic stress disorder (Rozgic et al., 2014) to

enable self-diagnosis.

Regarding EEG emotion recognition, depending on the head

size, body state and experimental environment, the structural and

functional variability of the brain may vary between the subjects,

resulting in substantial differences in the collected EEG signals

(Samek et al., 2013). Traditional machine-learning algorithms

usually train a classifier such as support vector machines (Zheng

and Lu, 2016) or random forests (Gupta et al., 2018), by utilizing

data from a limited number of objects. Nevertheless, due to the EEG

signals do not satisfy the independent and identically distributed

condition which is caused by the individual difference and non-

stationary properties, directly using the subject-dependent models

to detect the emotional states of a new subject decreases recognition

accuracy. Although collecting a large amount of labeled data from

the new subject and using them to fine-tune the classifier is an

obvious solution, it is time-consuming and degrades the subjects’

experience significantly (Zhao et al., 2021). Hence, this strategy

cannot be utilized in the practical aBCI applications.

The unsupervised domain adaptation is an alternative method

to align different distribution domains, bridging the existing labeled

subjects and new unlabeled ones by identifying their similarities

(Wang and Chen, 2021). However, without access to the target

domain, it is challenging to train a well-generalized network

(Blanchard et al., 2011; Zhou et al., 2023). In contrast, the

performance of unsupervised domain adaptation approaches is

typically enhanced in the training phase by using unlabeled data

from the target domain and employing instance-based, model-

based, or feature-based (Wang and Chen, 2021) methods.

Compared with traditional machine learning, using deep

learning to solve domain adaptation problems has relatively low

requirements for trainers to select features. Based on the significant

advancements in computer vision, speech recognition and natural

language processing, we believe that the deep learning methods

have potential in EEG emotion recognition. Regarding EEG

emotion recognition, there have been sufficient studies on subject-

dependent experiments (Kim and André, 2008; Ding et al., 2020;

Nath et al., 2020; Pan et al., 2021; Zhang et al., 2022; Song et al.,

2023). Several experimental results indicate that deep learning has

a great potential for solving domain adaptation problems (Craik

et al., 2019; Roy et al., 2019). When using deep learning in aBCI

domain adaptation applications, most works regarded all source

domains as being the same (Li H. et al., 2018; Li Y. et al., 2018; Luo

et al., 2018). Hence all source domains should be merged into the

common domain to extract features. This strategy disregards the

distribution difference inside the source domains, resulting in the

model being unable to train to the optimal effect. When there are

outlier source domains, themodel is difficult to converge, leading to

“negative transfer”. On the other hand, some researchers identified

the distribution difference mentioned above and trained domain-

specific networks directly (Chen et al., 2021a,b; Luo and Lu, 2021),

marginally improving recognition performance but overlooking

the commonality among source domains. Furthermore, most of

these approaches need to judge the distance between the features

of target domain and those of each source domain to select one

or several similar source domains, and weight the predictions to

form the final prediction. When one source domain has larger

distance to others, which means there is an outlier source domain,

it may occur that one private domain mapping of target domain

is far from other private domain mappings, and the model

performance would decrease. Therefore, it is necessary to consider

the individual difference and group commonality among the multi-

source domains, further improving recognition performance.

This paper considers the individual difference and group

commonality of multi-source domains and proposes the multi-

source information-shared EEG emotion recognition network

based on marginal distribution. In the proposed network, the

domain-specific and domain-shared features are extracted and

combined dynamically to alleviate the negative transfer problem.

Specifically, we first integrate a pre-training strategy into the

network to maximize the utilization of current source domain

data and reasonably initialize the network, further enhancing its

stability. Then, we extract domain-specific features by using private

encoders and domain-shared features by a pre-trained shared

encoder to represent the individuality and commonality of EEG

signals from different domains. Besides employing the maximum

mean discrepancy to align the marginal distributions between the

source and target domains, two auxiliary loss functions are also

designed to improve the astringency of network and align the

distributions of private target domains. These loss functions can

further enhance the mapping capability of private encoders by

considering the information of other private domains. Moreover,

rather than heuristically altering the weights of classifiers, we

integrate the outputs of classifiers according to the domain-specific

and domain-shared feature distributions, thereby dynamically

optimizing the network. The experimental results on the SEED and

SEED-IV datasets validate the performance of proposed method.

The main contributions of this paper are summarized

as follows:

• We propose an efficient EEG emotional recognition network

that incorporates the individual difference and group

commonality of multi-source domains.

• We design a two-stream training structure and loop iteration

strategy to compute two auxiliary loss functions Lwas−gp and

Ldiff−gp for aligning the marginal distributions of domain-

specific and domain-shared features in target domains.

Furthermore, the gradient penalty is also constrained on the

above two losses to improve the stability of network.

• We introduce the subject-dependent pre-training

process to initialize the shared encoder with reasonable

parameters, which supplies emotional information to the

shared domain.

The remainder of this paper is organized as follows.

Section 2 introduces the related works on domain
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adaptation and EEG-based subject independent emotion

recognition. Section 3 proposes the multi-source information-

shared network and illustrates the corresponding training

process. Section 4 presents the experimental settings and

implementation details. Subsequently in Section 5, the

results of the ablation experiments are analyzed and the

comparisons are made on the SEED and SEED-IV datasets.

Finally, Section 6 concludes this work and suggests future

research directions.

2 Related work

This section briefly reviews the concept and

methods of domain adaptation and then introduces

the relevant work on EEG-based subject independent

emotion recognition.

2.1 Domain adaptation

In domain adaptation, which is a rapidly growing transfer

learning direction, the labeled source and unlabeled target domains

share the same features and categories. The domain adaptation

focuses on using the source domain knowledge to process the

target domain features when the source and target domain

distributions are different (Wang and Chen, 2021). Adopting

deep learning for domain adaptation can automatically extract

more expressive features and meet the end-to-end needs of

practical applications. Typically, three categories are available:

instance-based learning, model-based learning, and feature-

based learning. The instance-based learning aims to select and

weight samples from the source and target domains (Blitzer

et al., 2006; Li et al., 2016). The objective of model-based

learning is to transfer parameters between different models. By

mapping the different probability distributions of the source

and target domains, the feature-based learning characterizes

the similarity between the source and target domains, which

can be classified as marginal, conditional, joint or dynamic

distribution adaptation.

In many practical applications involving multiple source

domains, the multi-source domain adaptation methods can be

used to transfer knowledge from multiple domains and consider

domain shifts among source domains to achieve better transfer

results. Recently, Zhao et al. (2018) bridged deep learning

and multi-source domain adaptation by developing a multiple-

domain discriminator to align the features of source and target

domains, which is a typical adversarial discriminative method.

Xu et al. (2018) constructed multiple domain discriminators

and classifiers for each source-target domain pair. Then the

target labels are voted according to the distribution-weight

combining rule. Zhu et al. (2019) extracted distinct source

domains into distinct feature spaces and aligned the source

and target domains across each feature space. Moreover, they

reduced the variance of the classifier output through consistency

regularization to directly average the output of classifier and avoid

the artificial setting.

2.2 EEG-based subject independent
emotion recognition

Since the differences in gender, body state and experimental

environment between individuals will lead to different

neurophysiological activity patterns, the EEG signals of different

subjects do not satisfy the independent and identically distributed

condition. In this scenario, the issue of domain shift has arisen, that

is, under the same emotional stimulus, different individuals may

have different EEG responses, resulting in inconsistent distribution

of collected EEG signals. The domain shift problem is the main

challenge that the subject-independent algorithms need to address.

It not only appears in the different sources of EEG data, but also

may appear in the same EEG source due to psychological changes

of the participants or technical factors, which greatly limiting the

performance of the model.

To reduce inter-subject variability, transfer learning in

EEG emotion recognition has two primary branches: domain

adaptation and domain generalization. Through the data

manipulation, representation learning and learning strategy,

the domain generalization aims to learn a model from multiple

source domains that generalizes to unseen target domains (Wang

et al., 2023). Since the domain generalization methods do not

utilize the information of target domain during training, they

rarely obtain high recognition accuracy. In contrast, the domain

adaptation methods use the information from target domain to

transfer knowledge while minimizing domain shifts between the

source and target domains. Zheng and Lu (2016) applied transfer

component analysis (TCA) and transductive parameter transfer

(TPT) to the subject independent EEG emotion recognition on

the SEED dataset. Li H. et al. (2018) suggested an alternative

method by employing the domain-adversarial neural network

(DANN), which involves the adversarial training of feature

encoder and domain classifier. Luo et al. (2018) proposed the

wasserstein GAN domain adaptation network (WGANDA) by

using the gradient penalty to alleviate the domain shift problem.

By considering multi-source domain adaptation, Luo and Lu

(2021) proposed the wasserstein-distance-based multi-source

adversarial domain adaptation (wMADA), which regarded

different subjects as different domains and designed an adaptive

weight strategy considering the relationship between each

domain. Zhao et al. (2021) developed a plug-and-play domain

adaptation (PPDA) network, which disentangles the emotional

information by considering the domain-specific and domain-

invariant information simultaneously. Chen et al. (2021b) took

the source data with different marginal distributions into account

and proposed a multi-source EEG-based emotion recognition

network (MEERNet). Later, they used the disc-loss to improve

domain adaptation ability and proposed another multi-source

marginal distribution adaptation (MS-MDA) network for subject

independent and cross-session EEG emotion recognition (Chen

et al., 2021a).

It should be noticed that, most of the existing domain

adaptation methods mentioned above either treat all source

domains as equivalent or train source-specific learners directly,

misleading the network to acquire unreasonable transfer

knowledge and thus resulting in negative transfer. Therefore,
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this paper considers the feature individuality and commonality

of distinct domains and weights similar domains based on their

feature distributions, enhancing recognition performance.

3 Methods

In this section, we present the entire architecture and its data

transmission process. And then the involved modules are analyzed

in detail, and the loss functions are also designed by aligning

different domains.

3.1 Framework

The main challenge we aim to address is the domain

shift problem caused by the non-stationary of EEG signals

and the individual differences among users. Figure 1 shows

the framework of the proposed multi-source information-

shared network (MISNet) based on marginal distribution, which

comprises five components: common encoder, private encoders,

shared encoder, private classifiers and shared classifier. In Figure 1,

the pink lines, shapes and arrows represent the path of the EEG data

matrix XS from the source domains, and the green lines, shapes

and arrows represent that of the EEG data matrix XT from the

target domain. For each domain, the low-level features are firstly

extracted by the common encoder, and then the private encoders

are constructed to extract domain-specific information, while the

shared encoder extracts the domain-independent information.

Subsequently, four loss functions in green squares stand for Lmmd,

Lwas−gp, Ldiff−gp and Lcl, which are analyzed in detail in Section 3.2.

Finally, the predictions from private classifiers and shared classifier

are weighted and summed by the similarity between the source and

target features.

Specifically, we sequentially select one subject in the dataset

as the target domain data, and the other subjects as the source

domain data. As described in Equation (1), let XS be the source

data matrices, YS are their labels, and XT are the unlabeled target

data matrices,

XS = {Xi
S}ni=1, YS = {Yi

S}ni=1, (1)

where n represents the number of subjects in source domains.

In the proposed MISNet, the common encoder EC maps the

source datamatricesXi
S and target datamatricesXT to the low-level

feature space as shown in Equation (2),

X′S
i = EC(X

i
S), X

′
T = EC(XT). (2)

Then for the low-level features of each source domain, we

construct a private encoder to obtain its source domain-specific

characteristics. For the target domain, the n private encoders extract

domain-specific features as shown in Equation (3),

FiSP = EiP(X
′
S
i
), FiTP = EiP(X

′
T), i = 1, 2, . . . , n, (3)

where n is the number of source domains. Meanwhile as shown in

Equation (4), the shared encoder ES maps the low-level features of

source and target domains to the shared domain,

FiSS = ES(X
′
S
i
), FTS = ES(X

′
T). (4)

Subsequently as described in Equation (5), the private classifier Ci
P

and shared classifier CS take (F
i
SP, F

i
TP) and (FiSS, FTS) as the inputs

and output the emotion predictions (Ŷ
i
SP, Ŷ

i
TP) and (Ŷ

i
SS, ŶTS),

respectively,

Ŷ
i
SP = Ci

P(F
i
SP), Ŷ

i
TP = Ci

P(F
i
TP),

Ŷ
i
SS = CS(F

i
SS), ŶTS = CS(FTS).

(5)

Finally, ŶS is the weighted sum of Ŷ
i
SP and Ŷ

i
SS, ŶT is that

of {Ŷi
TP}ni=1 and ŶTS, respectively. We use ŶS to calculate the

classification loss Lcl in the training phase and ŶT to predict the

emotion category in the test phase.

3.2 Modules

For the domain shift problem in subject independent EEG

emotion recognition, we propose to design an EEG emotion

recognition model based on feature disentanglement, extracting

domain-specific and domain-shared features to improve the

robustness and interpretability of the network. A common encoder

is used to extract the low-level features of the EEG signal, and

the private encoders map the sample data of each domain to its

domain-specific features, reducing the distance between the source

and target domains after their featuremapping. The shared encoder

extracts domain-shared features and imposes secondary constraints

on the mapping distance between the source domain and target

domain features. The private classifiers and shared classifier map

the domain-specific and domain-shared features to predict the

emotions of EEG signals. This section will specifically explain

the role of each module in the proposed model and the overall

optimization strategy.

3.2.1 Common encoder
Despite the individual differences in EEG signals, some

common EEG characteristics still exist in the signals of human

brain activity. We assume that EEG signals from different subjects

share the same shallow feature. Similar to MS-MDA (Chen et al.,

2021a) and MEER-Net (Chen et al., 2021b), a common encoder

maps all domain data into a common latent space, extracting the

low-level features of source and target domains. The common

encoder is designed to perform the nonlinear mapping of DE

features of EEG signals, which obtains the preliminary mapping

of emotional information by extracting low-level features from

EEG signals. This lays a solid foundation for extracting the

individual difference and group commonality of multi-source

domains, therefore enhancing the classification performance.

3.2.2 Private encoders and shared encoder
To capture the domain-specific information and consider the

difference among different domains, we set up n fully-connected

layers as private encoder for each source domain to map the

data from the common feature space to the latent private feature

space. Inspired by the idea of feature disentanglement in domain

generalization (Wang and Chen, 2021), the shared emotional

information is extracted through the shared encoder by mapping
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FIGURE 1

Overall framework of the proposed MISNet network.

the low-level feature space to the shared feature space. Note that

the shared encoder has the same structure as the private encoder in

order to balance their learning abilities. For one iteration in each

epoch, the private and shared encoders capture only the features

of source domain and target domain that are currently trained.

We employ the maximum mean discrepancy (MMD) to calculate

the marginal distribution between the source and target domains

in reproducing the kernel hilbert space H. MMD is often used to

measure the distance between two distributions and is a commonly

used loss function in transfer learning. The definition of MMD is

MMD(f , p, q) = sup
‖f ‖H≤1

Ep[f (x)]− Eq[f (y)], (6)

where f is the mapping function which is the norm in the

reproducing kernel hilbert space. The distributions of x and y

is p and q, respectively, and E is the mathematical expectation.

However, this equation is challenging to calculate because the

feature space of f has infinite dimensions. Thus, Equation 6 is

solved by using the linear kernel function to simplify calculation,

Lmmd = |ψ(FiSP)− ψ(FiTP)|H
= (FiSP − FiTP) ∗ (FiSP − FiTP)

T ,
(7)

where ψ denotes the mapping function, the symbol ∗ is the

matrix multiplication, and x represents the mean of x in feature

dimension. Lmmd dominates the domain adaptation direction,

alleviating the feature distribution difference between the source

and target domains.

Due to individual differences, all source domains are linearly

independent, indicating that their private feature distributions

may be quite distinct. This results in a larger spacing among all

source private domains, forming a larger outer contour boundary

denoted by the red circle, as shown in Figure 2A. In the process

of optimizing iteration, in addition to reducing the distribution

distance between the source private and target private domains,

it is also necessary to shrink the spacing among source private

domains, thereby obtaining a more compact set of source private

domains. And thus, the overall boundary of source private domains

is also reduced, denoted by the red circle as shown in Figure 2B. On

the other hand in Figure 2B, the distribution distance between the

shared and private domains is also reduced, forcing the network

to extract the domain-independent features. In order to improve

the training speed and reduce the network complexity, the above

operations are not performed on the distribution distance of

different domains, but on the center of each domain.

Specifically, to align the private domains and shared domain,

we design two auxiliary loss functions Lwas−gp and Ldiff−gp. In the

current i-th iteration, the first order Lwas is proposed to align the

marginal distributions of each private domain as shown in Equation

(8),

Lwas =
n

∑

j=1,j6=i
|FiTP − F

j
TP|, (8)

where FiTP and F
j
TP denote the mean vector across feature

dimensions of the domain-specific features extracted by the i-th

and j-th private encoders, respectively. Considering the individual

differences and potential outliers of the source domains, we select

the features of the target private domain to compress the different

private domains through forcing the private encoders to extract the

domain-specific information from the target domain rather than

the source domains. Furthermore, the soft version of the constraint
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FIGURE 2

The optimization process of Lwas−gp and Ldi�−gp. S1, S2, S3, and S4 represent the source private domains, respectively, and S is the shared domain. L

denotes the center distance between source private domains, and D is the center distance between each source private domain and shared domain.

The red circle symbolizes the boundary of maximum private domain, and the green circle represents the fluctuation boundary of the shared domain.

(A) the initial states of source private domains, (B) the objective of optimization, and (C) the circumstance of optimal convergence.

with a penalty Lwas−gp is enforced on the gradient norm of random

samples xiT ∈ XT to improve the stability of Lwas and reduce

optimization errors caused by the outlier gradients,

Lwas−gp =
n

∑

j=1,j6=i
|FiTP − F

j
TP|

︸ ︷︷ ︸

Lwas

+

(‖ ▽X̂w
EiP(X̂w)‖2 − 1)2

︸ ︷︷ ︸

gradient penalty

,

(9)

where X̂w is uniformly defined along straight lines between pairs of

points sampled from the i-th target domain-specific feature FiTP and

j-th target domain-specific feature F
j
TP. This idea is motivated by

the WGAN-GP (Gulrajani et al., 2017), where the gradient penalty

also adopts the no-batch normalization and two-sided penalty

strategy. Different from WGAN-GP, FiTP and F
j
TP are extracted

from different private encoders that have the same input feature

X′T . In addition, we also propose Ldiff−gp to align the distributions

of i-th private encoder and the shared encoder,

Ldiff−gp = |FiTP − FTS|
︸ ︷︷ ︸

Ldiff

+ (‖ ▽
X̂d

EiP(X̂d)‖2 − 1)2

︸ ︷︷ ︸

gradient penalty

, (10)

where X̂d is calculated similarly as X̂w in Equation (9) by using the

target private feature FiTP and the target shared feature FTS in the

i-th iteration.

With the progress of loop iteration, the overall boundary of

source private domains will shrink rapidly under the constraints of

Lwas−gp and Ldiff−gp. Given an optimal convergence as illustrated in

Figure 2C, the centers of the private and shared domains approach

one another. The optimal overall private domain has the smallest

boundary, which is equal to the boundary of maximum private

domain denoted by the red circle as shown in Figure 2C. Moreover,

the spacing among the optimal private domains is also minimized

or even disappeared. Meanwhile, the fluctuation boundary of the

shared domain will approach the boundary of maximum private

domain represented by the green and red circles as illustrated

in Figure 2C. Since Lcl and Lmmd dominate the classification and

domain adaptation tasks, respectively, the fluctuation boundary of

the shared domain cannot easily converge to the optimum result.

To sumup, the final convergence of the shared domain centermeets

the following three requirements:

• Meet the minimum Lcl requirements for the shared domain.

• After the private encoder mapping process, the source and

target domains must have the minimum Lmmd.

• Meet the minimum distance requirement between the

fluctuation boundary of shared domain and the optimum

boundary of private domains.

Furthermore, when there is a conflict during the optimization

of the shared domain distribution and Lcl or Lmmd, Lcl and

Lmmd will prioritize to optimize, resulting a small spacing

between the boundary of maximum private domain and that

of shared domain. Under ideal circumstances, the boundary

of the shared domain can be optimal, that is, being the

boundary of maximum private domain. At this point, the

extracted domain-independent features are optimum for emotion

prediction, represented by the overlap of green and red circles

in Figure 2C.

3.2.3 Private and shared classifiers
Following the private encoders, the private classifiers predict

emotion states by using the private features. The softmax

activate function is implemented after the fully-connected layer

corresponding to each source domain, which transforms hidden

states to predict the category label. Like the private classifiers,

the shared classifier has the same structure to balance their

classification abilities. During the training process, we measure

Lcl of private and shared classifiers using the label smoothing

cross-entropy loss as described in Equations (11) and (12),
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LclP = −
K

∑

c

q(y, c) logP(c|Ŷi
SP),

LclS = −
K

∑

c

q(y, c) logP(c|ŶSS),

(11)

q(y, c) =
{

1− ε if c = YS,

ε/K − 1 otherwise,
(12)

where YS is the emotion label of the source domain, ε is the smooth

probability, and K is the category number of emotions.

3.2.4 Weight sum
Considering both the individual differences and group

commonalities, we also propose to weight LclP and LclS based

on the similarity between the private target domain and private

source domain to dynamically adjust the optimization process and

balance the weight of the private and shared networks. During the

training process, we integrate the private and shared classifiers by

calculating MMD between the private and shared domains. The

weight of private features wp and shared features ws is calculated by

wp = |ψ(FiSP)− ψ(FiTP)|H, (13)

ws = |ψ(FSS)− ψ(FTS)|H. (14)

And Lcl is calculated by,

Lcl =
ws

wp + ws
∗ LclP +

wp

wp + ws
∗ LclS . (15)

The weighted sum minimizes the distance between the private and

shared domains. The deeper reason is the dynamic adjustment

of the optimization process, as the smaller the MMD between

the source and target domains, the smaller the difference in their

distributions. Specifically, if the distribution between source and

private shared domains are closer, ws will be smaller, and then

the weight of private encoder is also smaller. Due to the back

propagation theory, the less gradient is assigned to private encoder,

the more would be assigned to shared one relatively, indicating

that the shared encoder has more learning capabilities than private

encoder. Therefore, more learning capabilities are assigned to

the corresponding encoder. By using Equation (15), the outputs

of network are weighted based on their distributions, and thus

more attentions are paid to the inter-domain predictions with

more similarities.

Given Lcl, Lmmd, Lwas−gp and Ldiff−gp, the final loss function is

represented as,

L = Lcl + αLmmd + βLwas−gp + γ Ldiff−gp, (16)

where α, β , and γ are the hyper-parameters. To sum up, Lcl is the

classification loss function, which controls the overall optimization

direction of the model. Lmmd is the domain adaptation loss

Input: Source domain dataset

XS = {XiS}ni=1 and ground truth

YS = {YiS}ni=1, target domain dataset XT

Output: Predicted emotional state of target

domain ŶT

1 Pretraining EC and ES with subject-dependent

emotion classification task

2 Randomly initialize E1∼nP , C1∼n
P , and CS

3 Training phase:

4 for epoch in epochs do

5 for i in n do

6 EC(XS)→ X′S, EC(XT )→ X′T
7 EiP(X

′
S)→ FiSP, EiP(X

′
T )→ FiTP

8 (FiSP, FiTP)→Equation (7),

9 (FiTP ,FTP)
1∼n →Equation (9)

10 θEC ← θEC + lr ∗ ∂(Lmmd+Lwas−gp)
∂θEC

,

11 θEip
← θEip

+ lr ∗ ∂(Lmmd+Lwas−gp)
∂θ

Eip

12 ES(X′S)→ FSS, ES(X′T )→ FTS

13 (FiTP ,FTS)→Equation (10)

14 (FiSP ,FTP)→Equation (13)

(FiSS,FTS)→Equation (14)

15 Ci
P(F

i
SP), CS(FSS)→Equation (15)

16 θEC ← θEC + lr ∗ ∂Lcl
∂θEC

,

17 θEiP
← θEiP

+ lr ∗ ∂((Lclp+Ldiff−gp)
∂θ

EiP

,

18 θES ← θES + lr ∗ ∂(Lcls+Ldiff−gp)
∂θES

19 Update network by minimizing the total loss

→Equation (16)

20 end

21 end

22 Test phase:

23 E1∼nP (EC(XT ))→ F1∼nTP , ES(EC(XT ))→ FTS

24 Predict target labels (F1∼nTP , FTS)→Equation (17)

25 Return: ŶT

Algorithm 1. Workflow of the proposed MISNet framework.

function, which controls the domain adaptation direction of the

model. Lwas−gp aligns the marginal distributions of each private

domain. Ldiff−gp aligns the distributions of i-th private encoder

and the shared encoder. By combing those four loss functions as

in Equation (16), the model can obtain the ability of alleviating

negative transfer by considering the individual difference and

group commonality simultaneously.

In the test phase, we assume that the optimal convergence

boundary has been reached, and the predictions of the private and

shared domains are added together to output the final results,

ŶT =
1

n

n
∑

i=1
(Ci

P(F
i
TP)+ CS(FTS)). (17)

In summary, the workflow of the proposedMISNet is presented

in Algorithm 1.
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FIGURE 3

The proposed training strategy in MISNet. (A) The proposed two-stream structure, (B) loop training strategy.

3.3 Training strategy

Since the main convergence direction of different private

encoders is determined by the classification loss Lcl of source

domain and their initial feature mapping rules are determined

by the distributions of source domains, when there is an outlier

source domain, it may occur that one private domain mapping

of target domain is far from other private domain mappings.

Consider an extreme case of Lwas−gp in Equation (9), when a

private feature FiTP is far from other private features F
j
TP (j 6=

i) in the reproducing kernel hilbert space. If directly using the

traditional parallel training strategy, this outlier will affect other

private encoders and classifiers due to the addition operation of loss

function. Therefore, the prediction and mapping rules of private

encoder in the outlier source domain is significantly different from

other private encoders, resulting in a large difference between FiTP
and F

j
TP, ultimately impacting the training process.

In the above case, Ldiff−gp in Equation (10) will also be

somewhat affected. Since one or more source domains may be

distant from other sources, the mapping rules will have large

differences even when inputting the same low-level feature of

the target domain. Additionally, the model training deviation

caused by the outlier source domains is mixed in the shared

domain, misguiding the optimization direction of shared encoder

and the convergence boundary of shared classifier. The distance

between the private domain mapping of outlier source and the

shared domain will inevitably cause the outlier domain mapping

to stay away from other source domain mappings. In this case

of improper optimization, the model tends to converge to most

source domains while ignoring the outlier domain, the boundary

of shared domain shifts toward the concentrated source domains

and deviates from that of maximum private domain, resulting the

model not to converge.

In order to alleviate the outlier source problem, we propose the

two-stream training structure instead of the parallel one, by only

inputting the data of current source domain and unlabeled data

of target domain during each iteration. The proposed two-stream

structure is depicted in Figure 3A. By separating different source

domains in the training process, Lwas−gp is calculated between the

current target private feature FiTP and others F
j
TP (j 6= i), alleviating

the effects caused by the other source domains. Similarly, Ldiff−gp
only calculates the distance between the target feature of current

private encoder and feature of the shared encoder, avoiding mixing

the outlier source domain. As a result, the model errors caused by

outlier source domain would be further alleviated.

With the proposed two-stream training structure, we adopt

the loop iteration strategy as illustrated in Figure 3B to perform

the sequential iterations of all source domains, alleviating domain

confusion in loss function and improving the robustness of

the network. Here, we refer to a loop of the whole source

domains as an epoch comprising n iterations, where an iteration

corresponds one source domain. Specifically during each iteration,

the proposed MISNet successively selects the current source data

matrix Xi
S and its corresponding encoder EiP as the private

encoder, then Lmmd measures the marginal distribution between

FiSP and FiTP, and Lwas−gp aligns the current target private feature

FiTP and others F
j
TP presented as the blue double arrows in

Figure 3B. Meanwhile, Ldiff−gp aligns the distribution between

the current target private feature FiTP and target shared feature

FTS presented as the black double arrows in Figure 3B. During

the sequential iterations, the change of source domains in two

adjacent iterations will cause slight fluctuations in Lwas−gp and

Ldiff−gp. As the loop iteration progresses, the total loss of the

same iteration will decrease between two adjacent loops until

it converges.

To make maximum use of the source domain data and ensure

that the initial mapping of shared encoder contains sufficient

emotional information, we pre-train the common encoder and

shared encoder in a subject-dependent emotion classification task.

All shuffled source domain data and their labels are used for

the training. The common encoder firstly extracts the low-level

features, and then the shared encoder is used to capture the deep

features. Finally, the shared classifier calculates cross-entropy loss

between the output and ground truth labels. In addition, the Adam

optimizer is used as the optimizing function, the total epoch is set

to 100 and batch size is set to 64. After the pre-training, only the

weights of common encoder and shared encoder are saved during

the training phase by employing a normally initialized classifier,

so that the encoders are initialized to reasonable parameters and

the model convergence would be accelerated, which avoids random
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initialization causing the model to not converge or converge to

local optima.

We can also re-examine the network construction from

the perspective of loss function design by using the following

two criteria:

• Lmmd only reduces the distance between the source and

target domains in the private domain instead of using the

shared domain.

• The auxiliary losses of Lwas−gp and Ldiff−gp use the features of
target domain to narrow the corresponding encoder mapping

instead of those of source domain.

The purpose of the first criterion is to avoid misleading the

direction of domain adaptation when the shared encoder ES is

trained mainly by the classification loss of Lcl which extracts the

target domain information containing the individual differences

among the source domains.

For the Lwas−gp loss in the second criterion, if directly using

a single source domain Xi
SP as the input of private encoders and

aligning their outputs in each iteration, the wrong gradient of

domain information in Xi
S would be mixed into other encoders

E
j
P (j 6= i). Therefore, we use the target private features FiTP

and F
j
TP to align different private domains in Lwas−gp. On the

other hand, in the actual iteration process of Ldiff−gp, each private

encoder is simultaneously updated by Lcl and Lmmd, and different

source domain is input in sequence during one loop. When directly

adopting the features of source domain as the input will introduce

fluctuations in Ldiff−gp, leading to the training collapse. Therefore,

we use the features of target domain instead to constrain the

domain adaptation direction. After aligning the target private

features FiTP and target shared features FTS, the shared classifier CS

could classify the emotion of target domain correctly.

4 Experimental settings

This section describes the datasets used for evaluation,

EEG data pre-processing and implementation details in the

proposed MISNet.

4.1 Datasets

We evaluate the proposed network on SEED (Duan et al.,

2013; Zheng and Lu, 2015; Liu et al., 2022) and SEED-IV (Zheng

et al., 2019), which are public datasets commonly used for EEG

emotion recognition. The SEED dataset contains EEG signals from

15 Chinese participants (seven males and eight females). The

participants are required to watch 15 Chinese film clips chosen

from a pool of materials as stimuli to elicit positive, neutral and

negative emotion. Additionally, each film clip contains scenes and

audios that is ∼4-min long to prevent viewer fatigue. The clip

order prevents the continuous display of two clips depicting the

same emotion category. Each subject participates in three sessions

containing 15 trials, where each session is conducted on a separate

day. For feedback purposes, the participants are asked to complete

a questionnaire and report their emotional responses immediately

after viewing each clip. The EEG signals are recorded by an ESI

NeuroScan system at a sampling rate of 1,000 Hz through a 62-

electrode cap according to the international 10-20 system. The

SEED-IV dataset is similar to the SEED, but it has four emotion

categories (happiness, sadness, fear and neutral) and conducts 24

trials per session.

4.2 Data pre-processing

For the data pre-processing of EEG signals, the original EEG

data was downsampled to 200 Hz and a bandpass filter from 0 to 75

Hz was applied, and a 512-point short-time Fourier transform was

used with a non-overlapped Hanning window of 1 s to calculate the

frequency domain features. Considering their effectiveness in the

EEG emotion recognition task (Yang et al., 2017; Li et al., 2022), the

DE features were then computed on the five bands as δ: 1–3 Hz,

θ : 4–7 Hz, α: 8–13 Hz, β : 14–30 Hz and γ : 31–50 Hz (Zheng and

Lu, 2015). For the gaussian distribution, the DE feature is defined

as shown in Equation (18),

DE(X)=−
∫ ∞

−∞

1√
2πσ 2

e
(x−µ)2
2σ2 log

1√
2πσ 2

e
− (x−µ)2

2σ2 dx

= 1

2
log 2πeσ 2,

(18)

where X obeys the gaussian distribution N(µ, σ 2), x is the element

of X. Therefore, the 310-dimensional DE features (62 channels

multiplying with five frequency bands) were computed, and the

features were smoothed with the conventional moving average and

linear dynamic system. After the pre-processing steps, each session

contains 3,394 samples for the SEED dataset and 822 samples for

SEED-IV dataset.

4.3 Implementation details

In the proposed MISNet, the common encoder is a 3-layer

fully-connected layer with 310-256-128-64 nodes, which extracts

the low-level features of source and target domains. Each private

encoder and shared encoder are composed of a fully connected

layer designed as 64 (input layer)—32 (output layer)—LeaklyRelu

activation. Besides, a single fully-connected layer is chosen for each

private classifier and shared classifier with a hidden dimension from

32 to the number of emotion categories. Note that there is no batch

normalization layer, since we use the gradient penalty guidelines

in Equations (9) and (10). The LeakyRelu activation function with

a negative slope of 0.01 is used in all hidden layers. In addition,

we normalize the data of source and target domains to enhance

performance by using the electrode-wise method in Chen et al.

(2021a).

For the hyper-parameters in Equation (16), we consider the

trade-off among the primary losses of Lcl and Lmmd as well

as auxiliary effects of Lwas−gp and Ldiff−gp, and set α =
2

1+e−10×k/(nos× epoch) − 1 (k = 1, 2, · · · , nos× epoch), where nosmeans

number of samples and β = γ = α
100 . In our network, we set

the learning rate to 0.01 and the batch size to 64. In addition, the
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Adam optimizer is used as the optimizing function, the total epoch

is set to 200, and a cosine annealing schedule is used to determine

the learning rate for each epoch. The proposed framework is

implemented in PyTorch with version of 1.11 on NVIDIA RTX

1080Ti GPU. The model parameters and computation cost are

FLOPs 9.88M and params 154.4K, respectively.

5 Experiments and results

In this section, we first test different values of loss weights β

and γ to evaluate the effectiveness of the hyper-parameter settings.

Next, the ablation experiments are conducted in terms of loss

functions, dynamic convergence of network and visualization of

mapping features. Then, we compare the proposed network with

other competing methods by using the LOSO strategy on the SEED

and SEED-IV datasets. Finally, the experiments of adding noise are

conducted to demonstrate the robustness of the proposed network.

5.1 Hyper-parameter evaluation

In this section, we evaluate the hyper-parameters of β and γ in

Equation (16) within a certain range based on previous experience

to explore the impact of different settings in terms of accuracy

on the SEED dataset. The corresponding results are illustrated in

Figure 4. It can be seen from Figure 4 that, both Lwas−gp and Ldiff−gp
are affected by the selected hyper-parameters of β and γ , with

Ldiff−gp being more sensitive than Lwas−gp. Even with the worst

recognition result of 83.05% by setting β = α
100 and γ = α

1000 ,

the proposed network still maintains the strong ability of subject

independent emotion recognition. Since setting β = γ = α
100

has achieved best recognition performance on SEED dataset, we

use this setting to evaluate the effectiveness of network in the

following experiments.

5.2 Ablation study

To demonstrate the effectiveness of loss functions in MISNet,

we evaluate the performance of the ablated network on the SEED

and SEED-IV datasets, as shown in Table 1.

The subject independent recognition performance is evaluated

by using the metrics of mean accuracy (Mean) and standard

deviation (Std.). Table 1 indicates that all loss functions can

improve recognition performance, affording the mean accuracies

of 88.80 and 74.60% on the SEED and SEED-IV datasets,

respectively. In addition, the proposed MISNet achieves the

standard deviation of 6.24 and 9.30% on the SEED and SEED-

IV datasets, respectively, showing better inter-subject stability.

Discarding Lmmd in our framework leads to a significant

performance degradation compared with depriving other loss

functions, proving its importance in domain adaptation. And thus,

the higher weight should be assigned to the loss of Lmmd than

those of Lwas−gp and Ldiff−gp. Furthermore, removing Lwas−gp and
Ldiff−gp simultaneously will damage the domain adaptability more

than removing any of them individually, since they control the

relationship between private features and shared features jointly.

FIGURE 4

Evaluations of di�erent settings of β and γ in terms of accuracy on

the SEED dataset.

TABLE 1 Ablation study of loss functions on SEED and SEED-IV datasets.

Variants SEED SEED-IV

Mean Std. Mean Std.

MISNet 88.80 6.24 74.60 9.30

w/o∗ gradient penalty 86.52 8.42 67.12 12.65

w/o Lmmd 60.47 8.48 56.62 14.22

w/o Lwas−gp 86.72 8.91 70.56 13.15

w/o Ldiff−gp 87.36 10.48 69.50 13.72

Lcl and Lmmd 82.71 15.25 67.64 12.26

only Lcl 60.20 11.02 54.78 12.35

∗w/o L∗ denotes the ablated network trained without the loss function L∗ .

In addition, the gradient penalty of two auxiliary loss functions

Lwas−gp and Ldiff−gp allows stable convergence of the private and

shared domains, which is reflected in the improvement of average

accuracy and decrease of standard deviation.

One of the primary goals of the proposed network is to

align the distributions of private and shared domains to alleviate

the negative transfer in domain adaptation caused by individual

differences in EEG signals. Next, we evaluate the convergence

process of proposed MISNet and visualize the domain mapping

of the private and shared domains in a two-dimensional way

by using the t-distributed stochastic neighbor embedding (t-sne).

The t-sne method is employed to evaluate the similarity between

feature representations during the training process, meaning the

closer points have a higher similarity in real space. The similarity

between source and target domains affects the domain adaptability

of network, while the distinction among the emotion categories

reflects its emotion discrimination. The dynamic convergence

process of the proposed MISNet is shown in Figure 5.

It can be depicted from Figure 5A that the original distributions

of the DE feature projection of different source domains are chaotic

and irregular, due to the individual differences of EEG signals.
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FIGURE 5

Training process of the proposed MISNet with t-sne mapping. Red color denotes the target shared features and gray color represents the source

shared features, while other colors symbolize the source private features. Di�erent shapes denote the di�erent emotion categories: •, N, �

represents positive, neutral and negative emotions, respectively. (A) the original distributions of the DE feature projection of di�erent source

domains, (B) the initialization e�ect of subject-dependent pre-training, (C–F) the training process of MISNet.

After the designed subject-dependent pre-training strategy, the

different emotional categories of source shared domain represented

by different gray shapes have been distinguished to some extent,

which means the shared encoder has a fundamental emotion

classification ability, as illustrated in Figure 5B. Figures 5C–F reveal

that as the convergence process progresses, the private domain of

each source domain (represented by different colors) is clustered

based on their emotion category (represented by different shapes),

indicating a gradual improvement of emotional discrimination. In

addition, the cluster center of each domain is distributed near the

middle of the figure, indicating that all cluster centers are aligned

among the private domains. As the convergence process progresses,

the space of private domains gradually shrinks, indicating that the

model is eliminating the interference of spacing among private

domains. Furthermore, it can also be found from Figure 5F that,

when the model has converged, the source private domains

exhibit different emotional distribution patterns, this is because

we align the domain centers instead of aligning the distribution of

private features in Lwas−gp. Additionally, the target shared features

(represented by red) are almost always within the source shared

features with corresponding emotion categories (represented by

gray), indicating that the shared encoder can effectively capture

the shared emotion information. After the final optimization, the

center of the shared domains roughly coincides with that of the

private domains, and the boundary of shared domains is close to

that of maximum private domain. It can be concluded that the

convergence process of MISNet is identical to the anticipated and

has a strong domain adaptability for subject independent EEG

emotion recognition.

5.3 Comparisons with competing methods

In this section, we compare the proposed MISNet with several

competing methods on the SEED and SEED-IV datasets. Table 2

shows the comparison results in terms of the mean classification

accuracy and standard deviation with competingmethods. Here the

results of MS-MDA (Chen et al., 2021a) were obtained by using the

LOSO strategy with the open source codes.1

It can be seen from Table 2 that the domain adaptation-

based methods significantly improve the recognition performance

compared with directly using SVM in the subject independent

experiments. Furthermore, most domain adaptationmethods using

multi-source (Chen et al., 2021a,b; Luo and Lu, 2021; Gong

et al., 2022; Zhu et al., 2022) can attain better performance than

those without multi-source (Li H. et al., 2018; Luo et al., 2018;

Ma et al., 2019), which indicates the importance of considering

individual differences inside the source domains. Specifically, the

proposed MISNet outperforms most of the competing methods,

achieving a mean accuracy of 88.8 and 74.6% on the SEED

and SEED-IV datasets, respectively. This is attributed to the

designed loss functions Lwas−gp and Ldiff−gp, which enhance the

1 https://github.com/VoiceBeer/MS-MDA
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domain adaptability of the network. The evaluation index of

standard deviation means the stability performance of networks

across subjects in the dataset. Compared with the typical existing

methods on two benchmark datasets of SEED and SEED-IV, the

proposed MISNet demonstrates the competitive ability overcome

the individual differences. Although a small gap exists compared to

wMADA-β (Luo and Lu, 2021), the proposed method has simpler

parameter tuning process during the training phase compared to

wMADA-β (Luo and Lu, 2021).

In order to prove the generality of the proposed model, we

compare it with the competitive method of MS-MDA (Chen et al.,

2021a) by using the indicators of F1 score, sensitivity and specificity

in Table 3. In the experiment, all folded performance was used to

estimate the indicators of F1 score, sensitivity and specificity under

the LOSO strategy. It can be seen from Table 3 that, the proposed

MISNet has higher generalization ability on all three aspects than

MS-MDA (Chen et al., 2021a) and performs stably in all subjects.

To further demonstrate the robustness of the proposedMISNet

network, we evaluate the performance of the network on the SEED

TABLE 2 Comparison results of the proposed MISNet with competing

methods on the SEED and SEED-IV datasets.

Methods SEED SEED-IV

Mean Std. Mean Std.

SVM (Zheng and Lu,

2016)

56.7 4.6 − −

WGANDA (Luo et al.,

2018)

87.1 7.1 − −

DAN (Li H. et al.,

2018)

83.8 8.6 − −

DResNET (Ma et al.,

2019)

85.3 8.0 − −

PPDA (Zhao et al.,

2021)

86.7 7.1 − −

MS-MDA (Chen et al.,

2021a)

82.9 6.4 62.8 10.9

MEER-NET (Chen

et al., 2021b)

87.1 2.0 71.0 12.1

wMADA-β (Luo and

Lu, 2021)

89.3 4.0 − −

MWACN (Zhu et al.,

2022)

87.6 4.0 74.4 −

MISDA (Gong et al.,

2022)

88.1 9.5 73.8 11.9

MISNet (Ours) 88.8 6.2 74.6 9.3

The bold font in the table represents the top three in the results.

dataset by adding gaussian noise in the test data, as shown in

Equation (19),

XN
T = XT + KN, (19)

where XT are the target matrices, N denotes the gaussian noise

which obeys the gaussian distribution N(0, 1) and K is the noise

coefficient. In the experiment, we verify the robustness of the

proposed network to noise by gradually increasing the noise

coefficient, as shown in Figure 6. It can be seen from Figure 6 that,

with the noise coefficient K increasing from 0 to 0.3, that is, the

signal-to-noise ratio gradually decreases, the recognition accuracy

of the model gradually decreases inevitably, and the recognition

variance increases.When the signal-to-noise ratio is relatively large,

that is, when K is equal to 0.1 and 0.2, the mean accuracy of the

proposed model still remains above 75%, indicating that it has a

strong tolerance for noise.

In order to show the recognition ability of the proposed

MISNet among different emotion categories, Figure 7 shows the

confusion matrix on the SEED and SEED-IV datasets. It can

be seen from Figure 7 that on the SEED dataset, the MISNet

achieves the recognition accuracies of 78.77, 93.02, and 95.03%,

respectively on the emotion categories of negative, neutral and

positive, demonstrating strong discriminative capability across

emotions. And the results on the SEED-IV dataset infer that our

framework has decent accuracies for the emotion categories of

neutral, sad and happy. While for the category of fear, the proposed

MISNet confuses it with sad because these two emotions are

relatively similar on EEG signals.

FIGURE 6

The robustness of MISNet to noise on the SEED dataset.

TABLE 3 Comparison generality with competing method on the SEED and SEED-IV datasets.

Variants SEED SEED-IV

F1-score Sensitivity Specificity F1-score Sensitivity Specificity

MS-MDA (Chen et al., 2021a) 79.8± 15.1 80.1± 15.2 90.3± 7.4 42.8± 15.4 44.9± 14.8 81.8± 5.2

MISNet (Ours) 88.7± 7.3 88.8± 7.2 94.5± 3.1 73.2± 13.3 74.1± 11.9 92.3± 3.9
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FIGURE 7

Confusion matrices of predictions on SEED and SEED-IV dataset.

6 Conclusion

Although the EEG signals have the advantage of spontaneous

and non-subjective characteristic in emotion recognition filed, they

still have several limitations, including the individual difference

and noisy labeling issues. In this paper, the main challenge

we aim to address is the domain shift problem caused by the

non-stationary of EEG signals and the individual differences

among users.

For the purpose of alleviating the domain shift problem,

we propose to consider the individual differences and group

commonalities simultaneously, improving the domain adaptation

ability of the model. In the proposed MISNet, the decoupling

network structure is designed to extract the private domain

features and shared domain features of each domain data. In order

to constrain overall optimization direction, the classification

loss function and domain adaptation loss functions are

adopted. In addition, we analyze the convergence process of

network to design the auxiliary loss functions of Lwas−gp and

Ldiff−gp in order to align the different domain centers. A pre-

training strategy is also used to enhance model stability and

ensure that the initial mapping of shared encoder contains

sufficient emotional information. Furthermore, the convergence

process of the proposed network is dynamically displayed

through t-sne mapping. The results on the SEED and SEED-

IV datasets demonstrate the effectiveness of our proposed

MISNet frameworks.

Since the proposed MISNet needs the unlabeled data of

target domain to obtain domain information, it is available

for the offline situations in real life, and achieves high-

quality emotional awareness by decoupling personality and

common emotional characteristics. Our future work will focus

on disentangling the domain information from EEG data

with a reasonable explanation, thereby constructing a more

robust network.
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