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Brain network analysis provides essential insights into the diagnosis of 
brain disease. Integrating multiple neuroimaging modalities has been 
demonstrated to be  more effective than using a single modality for brain 
network analysis. However, a majority of existing brain network analysis 
methods based on multiple modalities often overlook both complementary 
information and unique characteristics from various modalities. To tackle 
this issue, we propose the Beta-Informativeness-Diffusion Multilayer Graph 
Embedding (BID-MGE) method. The proposed method seamlessly integrates 
structural connectivity (SC) and functional connectivity (FC) to learn more 
comprehensive information for diagnosing neuropsychiatric disorders. 
Specifically, a novel beta distribution mapping function (beta mapping) is 
utilized to increase vital information and weaken insignificant connections. 
The refined information helps the diffusion process concentrate on crucial 
brain regions to capture more discriminative features. To maximize the 
preservation of the unique characteristics of each modality, we  design 
an optimal scale multilayer brain network, the inter-layer connections of 
which depend on node informativeness. Then, a multilayer informativeness 
diffusion is proposed to capture complementary information and unique 
characteristics from various modalities and generate node representations 
by incorporating the features of each node with those of their connected 
nodes. Finally, the node representations are reconfigured using principal 
component analysis (PCA), and cosine distances are calculated with 
reference to multiple templates for statistical analysis and classification. 
We  implement the proposed method for brain network analysis of 
neuropsychiatric disorders. The results indicate that our method effectively 
identifies crucial brain regions associated with diseases, providing valuable 
insights into the pathology of the disease, and surpasses other advanced 
methods in classification performance.
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1 Introduction

The human brain represents an intricate network comprising 
interconnected regions in both structure and function (Cao et al., 
2020). Anomalous wiring within the brain network may result in brain 
dysfunction (Van Den Heuvel et al., 2013). Neuropsychiatric disorders 
encompass a range of neurological diseases affecting the brain, 
characterized by cognitive dysfunction as a central symptom. Previous 
research has suggested that many neuropsychiatric disorders (such as 
schizophrenia, bipolar disorder, and Alzheimer’s disease) are caused 
by damage to the brain’s internal nervous system (Liu et al., 2018; Lian 
et al., 2020), leading to dysconnectivity between distinct brain regions 
(Yan et  al., 2018; Wang et  al., 2022). In medical physiology, 
neuroimaging techniques have rapidly evolved to provide critical 
insights into the diagnosis of neuropsychiatric disorders (Dubois and 
Adolphs, 2016; Cui et al., 2022; Liu et al., 2022a).

Brain networks derived from various neuroimaging modalities 
have been extensively used to analyze neuropsychiatric disorders. 
According to graph theory, a brain network comprises nodes and 
edges, with nodes denoting distinct brain regions, and edges signifying 
either physical connections or pairwise similarity. Diffusion tensor 
imaging (DTI) and functional magnetic resonance imaging (fMRI) are 
two frequently employed neuroimaging techniques. DTI reveals the 
physical connections between distinct brain regions, serving as a 
structural connectivity (SC) to build the structural brain network. 
fMRI captures the temporal correlation between blood-oxygen-level-
dependent (BOLD) signals across various brain regions, which is 
normally treated as functional connectivity (FC) to establish the 
functional brain network (Osipowicz et al., 2016). Some methods 
relying on structural or functional brain networks have been effectively 
employed to identify potential biomarkers in the diagnosis of 
neuropsychiatric disorders. For example, Zhang et al. (2018) proposed 
ordinal patterns (e.g., subgraphs and motifs) containing weighted edge 
sequences for the connectivity analysis of brain networks. Huang et al. 
(2020a) employed SGNS to extract embedding features of structured 
brain networks and aligned these node representations through 
orthogonal transformations, then computed feature distances for brain 
disease diagnosis. Graph embedding methods, such as node2vec, are 
also widely used to extract node-level feature vectors of brain networks 
for brain disease analysis, which capture subtle structural changes in 
the brain network and contain richer information (Rahimiasl et al., 
2021; Ramesh Kumar Lama and Kwon, 2021). These approaches are 
typically focused on either SC or FC, thereby only considering node 
interactions within a single modality. In practice, different modalities 
provide possibilities to analyze brain diseases from multiple 
perspectives (Dai et al., 2019; Zhang et al., 2021); integrating multiple 
modalities has been shown to be more effective than using a single 
modality in brain network analysis (Yan et al., 2020).

In recent years, A variety of approaches have emerged to combine 
SC and FC to perform brain network analysis (Huang et al., 2020b; 
Song et al., 2023). These methods typically can be divided into two 
categories. The first category involves a data fusion strategy, considering 
SC and FC as multi-modal data and combining their features by 
employing established machine learning techniques. For example, Gao 
et al. (2020) proposed a multi-kernel SVM to integrate multi-modal 
MRI by exploiting the subspace similarity of the decomposition 
components in each modality. Lei et al. (2020) combined low-order 
self-calibrated functional and structural brain networks to perform 

joint multitask learning for the early diagnosis of Alzheimer’s disease. 
Mill et al. (2021) used univariate and multivariate methods to fuse 
structural MRI and functional connectivity features for diagnosing 
patients with prescription opioid use disorder. These methods view SC 
and FC as separate modalities to extract latent node representations, 
neglecting the potential complementary information that exists 
between the modalities. The other category refers to a guiding strategy, 
which involves utilizing one modality to aid another in extracting 
features or leveraging multi-modal data to construct a unified brain 
network. For instance, Huang et al. (2020b) proposed an attention-
diffusion-bilinear neural network for brain network analysis, in which 
node interactions in structural brain networks are used to further guide 
diffusion processes in functional brain networks to generate new node 
representations. Zhu et al. (2021) proposed a unified brain network 
construction framework, using a low-rank representation to build 
correlation models of all brain regions in functional data, simultaneously 
embedding local manifolds with structural data into the model to fuse 
multi-modal features. Liu et al. (2022b) utilized machine learning to 
extract important features from a structural graph network and 
exploited these features to adjust the corresponding edge weights in a 
functional graph network, which serves as an input to a multilayer 
GCN to achieve disease classification. However, these methods lead to 
each subject ultimately having only one brain network, thereby losing 
the unique characteristics of each modality’s brain network (Zhu et al., 
2022). It has been proved that some internal properties within the brain 
network play a pivotal role in the analysis of brain networks (Wang 
et al., 2017; Yan et al., 2019). However, these multi-modal brain network 
analysis methods cannot adequately balance both the utilization of 
complementary information and the preservation of unique 
characteristics from various modalities.

To tackle this challenge, we  propose a Beta-Informativeness-
Diffusion Multilayer Graph Embedding (BID-MGE) method to learn 
holistic information for brain network analysis. Specifically, to maximize 
the preservation of each modality’s unique characteristics, we design a 
multilayer brain network, the functional layer of which is built through 
the guidance of its structural layer, and inter-layer connections are 
defined by node informativeness. Then, the multilayer informativeness 
diffusion first selects a more informative layer depending on node 
informativeness to exploit complementary information between 
modalities through wider node interactions. Within each layer, 
traversing nodes based on SC or FC capture the unique characteristics 
of each modality. Through propagating node features from a selected 
node to all its linked nodes in a diffusion manner, more comprehensive 
information is therefore considered in feature learning. In addition, beta 
mapping further assists the diffusion process to extract more 
discriminative features by refining crucial connectivity. Finally, to 
compare and analyze differences between different groups, 
we reconfigure node representations by PCA and then compute cosine 
distances with reference to multiple templates for statistical analysis and 
classifications. The statistical analysis is conducted on the node distances. 
For the classifications, the network distance serves as input into the 
Support Vector Machine (SVM) for identifying the label of each network.

The principal contributions of this study are as follows:

 1. Beta mapping to refine the connectivity information of each 
modality. The refined information helps direct the diffusion 
process towards important brain region to capture 
discriminative features.
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 2. We proposed a novel framework for constructing a multilayer 
brain network, in which the inter-layer connections are based 
on node informativeness, and the network scale is optimized 
by the structural layer.

 3. The multilayer informativeness diffusion learns complementary 
information and unique characteristics from various modalities. 
It is also an unsupervised embedding technique that only needs 
low time and space complexity and has no sample 
size limitations.

 4. We validated the efficacy of our method on actual 
neuropsychiatric disorder datasets through two group-
level analyses.

2 Proposed method

The entire processes of our method are depicted in Figure  1, 
comprising three primary components: data preprocessing, node 
representation learning, statistical analysis, and disease classifications. 
We describe each component of the BID-MGE method in detail below.

2.1 Data preprocessing

Throughout the experiments, we utilized two types of data: MRI 
images and clinical scores. The MRI images encompass both DTI and 

resting-state fMRI (rs-fMRI), which require different preprocessing. 
The specific steps are described below.

DTI is preprocessed using PANDA toolboxes (Cui et  al., 
2013). First, the initial images go through head motion correction 
and eddy current distortion. Second, the fractional anisotropy 
(FA) is computed for every voxel, followed by registering the FA 
images in the original space to the T1-weighted images using an 
affine transformation. Third, we  employ the Anatomical 
Automatic Labeling (AAL) atlas to delineate and mark the regions 
of interest (ROI) within the DTI data, and then reconstruct WM 
pathways (fibers or tracts) via a deterministic white matter 
tractography method (Mori and van Zijl, 2002). Finally, we acquire 
the count of fibers that connected any two brain regions from 
DTI data.

The rs-fMRI data is preprocessed using DPABI (Yan et al., 2016). 
Before starting the preprocessing, we discarded the initial 10 time 
points due to the incipient signal fluctuation. Subsequently, head 
motion and slice timing corrections are applied to each subject. Then, 
the T1 image is aligned with the central rs-fMRI image with corrected 
head movement. The functional images are resampled to 3-mm 
isotropic voxels and then subjected to spatial smoothing using a 4-mm 
full-width half-maximum (FWHM) Gaussian kernel. Several 
interfering signals, such as head motion signals, and cerebrospinal 
fluid are regressed from the image. Low-frequency drift and high-
frequency noise are removed by linear detrending and bandpass 
filtering (0.01–0.25 Hz). Ultimately, the average time series are 
extracted from brain regions parcellated according to the AAL atlas.

FIGURE 1

Architecture of the proposed BID-MGE method for brain network analysis. There are three modules in our method: a data preprocessing module, 
beta-informativeness-diffusion multilayer graph embedding module, and brain network analysis module. The data preprocessing module transforms 
the DTI and fMRI data into a structural and functional connectivity matrix. The Beta-Informativeness-Diffusion multilayer graph embedding module 
integrates SC and FC for generating node representations with comprehensive information of the brain network. The brain network analysis module 
consists of a statistical analysis and classifications.
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FIGURE 2

Beta distributed mapping function. Beta mapping with different values of α and a fixed β  =  1. As α increases, the squeezing and expanding properties 
become stronger.

2.2 Structural and functional brain network 
construction

Graphs provide a useful abstraction for representing many 
complex relationships in reality. In general, a weighted graph is 
denoted as G V E W= ( ), , , where V v v vn= ¼{ }1 2, , , defines the set of 
the nodes, E eij i j= { } = ¼( ), , , ,n1 2

 denotes the set of the edges, and W  
represents a connectivity matrix reflecting the strength of connectivity 
between any two nodes within the graph. Likewise, the human brain 
network can be abstractly denoted as such a graph. The graph’s nodes 
symbolize brain regions, while the edges represent the connections 
linking these regions. In our experiment, we  adopt triples, 
G V E Ws s s s= ( ), , and G V E Wf f f f= ( , , ), to represent the structural 
and functional brain networks, respectively. Here, V V Vs f= = . 
Among them, v Vs

sÎ denotes a brain region in the structural brain 
network. Ws signifies a structural connectivity matrix, with the weight 
w Wij
s

sÎ  for each e Eij
s

sÎ  calculated by the count of fibers divided by 
the sum of two interconnected surface areas of ROIs. v Vf

fÎ  
represents a brain region within the functional brain network,Wf
refers to a functional connectivity matrix, with the weight w Wij

f
fÎ  

for each e Eij
f

fÎ  determined by computing the Pearson correlation 
among the average time series of the brain regions. Notably, as the 
negative correlation coefficients have no clear biological explanations, 
it is common practice to set these negative values to zero (Murphy 
et  al., 2009; Cao et  al., 2020). Additionally, the self-correlations 
coefficients are also set to zero (Rubinov and Sporns, 2010).

2.3 Connectivity information refinement

To extract more discriminative features, the following mapping 
function (beta mapping) as shown in Eq. 1, has been proposed to 
refine the connectivity information of the brain.

 y a bx x Beta x( ) = ´ ( ); , .  (1)

Where Beta is a continuous probability distribution function on the 
range [0,1]. The parameters α and β, both more than zero, determine 
the shape of its distribution. The shape can be  concave, convex, 
monotonically increasing, monotonically decreasing, and curved or 
straight. However, the probability density function (PDF) of Beta is 
monotonically ascending only in the case of α ≥ 1 and β ≤ 1, which 
maps smaller values to nearly zero numbers, and larger values to more 
significant numbers, thereby allowing for its compression and 
expansion properties. The Beta’s compression and expansion 
properties enable y x( ) to scale the input values. Considering two 
typical values of connection strength, 0.5 and 0.9, the value 0.5 
normally happens between nodes. In contrast, the value 0.9 rarely 
occurs, and it also implies a strong connection between connected 
nodes. Without using beta mapping, the latter value is merely 80% 
stronger than the former. However, by employing beta mapping with 
α =2 with β = 2, the latter transforms to 1.62, signifying a 224% 
increase in strength. In Figure 2, we present the beta mapping ψ(x) for 
different values of α with β constant 1. The larger α means more 
significant compression and expansion properties. The maximum 
value of ψ(x) is equal to α when x  = 1. ψ(x) makes it possible to refine 
the essential connections and eliminate negligible information. 
Eventually, the connectivity matrices Ws and Wf  are converted to BWs 
and BWf , respectively.

2.4 Structure-guided multilayer brain 
network construction

A multilayer brain network comprises two layers: a structural 
layer and a functional layer that correspond to the structural and 
functional brain networks, respectively. For the structural layer, its 
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edges are determined from the structural connectivity matrix BWs. 
Therefore, this layer is inherently a sparse network, and the number 
of edges is also fixed. For the functional layer, the edges are derived 
from the functional connectivity matrix BWf , which is almost fully 
connected, and some of the connections are negligible, which also 
increases the computation time of the multilayer brain network, so 
only some of the important connections in BWf will be used to 
build the functional layer instead of all of them. In this study, 
we adopt the structural layer to guide the selection of edges for 
building the functional layer, determining its network scale so that 
it is comparable in scale to the structural layer. Specifically, we first 
calculate the average edge number of all nodes within the structural 
layer, denoted by avgs. If the given network is undirected, 

2 /s savg nE= × , otherwise, /s savg nE= . Then, for each node 
v f , the top q ´ avgs edges are selected to construct the functional 
layer in terms of the connection values in BWf , where q  is the 
network scale parameter, q Î + . Finally, inter-layer edges (directed 
and weighted) are used to connect the corresponding nodes in the 
structural and functional layers to constitute a multilayer brain 
network. The weights of these edges depend on node 
informativeness. The notion of node informativeness will 
be explained later.

2.5 Multilayer informativeness diffusion

We propose a graph embedding technique based on multilayer 
informativeness diffusion, which learns node representations by 
intelligently traversing the nodes between structural and functional 
layers in a diffusion manner. Whenever the diffusion process 
reaches a node, our goal is to select a more informative layer by 
assessing the informativeness of the current node in its 
corresponding layer.

A node that has strong connections to many nodes is less similar 
to its neighbors, while a node strongly connected to only a few nodes 
is more similar to its neighbors. The latter node also means more 
informativeness (Ribeiro et al., 2017). For the diffusion process, it is 
crucial to traverse nodes that have more informativeness. In this study, 
we suppose that a strong connection refers to an edge with a weight 
exceeding the average weight of its network layer. Consequently, 
we define Ti

s as the collection of neighbors’ non-strong connection 
with node vis in the structural layer, denoted as Eq. 2.

 
Ti
s

j
s

s ij
s

s e E
e
sV w

E
w
s

= Î £
¢

¢
Î
å{ | }.u

1

 
(2)

Each node in Ti
s  has an edge connected to viswith a weight not 

exceeding the mean weight of the structural layer. Ts
i denotes the 

count of nodes that belong to Ti
s . Similarly, Ti

f for the functional 
layer is defined as Eq. 3:

 

Ti
f

j
f

f ij
f

f e E
e
fV w

E
w
f

= Î £
¢

¢
Î
å{ | }.u

1

 
(3)

Given the sets Ti
s and Ti

f
, the informativeness of nodes visand vi

f is 
defined as Eq. 4.

 
( ) ( )ln | | , ln | | .f fs s

i i i ie eΙ = + Τ Ι = + Τ
 

(4)

Now, let us consider the inter-layer directed weighted edges. The 
weight is set as Iis  from the functional layer to the structural layer, and 
vice versa as Ii

f . The diffusion process starts with selecting the 
structural or functional layer according to the weights of inter-layer 
directed edges. If the value of Iis is high, the diffusion process will step 
into the structural layer. Otherwise, the functional layer will be chosen. 
We  aim to step into a layer where the node possesses 
greater informativeness.

Subsequently, we formulate the probabilities of inter-layer and 
intra-layer diffusion for multilayer informativeness diffusion. Given a 
node vi, the probability of inter-layer diffusion is defined as Eq. 5:

 
P v v P v vi

s
i
f i

s

i
s

i
f i

f
i
s i

f

i
s

i
f| , | .( ) =

+
( ) =

+

I

I I

I

I I  
(5)

Where the likelihood of moving to a structural layer is represented as 
P v vis i

f|( ), and vice versa for P v vi
f
i
s|( ). The probability of intra-layer 

diffusion delineates the likelihood of transitioning from the present 
vertex to the subsequent vertex within the layer. Suppose the diffusion 
process visited node vk

li
-1 at time t–1 and propagated to node vk

l j  at 
current time t, where li and l j  denote the corresponding layers 
l l s fi j, Î{ }, . If the diffusion process steps into another layer at time t 
(i.e., i jl l≠ ), e Ek k

l
l

j

j-( ) Ï1,
, otherwise (i.e., l li j= ), e Ek k

l
l

j

j-( ) Î1,
. For 

e Ek k
l

l
j

j-( ) Ï1,
, The selection probability of the next node depends 

entirely on the weight of the edges connecting to vk
l j in layer l j. In other 

cases, the intra-layer diffusion probabilities follow the unnormalized 
transition probabilities in node2vec (Grover and Leskovec, 2016). 
Hence, we  define the probability of intra-layer diffusion (i.e., the 
probability of selecting the next node vk

l j
+1 in layer l j at time t + 1) 

as Eq. 6:
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w if e E
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(6)

Here, d k k
l j
- +( )1 1,

 represents the unweighted path length between two 
nodes, vk

l j
-1 and vk

l j
+1. For parameters p and q, both are greater than 0. 

Parameter p determines the probability of traversing the recently 
visited node vk

li
-1, and parameter q controls the search to proceed in 

either a BFS or DFS manner. If q > 1, the diffusion process prefers 
nodes closer to node vk

li
-1. If q < 1, the diffusion process tends to visit 

nodes farther away from it.
The multilayer informativeness diffusion is performed as 

follows: at a given time point of the diffusion process, a node is 
on either the structural or functional layer. The diffusion process 
first evaluates the informativeness of the node in each layer to 
determine which layer to enter next, then traverses the node 
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according to the transition probabilities. The selected node is 
added to node sequences after discarding its layer information, 
which ensures each node corresponds to only one node 
representation. We repeatedly perform the above steps λ times, 
where λ signifies the truncated walk length starting from a node.

After generating the necessary number of node sequences for 
every node, learning node representation is achieved using the 
following objective function (Eq. 7), optimizing the log-probability 
of a node observing its context within the node sequence, 
given by F :

 

max log ( | ) max log ( | ).
F v V F v Vu N v

P N v F v P u F v
Î Î Î ( )
å å å( ) ( ) = ( )

 
(7)

Let : V dF →   be a learnable projection function mapping nodes to 
vector representations. Here, parameter d fixes the dimensions of the 
node representation. Correspondingly, F specifies a parameter matrix 
of size n d´ , representing the node representation. N v( ) is the 
neighborhood of node v in a diffusion process. To render the 
optimization problem tractable, we  also apply two criterion 
assumptions: conditional independence and feature space symmetry 
(Grover and Leskovec, 2016). The above optimization function is 
simplified (Eq. 8):

 

max log . .
F v V u N v

vZ F u F v
Î Î ( )
å å - + ( ) ( )( )

 
(8)

The partition function Z F v F vv
v V

= ( ) ( )( )¢
¢Î
å exp .  can be

 
estimated

 
using negative sampling. The model parameters denoting the feature 
F  in Eq. 8 can be optimized through stochastic gradient ascent.

2.6 Node representation reconfiguration

A particular dimension within a node representation may 
encompass varying latent concepts across different networks. Hence, 
these representations have to be reconfigured sequentially to ascertain 
the importance of individual features (Salsabilian and Najafizadeh, 
2020). To accomplish this objective, we adopt PCA, which also serves 
as information compression. We retain top k  principal components 
(k d< ) and transform the representation matrix Fn d´  into a 
reconfigured representation matrix An k´  in an important sequential 
manner p p pk1 2, ,¼( ). , where pi  represents the ith principal 
component as a column vector and the row j  of A, Aj, denotes the j
th reconfigured node representation.

2.7 Cosine distance computation

Given two vector representations, A x x xt= ¼( )1 1, , ,  and  
B y y yt= ¼( )1 1, , , , the cosine distance between A and B can 

be calculated as Eq. 9:

 
( ) ( ) 2 2

2 2

·Cos , 1 co
||A|| ||B

s
|

.
|

, A B A BDist A B A B −= − =
 

(9)

which reflects the differences between vector representations. The 
smaller the distance is, the more similar the vector representations are. 
Nevertheless, because of lacking shared reference coordinates, such 
pairwise distances are not directly employed in the group-level analysis 
(Huang et al., 2020a). To compare differences between different groups, 
we propose node distance and network distance, with reference to 
common coordinates at the node-level and network-level, respectively.

2.7.1 Node distance
After reconfiguring node representations, we calculate the node 

distance. This node distance becomes smaller if nodes i and j  are more 
similar in structure or function. First, we  construct the reference 
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the same labeling). Second, we calculate the distances between nodes 
in the target network and those in the template. Given a target 
networkGt and the reference template t t t1 1, , n

T{ } , a node distance 
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Third, we utilize the node distance vector, generated for each subject, 
to compose a node distance matrix, m n

m
T´ = { }� � ��1 2, , , where 

m m m mh s b= + +  and mh , ms, and mb are the number of HC, SZ and 
BD subjects, respectively. Each column,  i[ ], can be subdivided into 
three parts based on the label of each network:  h si i[ ] [ ], , and b i[ ]
. Using these node distances, the two-tailed t-test will be employed to 
recognize brain regions exhibiting structural or functional differences.

2.7.2 Network distance
Moreover, the network distance can also be  computed using 

reconfigured representations. First, node representations, An k´ , are 
concatenated to generate a network representation A¢ ´ ´( )1 n k  for each 
network. To find the all-round network-level differences between groups, 
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´
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, where m+, m- is the respective count of positive and 

negative samples). According to these templates, a network distance 
matrix Î

+ -+( )´ m m 2  is proposed to depict the network distance 
between each network and reference templates. For instance, the network 
distance between the target network Ga and two templates can 
be computed as  a a a aCosDist A C CosDist A C, ,, ,1 2( )

¢ +
( )

¢ -= ( ) = ( ), .  
 reflects the network distance between each network and the 
corresponding positive and negative templates, with the first and second 
columns of  representing the two kinds of distances.

2.8 Statistical analysis and classification

This study performs t-tests on each column  i[ ] to identify 
significantly different brain regions, considering different templates as 
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the references. The Bonferroni correction (Bonferroni p < 0.05) is 
employed to address the issue of node-level multiple comparisons. For 
disease classification, the network distance matrix,  , serves as the 
input for the SVM classifier to determine the corresponding labels.

3 Experiments

3.1 Dataset

The proposed method is evaluated using the Consortium for 
Neuropsychiatric Phenomics (CNP) database (Poldrack et al., 2016), 
which is hosted on OpenfMRI (www.openfmri.org). In addition, the 
CNP dataset also contained substantial demographic information, 
neuropsychological assessments, and neurocognitive task results. The 
study collected 147 subjects with DTI and rs-fMRI brain imaging data, 
including 50 healthy controls (HC), 48 SZ patients, and 49 BD 
patients. All participants were between 21 and 50 years of age. A 
two-tailed t-test was performed for age and sex, both of which were 
not significantly different. Table  1 presents detailed demographic 
information about the subjects. All brain imaging data were acquired 
using a Siemens Trio scanner. The parameters for obtaining DTI data 
were as follows: slices = 176, slice thickness = 1 mm, TR = 1,900 ms, 
echo TE = 2.26 ms, FOV = 250 mm, flip angle = 90°, and the acquisition 
matrix = 256 × 256. The parameters of collecting rs-fMRI data were as 
follows: slices = 34, slice thickness = 4 mm, TR = 2,000 ms, TE = 30 ms, 
FOV = 192 mm; flip angle = 90°, and the acquisition matrix = 64 × 64.

3.2 Node distance analysis

We first calculated node distances between each network and the 
reference templates (i.e., the HC template, SZ template, and BD 
template). These average node distances for each group (i.e., the HC 
group, SZ group, and BD group) are presented in Figure 3. A larger 
node distance means greater individual differences in that brain 
region. Node distances between each group and their homologous 
templates are consistently small, as shown in the main diagonal line of 
Figure  3. Some regions of the brain exhibit larger node distances 
between each group and their heterogeneous templates. In addition, 
along the main diagonal line, node distances show a similar 
distribution in symmetrical positions. For example, HC subjects refer 
to the SZ template and SZ patients refer to the HC template, as the 
node distance reflects the same node differences from opposite 
perspectives. These detailed node differences are revealed through the 
following statistical analysis.

After obtaining the node distance matrix , we  performed the 
statistical test on each column of  (i.e., h i[ ], s i[ ], and b i[ ]). The 

nodes with significant differences between any two of the HC, SZ, and 
BD groups are presented in Figure 4. We discovered that only a few 
nodes are significantly different on their common heterogenous 
templates for two groups, as shown in the sub-diagonal line in Figure 4. 
Most of the nodes with significant differences are concentrated on any 
homologous template for two groups. As shown in Figure 4A, nodes 
with differences between SZ and HC groups are concentrated in the 
thalamus, gyrus rectus, precuneus, posterior cingulate gyrus, middle 
frontal gyrus orbital and motor area. From Figure  4B, these nodes 
exhibiting differences between BD and HC groups primarily localize in 
the frontal lobe, cuneus, lingual gyrus, rolandic operculum, and 
hippocampus. Figure 4C shows nodes with differences between the SZ 
and BD groups are mainly the posterior cingulate gyrus, 
parahippocampal gyrus, precuneus, and hippocampus. Additionally, 
we  observed that brain regions with significant differences in the 
homologous templates related to both groups are not completely 
consistent. For example, the superior parietal gyrus and postcentral 
gyrus only show differences on the HC template, whereas the amygdala 
and parahippocampal gyrus orbital only present differences on the SZ 
template. This might be attributed to the following factors: (1) The 
diverse causes of different neuropsychiatric disorders and (2) the 
inherent large distances between templates.

3.3 Network distance visualization

To visualize the network distance, we mapped the distance matrix 
 onto a two-dimensional plane, where the first and second columns 
of  are assigned to the horizontal and vertical axes, respectively. To 
facilitate comparison, we  also visualized the network distance for 
structural and functional brain networks, the node representations of 
which are extracted by node2vec, and the parameter settings are the 
same as our method. The merit of network distance is estimated by 
observing how clustered the points belonging to the same class are. 
Figure 5 visualizes the 2D scatter plots of these distance matrices in 
three classification combinations. The distance matrix generated by 
building a multilayer brain network with our approach outperforms 
using single-modal brain networks. Consequently, based on this 
distance matrix  , distinct groups can be  easily distinguished by 
employing some machine learning methods (e.g., SVM).

3.4 Performance evaluation

For the evaluation of classification performance, we employed 
classification accuracy (ACC), sensitivity (SEN), specificity (SPE), and 
the area under the receiver operating characteristic (ROC) curve 
(AUC). These metrics are defined as Eqs. 10-12:

 
ACC TP TN

TP FN TN FP
=

+
+ + +  

(10)

 
SEN TP

TP FN
=

+  
(11)

 
SPE TN

TN FP
=

+
.

 
(12)

TABLE 1 The detailed demographic information of participants used in 
this study.

Name Number
Age  

(mean ± std)
Gender 

(female / male)

Healthy controls (HC) 50 32.9 ± 8.2 20 / 30

Schizophrenia (SZ) 48 35.8 ± 8.7 13 / 35

Bipolar disorder (BD) 49 35.3 ± 8.9 21 / 28
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where TP, TN, FP, and FN denote the number of true positives, true 
negatives, false positives, and false negatives, respectively.

3.5 Classification performance

To evaluate the efficacy of our method in distinguishing patients 
from healthy controls (i.e., SZ vs. HC and BD vs. HC), we conducted 
a comparison with several baseline methods. The baseline models 
include state-of-the-art brain network analysis methods.

  SVM (Atlas-based) (Tripathi et al., 2017): uses an atlas-based 
segmentation method to extract multiple known disease-
related regions of interest and then employs gray-matter voxel-
based intensity variations and structural changes extracted 
with a spherical harmonic framework to learn the 
discriminative features.

  H-FCN (Lian et  al., 2020): proposes a hierarchical full 
convolutional network to automatically identify discriminative 
local plaques and regions, then jointly learns and fuses multi-
scale feature representations to construct hierarchical 
classification models for AD diagnosis.

  nSEAL (Huang et al., 2020a): defines a node-level structural 
embedding and alignment representation to accurately 

characterize the node-level structural information, and 
calculates distances at different scales based on the embedding 
representation for brain disease analysis.

  DCNs (Jie et al., 2018): uses manifold regularized multi-task 
feature learning and multi-kernel learning to integrate both 
temporal and spatial variabilities of DCNs for brain 
disease diagnosis.

  N2EN (Zhu et al., 2018): proposes a non-negative elastic-net based 
method to extract changes in brain functional connectivity. Then, 
a kernel discriminant analysis (KDA) is utilized to classify subjects 
with the selected discriminative brain connectivity features.

  SVM (Multi-kernel) (Shao et al., 2020): uses a group-sparsity 
regularizer with a hypergraph-based regularization term to 
jointly select the common features of multiple modalities. 
Then, a multi-kernel SVM is utilized to integrate the features 
selected from different modalities for final classification.

  3D-CNN (Masoudi et  al., 2021): proposes a multimodal 
hierarchical fusion method based on attention mechanisms, 
selectively extracting features from MRI and PET while 
suppressing irrelevant information.

  HebrainGNN (Shi et al., 2022): models the brain network as a 
heterogeneous graph with multiple types of nodes and edges. Then, 
a self-supervised pre-training strategy based on the heterogeneous 
brain network is proposed to solve the potential overfitting problem.

FIGURE 3

Maps of average node distances. Average node distances between each group and three templates (i.e., the HC template, SZ template, and BD 
template).
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  MME-GCN (Liu et  al., 2022b): adopts XGBoost to extract 
important features from the structural brain network. These 
features are used to adjust the corresponding edge weights in 
the functional brain network. Finally, a multi-layer GCN is 
trained and applied to binary classification tasks.

  OLFG (Chen et al., 2023): projects multiple modalities into a 
common latent space by orthogonal constrained projection with 
learning graph regularization terms to capture discriminative 
information, and adaptively ranks feature importance using a 
feature weighting matrix. Finally, the representations in the latent 
space are mapped to the target space for AD diagnosis.

Based on the inputs, we categorized these methods into two classes. 
One category only employs single-modal data as input, while the other 
incorporates multi-modal data. For a fair comparison, we  either 
precisely reproduced these methods as mentioned in the article or 
utilized the code provided by the authors. In addition, all methods 
used identical training and test sets. The 10-fold cross-validation is 
employed to assess classification performance, repeating 10 times to 
derive the average performance.

The results of all methods are presented in Table 2. The accuracy 
values obtained from the proposed method in SZ vs. HC and BD vs. 
HC classification tasks achieve 99.07 and 98.80% respectively, which 
consistently outperforms all methods compared. Most multi-modal 
methods incorporating DTI and fMRI exhibit superior performance 

to single-modal methods using the DTI or fMRI. The accuracy of the 
majority of single-modal methods is below 95%, whereas multi-modal 
methods achieve an accuracy exceeding 95%. This verifies that 
combining SC and FC can offer complementary information, thereby 
enhancing the classification performance. Moreover, among all multi-
modal methods, SVM (Multi-kernel) yields the lowest accuracy at 
95.60 and 95.82%. The proposed BID-MGE method attains optimal 
performance on most evaluation metrics, surpassing the highest 
comparison method (OLFG) by approximately 2.00%. In addition, 
we observed that employing the embedding features directly as inputs 
to SVM for classification has a lower performance than some multi-
modal brain network analysis methods (e.g., MME-GCN, 3D-CNN, 
and OLFG). This discrepancy arises from the substantial feature 
dimensionality resulting from concatenating all nodes, which is prone 
to causing a “dimensional disaster” and negatively impacting 
classification performance. Neural network methods, however, are 
better equipped to handle high-dimensional features. To further 
examine the sensitivity of the BID-MGE method for diverse 
neuropsychiatric disorders, we  conducted a binary classification 
between SZ and BD. As shown in Figures  6A,B, our method also 
achieves a promising result with an ACC of 96.88, SEN of 95.94%, SPE 
of 97.11%, and AUC of 0.9682, which exceeds the latest neuroimaging 
and brain network research (Chen et al., 2017; Du et al., 2020).

The superior performance of our method compared with those 
multi-modal approaches may stem from the following facts. First, 

FIGURE 4

Differences in node distances between different groups with reference to the three templates. (A) Node differences between the SZ and HC groups. 
(B) Node differences between the BD and HC groups. (C) Node differences between the SZ and BD groups.
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these multi-modal methods typically emphasize the internal 
relationships within brain networks, often overlooking the potential 
interactions between nodes across modalities. By contrast, our 
method can capture wider node interactions and preserve the 
characteristics unique to each modality through multilayer 
informativeness diffusion. Second, our method employs beta mapping 
to refine the vital connectivity of brain networks, which facilitates the 

extraction of more discriminative features during the diffusion process 
and plays a crucial role in improving classification performance. In 
summary, our results suggest that alterations in structural and 
functional connections are crucial for diagnosing neuropsychiatric 
disorders. Moreover, incorporating multi-modal brain networks 
significantly improves classification performance. It also implies that 
exploring wider node interactions between brain structures and 

FIGURE 5

Visualization of the network distance matrix. (A) Scatter plots of the network distance matrix for our method. (B) Scatter plots of the network distance 
matrix for the structural brain network. (C) Scatter plots of the network distance matrix for the functional brain network.

TABLE 2 Performance of all comparative methods in SZ vs. HC and BD vs. HC classification.

Method Modality
SZ vs. HC BD vs. HC

ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC

SVM (Atlas-based) DTI 85.87 86.88 84.82 0.8571 86.18 86.94 85.40 0.8585

H-FCN DTI 86.75 86.70 86.80 0.8675 85.98 84.54 87.44 0.8606

nSEAL DTI 87.46 84.17 88.46 0.8632 88.86 92.14 85.42 0.8878

DCNs fMRI 90.54 89.65 91.46 0.9083 91.64 91.24 92.04 0.9192

N2EN fMRI 93.45 92.27 94.67 0.9392 93.76 92.60 94.94 0.9396

SVM (Multi-kernel) DTI & fMRI 95.60 94.20 97.05 0.9594 95.82 96.52 95.11 0.9596

HebrainGNN DTI & fMRI 95.64 93.06 97.50 0.9528 95.97 95.83 96.28 0.9605

MME-GCN DTI & fMRI 95.93 97.98 94.25 0.9612 95.88 95.83 96.33 0.9608

3D-CNN DTI & fMRI 96.06 96.70 95.39 0.9592 96.03 95.84 96.22 0.9631

OLFG DTI & fMRI 96.78 96.25 98.00 0.9712 96.73 96.08 97.77 0.9693

BID-MGE

(without distances)
DTI & fMRI 95.91 97.43 92.84 0.9514 94.55 90.90 98.00 0.9445

BID-MGE DTI & fMRI 99.07 98.47 99.97 0.9923 98.80 99.92 97.65 0.9897
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functions and mining intrinsic characteristics of brain networks could 
further enhance the diagnosis of neuropsychiatric disorders.

3.6 Comparison with previous studies

In this section, we conducted a comparison with several available 
methods using neuroimaging data from the COBRE dataset (Mayer 
et  al., 2013). The dataset includes structural magnetic resonance 
imaging (sMRI), fMRI, and DTI modalities. We collected 73 subjects 
for whom both DTI data and resting-state fMRI data are available, 
participants consist of 37 HC and 36 SZ. The ages of all subjects ranged 
from 20 to 65 years, and their age and gender distributions were not 
significantly different. Data acquisition parameters of DTI and fMRI 
can be found in Masoudi and Danishvar (2022). Data preprocessing is 
described above. The methods compared include single-modal 
methods and multi-modal methods. Table 3 reported the results of 
previous studies. Notably, the results of different methods are not 
directly comparable due to variations in the sample sizes, preprocessing 
methods, and data division. From Table 3, we observed the following 

points. First, multi-modal methods outperform single-modal methods 
due to the utilization of complementary information between 
modalities. Second, the performance of the BID-MGE method 
surpasses that of the existing method for most evaluation metrics. The 
enhancements attained by BID-MGE can be due to the incorporation 
of both complementary information and unique characteristics from 
various modalities. Third, beta mapping enhances the performance of 
our method, which further proves that beta mapping is effective in 
refining structural and functional connectivity information.

4 Discussion

4.1 Significance of results

The node representation proves to be a useful form for brain 
network analysis. Previous studies showed that neuropsychiatric 
disorders may result from abnormalities in some specific brain 
regions, thereby leading to alterations in structural and functional 
connectivity among brain regions (Klauser et al., 2017; Kim et al., 

FIGURE 6

Classification performance in SZ vs. BD. (A) ACC, SEN, and SPE. (B) ROC curve.

TABLE 3 Performance of our method and previous studies on the COBRE dataset (SZ vs. HC).

Study Modality Subject ACC (%) SEN (%) SPE (%)

Huang et al. (2020a) fMRI 67 HC, 53 SZ 82.4 91.30 72.50

Aggarwal et al. (2017) fMRI 50 HC, 50 SZ 89 – –

Chyzhyk et al. (2015) fMRI 72 HC, 74 SZ 91.2 – –

Silva et al. (2014) sMRI and fMRI 75 HC, 69 SZ 94 – –

Qureshi et al. (2017) sMRI and fMRI 72 HC, 72 SZ 99.29 100.00 98.57

Masoudi and Danishvar (2022) DTI and sMRI 81 HC, 64 SZ 99.50 99.75 97.13

BID-MGE (without beta mapping) DTI and fMRI 37 HC, 36 SZ 97.60 95.36 99.60

BID-MGE (without distances) DTI and fMRI 37 HC, 36 SZ 98.57 98.33 99.65

BID-MGE DTI and fMRI 37 HC, 36 SZ 99.71 99.67 99.75
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2019). To capture these changes, the BID-MGE method generates 
node representations with comprehensive information to 
characterize brain connectivity. BID-MGE exhibits three key 
differences compared with existing methods: (1) our method 
considers both complementary information and unique features 
from various modalities. (2) The traditional graph embedding 
methods are generally used for node classification and link 
prediction, rather than specifically for brain network analysis. Thus, 
these methods fail to take into account the integration of diverse 
neuroimaging modalities (e.g., SC and FC). (3) Our method 
incorporates beta mapping to refine SC and FC, effectively steering 
the diffusion process toward key brain regions that cause disease. 
The results in Tables 2, 3 illustrate that the proposed method 
enhances the classification performance. Additionally, our method 
also discovers several crucial brain regions associated with the 
disease, as depicted in Figure 4. For further details, Table 4 lists 
several brain regions exhibiting a value of p less than 0.05 after 
Bonferroni correction, consistent with previous research findings. 
The value of p is derived from a two-tailed t-test. Specifically, several 
brain regions have abnormalities in SZ and BD as displayed in 
Figures 4A,B, such as the middle frontal gyrus, orbital, cuneus, and 
paracentral lobule. This may be  due to shared structural and 
functional dysfunctions in SZ and BD (Dong et  al., 2017; Xia 
et al., 2019).

4.2 Prediction of clinical scores

In this part, we examine the predictive ability of node distance for 
scale scores using connectome-based predictive modeling (CPM) 
(Shen et al., 2017). We concatenate the portions of node distance 
matrices with the same labels (e.g., s, b) for three node-level 
templates to generate a new matrix as input to CPM. The correlation 
coefficient for retaining the number of nodes is p = 0.05. The predictive 
power of the node distance is estimated by the Spearman correlation 

between the predicted and true scale scores. All statistical tests are 
two-tailed. We found that node distances can effectively predict scale 
scores in unobserved subjects with SZ (BPRS, r = 0.5976, p < 0.0001; 
SANS, r = 0.6130, p < 0.0001; SAPS, r = 0.7173, p < 0.0001) and BD 
(HAMD, r = 0.6352, p < 0.0001; YMRS, r = 0.5618, p < 0.0001); the 
predicted and the true scale scores present a significant correlation as 
illustrated in Figures 7A–E. These results further indicate that our 
method effectively captures structural or functional brain alterations, 
and the node distance can act as an essential indicator to estimate the 
severity of the disease.

4.3 Time and space complexity of 
multilayer informativeness diffusion

For the time complexity of multilayer informativeness diffusion, 
the sampling process of the proposed method is the same as the 
standard random walk. During each iteration, sampling according to 
the transition probability, only one node sequence is generated per 
node. The sampling strategy uses alias sampling, which can complete 
one-step diffusion in O 1( ) time complexity (Grover and Leskovec, 
2016), assuming that the count of iterations starting with every node 
and each truncated walk length is constant. Hence, the time 
complexity of completing the entire graph sampling is O V( ). For the 
space complexity of multilayer informativeness diffusion, the first is 
the space needed to store the multilayer brain network. As mentioned 
above, the edge number of the functional layer is θ times that of the 
structural layer (θ is a constant). Hence, our method needs 
O V E O V Eq +( ) +( )( ) = +( )1  space to store the graph in the 
adjacency list format. In addition, alias sampling requires an additional 
O E( )  space complexity. Thus, the total space complexity is 
O V E+( )2 = O V E+( ).  The approximate time and space 
complexity of our method has no increase compared with classic 
random walk algorithms typically used for networks with single 
structural data.

TABLE 4 The ROIs with significant differences (corrected value of p <0.05).

Group Type ROI Full name Related studies

SZ vs. HC

Structure

Precentral_R Precentral gyrus Zhou et al. (2005)

Rectus_R Gyrus rectus Masaoka et al. (2020)

Thalamus_L Thalamus Shimizu et al. (2008)

Function

Precuneus_L Precuneus Hoptman et al. (2010)

Supp_Motor_Area_L

area
Supplementary motor area Mashal et al. (2014)

BD vs. HC

Structure
Cuneus_L Cuneus Qiu et al. (2014)

Frontal_Sup_Medial_L Superior frontal gyrus, medial Repple et al. (2017)

Function

Paracentral_Lobule_R Paracentral lobule Zhang et al. (2020)

Rolandic_Oper_R Rolandic operculum Lin et al. (2018)

Lingual_L Lingual gyrus Zhong et al. (2016)

SZ vs. BD

Structure Cingulum_Post_R Posterior cingulate gyrus Koo et al. (2008)

Function

ParaHippocampal_L Parahippocampal gyrus Lui et al. (2015)

Amygdala_L Amygdala Mahon et al. (2012)

Bilateral Hippocampus Hippocampus Hall et al. (2010)
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4.4 Parameter sensitivity

The localized diffusion tends to capture higher-order proximity 
more effectively. Therefore, smaller values for p and larger values for 
q are typically favored for graph embedding within brain networks to 
learn superior node representation. In our experiments, we first fixed 
p and q at 0.1 and 1.6, respectively. Additionally, the two other 
parameters, λ and k , were set to 10 and d / 2, respectively. Then, 
we  tested three main parameters of BID-MGE, including the 
functional layer network scale, distribution of beta mapping, and 
embedding dimension of BID-MGE. The network scale of the 
functional layer influences the computational time to process the 
multilayer brain network and the specificity of the learned node 
representations. The distribution of beta mapping determines its 
squeezing and expanding properties. The embedding dimension 
controls the integrity of reserving information.

4.4.1 The functional layer network scale
To minimize the computation time in processing the multilayer 

brain network without compromising essential connectivity 
information, we use the structural layer as a benchmark to select the 
edges that form the functional layer. Figure 8 presents classification 
accuracies with different network scales of the functional layer. The 
best performance is obtained at θ = 0.5 for the three binary 
classifications (i.e., the functional layer is half the network scale of the 
structural layer). However, if the network scale of the functional layer 
is as small as θ = 0.25, it may lead to an incomplete aggregation of the 
semantic neighborhood information of the nodes. Consequently, 
we set θ = 0.5 as the optimal parameter of the network scale.

4.4.2 The distribution of beta mapping
In beta mapping, the parameters α and β are used to control the 

shape of the distribution, thereby altering its compression and 

expansion properties. We want to strengthen the connections that 
matter and weaken the ones that do not. In addition, for a  ≥ 1 and b  
< 1, the value of Beta tends to move toward infinity as x is close to 1 
and so does ψ(x), thereby causing irrational connections existing in 
the brain network. Therefore, we only consider the case in which the 
beta mapping monotonically grows with an upper bound (i.e., a >1 
and b =1). Figure 9A presents the results for α values ranging from 1 
to 12 and β values of 1 in all cases. The best performance for the three 
binary classifications is achieved at α = 10. When α > 10, the 
classification accuracies are gradually decreased. In our study, 10 is 
finally chosen as the value of parameter α.

4.4.3 The embedding dimension of node 
representation

To explore the impact of the embedding dimension on the 
proposed method, we tested the BID-MGE method with different 
embedding dimensions and the results are depicted in 
Figure 9B. We noticed that optimal performance occurs at d = 80 for 
all classifications. Beyond this dimension, the accuracies decline due 
to the involvement of redundant or interfering features.

4.5 The effectiveness of beta mapping

The beta mapping’s squeezing and expanding properties make it 
possible to increase critical connectivity and weaken negligible 
information. In Figures 10A,B, the SC and FC of a healthy subject 
are illustrated. These images display the changes with and without 
beta mapping. We observed that the number of strength connections 
decreased, which promotes the diffusion process  to focus more on 
key brain regions. From Figure  10C, we  can find that the 
classification accuracies are remarkably improved after employing 
beta mapping; the results indicate that beta mapping contributes to 

FIGURE 7

Scatter plots show correlations between the true scale scores and predictions. (A–C) The predicted scores of the scale of SZ. (D,E) The predicted 
scores of the scale of BD.
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the identification of diseases. Specifically, beta mapping significantly 
improves the accuracy of classification by structural brain networks. 
The reason is the small differences in the connection strengths of the 
original structural connectivity. After applying beta mapping, these 
differences are amplified and some interfering information is 
removed, allowing more discriminative features to be extracted in 
the diffusion process.

4.6 Limitations and future work

There are three primary limitations in the current study. First, 
brain regions are defined using only the AAL template. In future 

studies, we will validate the efficacy of the proposed method using 
other brain region templates, such as the Human Brainnetome 
Atlas (Fan et  al., 2016). Second, our method only considers 
connectivity information among brain regions even though brain 
regions still have some attributes, such as cortical thickness, 
anisotropy index, ReHo, and ALFF, which are also crucial for 
diagnosing neuropsychiatric disorders. Therefore, we will combine 
brain attributes and brain connectivity to further improve 
neuropsychiatric disorder diagnosis. Third, BD episodes include 
different phases (e.g., manic, depressive, or mixed). In our study, 
we do not consider the different phases of BD. Different phases 
may have different brain activities, necessitating further studies in 
the future.

FIGURE 8

Influence of the functional layer network scale. Classification accuracies for the functional layer with different network scales.

FIGURE 9

Effect of the parameter alpha and embedding dimension. (A) Classification accuracies for different alpha values of beta mapping. (B) Classification 
accuracies for different embedding dimensions.
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5 Conclusion

In this study, we propose a novel brain network analysis method 
based on multiple modalities, which integrates SC and FC by 
intelligently traversing the nodes between structural and functional 
layers in a diffusion manner. Our approach takes full advantage of the 
complementary information and unique characteristics provided by 
various modalities and generates node representations with holistic 
information. Moreover, beta mapping allows the refined connectivity 
to encompass more valuable information, which further guides the 
diffusion process to concentrate on crucial brain regions to learn 
discriminative features. Experimental results on neuropsychiatric 
disorders validate the efficacy of our method.
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