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The development of innovative non-invasive neuroimaging methods and 
biomarkers is critical for studying brain disease. Imaging of cerebrospinal fluid 
(CSF) pulsatility may inform the brain fluid dynamics involved in clearance 
of cerebral metabolic waste. In this work, we  developed a methodology 
to characterize the frequency and spatial localization of whole brain CSF 
pulsations in humans. Using 7 Tesla (T) human magnetic resonance imaging 
(MRI) and ultrafast echo-planar imaging (EPI), in-vivo images were obtained to 
capture pulsations of the CSF signal. Physiological data were simultaneously 
collected and compared with the 7  T MR data. The primary components of 
signal pulsations were identified using spectral analysis, with the most evident 
frequency bands identified around 0.3, 1.2, and 2.4  Hz. These pulsations were 
mapped spatially and temporally onto the MR image domain and temporally onto 
the physiological measures of electrocardiogram and respiration. We identified 
peaks in CSF pulsations that were distinct from peaks in grey matter and white 
matter regions. This methodology may provide novel in vivo biomarkers of 
disrupted brain fluid dynamics.
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1 Introduction

Clearance and exchange of brain fluids promote brain health by removing neurotoxic 
metabolic byproducts from the brain such as amyloid beta and tau (Nedergaard, 2013; Xie 
et al., 2013). Clearance of brain fluids is driven by pulsations of the perivascular spaces from 
autonomic nervous system (ANS) activity, which may vary as a function of brain states such 
as sleep and wakefulness (Herculano-Houzel, 2013; Xie et al., 2013; Hauglund et al., 2020) as 
well as brain diseases such as Alzheimer’s disease (Ramanathan et al., 2015; Peng et al., 2016) 
and major depressive disorder (Hock et al., 1998; Pomara et al., 2012).

Concurrently, the glymphatic system facilitates the convection of cerebrospinal fluid 
(CSF) between the peri-arterial and peri-venous spaces. This convective flow is thought to 
at least partially be driven by cardiac-induced blood flow pulsations along the arteries 
(Adolph et al., 1967; Schroth and Klose, 1992; Martin et al., 2012; Iliff et al., 2013). Although 
the specific mechanisms of clearance remain under debate, there is evidence that water is 

OPEN ACCESS

EDITED BY

Harald E. Möller,  
Max Planck Institute for Human Cognitive and 
Brain Sciences, Germany

REVIEWED BY

Sung-Hong Park,  
Korea Advanced Institute of Science and 
Technology, Republic of Korea
Vesa J. Kiviniemi,  
University of Oulu, Finland

*CORRESPONDENCE

Tales Santini  
 santini.tales@pitt.edu  

Tamer S. Ibrahim  
 tibrahim@pitt.edu

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 02 October 2023
ACCEPTED 08 April 2024
PUBLISHED 09 May 2024

CITATION

Martins T, de Almeida B, Wu M, Wilckens KA, 
Minhas D, Ibinson JW, Aizenstein HJ, 
Santini T and Ibrahim TS (2024) 
Characterization of pulsations in the brain 
and cerebrospinal fluid using ultra-high field 
magnetic resonance imaging.
Front. Neurosci. 18:1305939.
doi: 10.3389/fnins.2024.1305939

COPYRIGHT

© 2024 Martins, de Almeida, Wu, Wilckens, 
Minhas, Ibinson, Aizenstein, Santini and 
Ibrahim. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 09 May 2024
DOI 10.3389/fnins.2024.1305939

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1305939﻿&domain=pdf&date_stamp=2024-05-09
https://www.frontiersin.org/articles/10.3389/fnins.2024.1305939/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1305939/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1305939/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1305939/full
mailto:santini.tales@pitt.edu
mailto:tibrahim@pitt.edu
https://doi.org/10.3389/fnins.2024.1305939
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1305939


Martins et al. 10.3389/fnins.2024.1305939

Frontiers in Neuroscience 02 frontiersin.org

propelled by the arterial pulsations through aquaporin channels and 
supports solute transport from extracellular interstitial spaces, 
through perivascular spaces, and into CSF spaces. CSF and waste 
products from the brain are then pushed from parenchyma to 
subarachnoid spaces and may eventually be cleared via arachnoid 
granulations and dural and nasal lymphatic vessels (Rennels et al., 
1990; Iliff et al., 2013; Kiviniemi et al., 2016; de Leon et al., 2017), or 
as recently discovered, the meningeal lymphatic vessels (mLVs) 
(Louveau et al., 2015; Ahn et al., 2019).

Development of quantitative CSF imaging methods is critical to 
understand factors that influence the CSF dynamics and brain fluid 
clearance. T1-weighted magnetic resonance imaging (MRI) with 
intrathecal injection of a gadolinium (Gd)-based contrast agent has 
been used to characterize CSF flow in human participants with 
idiopathic normal pressure hydrocephalus (iNPH) and dementia 
(Ringstad et al., 2017, 2018; Eide and Ringstad, 2019). This technique 
has afforded fully quantitative, high-resolution imaging of CSF and 
interstitial fluid (ISF) flow throughout the whole head but is highly 
invasive, as it requires a lumbar puncture. Gd may also remain 
deposited in the brain, limiting its longitudinal research utility (Gulani 
et al., 2017).

Fast acquisition functional magnetic resonance imaging (fMRI) 
paradigms have also been used to characterize CSF dynamics in iNPH 
and Alzheimer’s disease (AD) patients and in healthy control 
participants during sleep (Fultz et  al., 2019; Shanks et  al., 2019; 
Yamada et al., 2020; Yang et al., 2022). A resting-state fMRI study has 
evidenced a potential coupling between CSF pulsations and the global 
blood oxygen level-dependent (BOLD), which is notably reduced in 
patients with AD-related diseases, where the CSF region of interest 
(ROI) was considered at the bottom slice of the acquisitions and 
delineated using masks obtained from T2*-weighted fMRI and further 
confirmed with T1-weighted images (Han et  al., 2021). While 
non-invasive, these sequences have relatively poor signal-to-noise 
ratio (SNR) and spatial resolution and have been limited to narrow 
fields of view encompassing only the 4th ventricular, bottom edge slice 
of the acquisitions or cerebral aqueduct. Moreover, similar fMRI 
techniques were employed comparing CSF pulsations in different 
regions such as edge slices and 4th ventricle, revealing distinct 
behaviors depending on the region selected for assessing the CSF 
dynamics (Kim et al., 2022).

The bulk changes in blood volume at the capillary level could 
cause widespread fluctuations of measured signal intensity with the 
cardiac cycle. Furthermore, large vessel pulsatility may cause tissue 
and CSF movement and production of an influx of unsaturated blood 
into the slice of interest affecting the measured signal intensity in the 
areas adjacent to the vessels. This leads to a signal variation when 
using echo-planar imaging (EPI) acquisitions (Dagli et  al., 1999). 
Hence, fMRI and other techniques have been used to characterize 
different sources of pulsations in the brain (Poncelet et  al., 1992; 
Biswal et al., 1995; Purdon and Weisskoff, 1998; Dagli et al., 1999; 
Kiviniemi et al., 2000). Thus, using MRI of CSF dynamics can inform 
the study of brain diseases and the role of sleep–wake states (Xie et al., 
2013; Fultz et al., 2019).

Based on 3 Tesla (T) MRI magnetic resonance encephalography 
(MREG), it has been demonstrated that AD patients experience 
abnormalities in cardiovascular brain impulses, which can manifest as 
slow, fast, or even in a reverse direction of propagation (Rajna et al., 
2021). Similarly, patients with epilepsy (Kananen et al., 2018, 2020, 

2022) and narcolepsy (Järvelä et al., 2022) also have exhibited altered 
physiological brain pulsations. MREG imaging have also been used to 
identify changes in physiological brain pulsations during nonrapid eye 
movement (NREM) sleep (Helakari et al., 2022), and to identify the 
spatial location of brain physiological pulsations as well as the multiple 
sources of BOLD signal (Raitamaa et  al., 2021). Despite being a 
non-invasive technique with high temporal resolution used to 
characterize alterations in brain pulsations dynamics based on fMRI 
measurements, MREG’s limited accessibility stands in contrast to the 
more broadly available fast EPI methods.

Alternative techniques for ultrafast EPI acquisitions have been 
proposed. These include inverse imaging (InI) (Lin et  al., 2012), 
generalized inverse imaging (GIN) (Boyacioglu et al., 2013), and multi-
slab echo-volumar imaging (multi-slab EVI or MEVI) (Posse et al., 2012, 
2013). These techniques offer a fast-sampling rate and reduced sensitivity 
to physiological noise. However, they come with the trade-off of potential 
loss of spatial resolution or introduction of geometrical distortions (Lin 
et al., 2012; Posse et al., 2012, 2013; Boyacioglu et al., 2013). Moreover, 
these studies have primarily utilized 3T MRI scanners.

Ultra-high field MRI (≥ 7 T) provides a major advantage of 
increased SNR, which can be used either to increase the resolution of 
the images or to decrease the scanning time (with the use of higher 
acceleration factors). The 7 T field strength also has higher sensitivity 
to BOLD signal and better vasculature conspicuity (Moser et al., 2012; 
Santini et al., 2021b).

Using ultrafast EPI we acquired the CSF MR signal in real-time. 
We  report CSF pulsation patterns through spectral analysis. 
We applied the same methodology across datasets of seven different 
participants to validate the observed results. To identify whether 
spectral peaks in CSF pulsatility aligned with changes in physiological 
measures thought to drive CSF flow, we  simultaneously collected 
physiological measures of electrocardiogram (ECG) and respiration 
in one participant.

2 Methods

The overall design of this study is based on two main steps: (1) 
In-vivo 7 T image acquisition, concurrent with physiology 
measurements, and (2) image processing with spectral analysis. The 
processing and analysis of the power-frequency spectrum and its 
corresponding spatial mappings were fine tuned for detection of 
bandwidth and peak span, thresholding levels for masks, and 
smoothing degrees for filtering.

Participants provided informed consent as approved by the 
University of Pittsburgh’s Institutional Review Board (identification 
number PRO17030036). Seven healthy volunteers (two male, age 
range 26–30 years old and five female, age range 21–25 years old) 
were scanned to obtain EPI data. From one volunteer, we obtained 
two axial and one sagittal slices. Whole brain EPI data, including 
the cerebellum, were collected from five participants. For the last 
participant, we collected simultaneous EPI and physiological data.

2.1 Image acquisition

Images were acquired using a whole-body 7 T MRI system 
(Siemens 7 T MAGNETOM) and with the human-connectome EPI 
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multiband MR sequence, which can be obtained from https://www.
cmrr.umn.edu/multiband/index.shtml (Moeller et al., 2010; Uğurbil 
et  al., 2013). The sequence obtains fast acquisitions, high signal 
contrast of the CSF pulsation, and high sensitivity to BOLD signal, 
thus being well-suited for studies of sleep and neurodegenerative 
and psychological disorders. The imaging was acquired with an 
in-house developed and fabricated head coil with a 16-channel 
Tic-Tac-Toe transmit array with a 32-channel receive insert (Santini 
et al., 2018; Krishnamurthy et al., 2019; Santini et al., 2021b) that is 
load insensitive (Ibrahim et al., 2008; Kim et al., 2016; Santini et al., 
2021b) and capable of whole brain homogenous imaging at 7 T 
(Ibrahim et al., 2013). By using this coil design, we were able to 
acquire signal from the entire brain with minimal regions of 
significant excitation losses and using the single transmit mode of 
the 7 T scanner.

The acquired EPI images yield a real-time visualization of the 
brain pulsations. The sequence was optimized to perform fast brain 
imaging. For Volunteer 1, during the development of the protocol, the 
EPI acquisition was broken into two sequences: a 2-slice axial view, 
with echo time (TE) of 17 ms, repetition time (TR) of 102 ms, 
acceleration factor of 3, field of view (FOV) of 220 mm × 220 mm, 
resolution 1.5 mm × 1.5 mm × 3 mm, total acquisition time of 1 min 
and 8 s; and a 1-slice sagittal view, with TE of 18 ms, TR of 100 ms, 
acceleration factor of 3, field of view (FOV) of 216 mm × 216 mm, 
resolution 1.5 mm × 1.5 mm × 4.4 mm, total acquisition time of 1 min 
and 3 s. In both cases, a total of 600 volumes were sequentially acquired.

For five volunteers (Volunteers 2 to 6), whole-brain imaging was 
acquired. The main data acquisition was done with TE of 20 ms, TR of 
155 ms, isotropic resolution of 2 mm, and acceleration factor of 2. The 
FOV was 192 mm × 192 mm. The acquisition was broken into 19 slabs 
of 3 axial slices each for a total of 57 slices, where each slice has a 
thickness of 2 mm, totaling 114 mm, providing a whole-brain 
coverage. A total of 600 volumes were sequentially acquired per slab 
in a single sequence run for an acquisition time of 1 min and 36 s per 
slab. For Volunteer 2, the EPI acquisition was done using TR of 152 ms 
but only 15 slabs of 3 axial slices for a total of 45 axial slices. Another 
EPI acquisition on the same volunteer was also performed using TR 
of 51 ms and a single slice.

In all cases, the TE values were chosen for future potential BOLD 
analysis. Furthermore, all EPI images were acquired from volunteers 
in a resting state condition. Moreover, spin-echo EPIs were also 
acquired for B0 field distortion correction with the same phase 
encoding (PE) direction of the EPI acquisition (PA) and with the 
opposite PE direction (AP). The sequence parameters included a TE 
of 39.4 ms, TR of 6,000 ms, with the other parameters – such as field 
of view, resolution, number of slices, echo spacing, and position - 
matched to those of the EPI sequence.

A T1-weighted imaging (MPRAGE) sequence was used for proper 
localization of the EPI field of view and as a structural scan for the 
image processing. This acquisition was done using 0.75 mm isotropic 
resolution, TR of 3,000 ms, TE of 2.17 ms, and 256 slices for a coverage 
of 240 mm x 173 mm x 192 mm in total time of acquisition of ~5 min.

2.2 Physiological measurements

Electrocardiogram (ECG) and respiration signals were collected 
for one participant (Volunteer 7) inside the MR scanner using MR 

compatible ECG leads and an expansion belt attached to the chest to 
track inflation and deflation of the chest during respiration. 
Acquisition was digitalized using BIOPAC system (ECG: Cardiology 
| Research | BIOPAC, n.d.; Respiration Transducer for MRI | 
TSD221-MRI | Research | BIOPAC, n.d.). The simultaneously 
collected data allowed temporal signal analysis of both MR and 
physiologic signals. The imaging data acquired in conjunction with 
the physiological data used a TR of 75 ms, TE of 28 ms, and 3 axial 
slices (4 mm-thick each) including the lateral ventricles.

2.3 Image processing

The processing pipeline was developed based on MATLAB 
(MATLAB - MathWorks, n.d.), ANTs (Avants et al., 2009), and FSL 
(Jenkinson et al., 2012) packages. It consisted of denoising, distortion 
correction, bias correction, and skull stripping of each dataset 
volume. The initial step was loading the slabs and merging them into 
a single dataset (necessary only for whole-brain coverage images). 
Next, denoising was performed using a noise estimation tool with 
variance stabilization transformation (VST) for Rician-distributed 
noise (Foi, 2011). The Rician heteroscedastic noise was converted to 
a homoscedastic noise after the forward VST. The block-matching 
4D (BM4D) denoising algorithm (Maggioni et al., 2013) could then 
be  applied and the denoised image is obtained after the inverse 
VST. This tool has been used for other MRI applications (Santini 
et al., 2021a) and yields a good result when applied to EPI data. 
Distortion correction was performed using the estimated B0 maps 
derived from the spin-echo sequence using the topup tool 
(Andersson et al., 2003) from FSL software package. The generated 
map was used for correction of the EPI data. Then, the images were 
bias corrected using the N4 (Tustison et al., 2010) tool from the 
ANTs software package with spline distance parameter of 200. The 
final skull stripping was performed using the FSL brain extraction 
tool (BET). We note the merging of images captured at different 
times, as each slab is acquired within distinct time frames. However, 
the transition of the analysis to the frequency domain, with the fast 
Fourier transform (FFT) executed for each voxel, mitigated these 
temporal differences. For the subsequent spectral analysis, the 
whole-brain coverage images were segmented using SynthSeg (Billot 
et al., 2023a,b), allowing the assessment of the brain pulsations in 
three different regions: cortical gray matter (cGM), cerebral white 
matter (cWM) and CSF.

2.4 Spectral analysis

The frequency analysis was performed for each dataset 
individually and resulted in both a frequency power spectrum and a 
mask for brain localization of specific frequency bands. A frequency 
spectrum was calculated for arbitrarily selected points for validation 
of the findings across different brain regions, for single slices 
(performed for images not covering the entire brain), and also for the 
regions described in the previous section (whole-brain, cGM, cWM 
and CSF).

After processing each individual EPI data, the frequency 
processing and analysis were performed in MATLAB and Python. 
The time series of each voxel was used to generate a frequency 

https://doi.org/10.3389/fnins.2024.1305939
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.cmrr.umn.edu/multiband/index.shtml
https://www.cmrr.umn.edu/multiband/index.shtml


Martins et al. 10.3389/fnins.2024.1305939

Frontiers in Neuroscience 04 frontiersin.org

FIGURE 1

Procedure to identify peaks for each spectral analysis: (A) original FFT obtained, (B) smoothed FFT after the application of Savitzky–Golay filter, 
(C) obtaining the inferior envelope, (D) adjusted FFT obtained after dividing each value of the smoothed FFT by the inferior envelope, (E) identification 
of the most evident peaks, with a height higher than a threshold defined as the sum of the mean and standard deviation of the adjusted FFT, and 
(F) peaks identified in the adjusted FFT with a minimum height given by the sum of the mean and standard deviation of the regions not excluded in the 
previous plot.

spectrum using FFT. With the 600 volumes of 152/155 ms TR 
acquisition, the frequency resolution of the frequency spectrum 
is 0.011 Hz and the maximum frequency is 3.289/3.226 Hz. The 
same frequency analysis for the 51 ms TR data produces a much 
larger frequency spectrum of up to 9.8 Hz. Therefore, frequency 
components higher than 3 Hz can be observed and analyzed. The 
analysis was done using both individual points manually selected 
as well as the average across the 2D or 3D space. For acquisitions 
encompassing a 2D/3D region of interest (ROI), the FFT was 
calculated for each voxel, and subsequently the spectral intensity 

values across all voxels were averaged for each frequency, resulting 
in a single intensity value per frequency for each 2D/3D ROI.

2.4.1 Spectral peaks identification
To identify the relevant peaks of each spectrum, an algorithm was 

developed in Python as depicted in Figure 1. Initially, each spectrum 
plot was smoothed using a Savitzky–Golay filter of order 2. The filter 
window was defined as 0.133 Hz, corresponding to the normal range 
of 12 to 20 breaths per minute in adults (Sapra et al., 2020). For a 51 ms 
TR, the number of samples of this window was doubled.
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FIGURE 2

Fast EPI acquisition (TR  =  102  ms for axial view, TR  =  100  ms for sagittal view) for Volunteer 1 showing signal changes due to CSF flow; axial slices with a 
spatial resolution of 1.5  ×  1.5  ×  3  mm and a sagittal slice with spatial resolution of 1.5  ×  1.5  ×  4.4  mm. The blue arrows point to regions of large variation in 
signal over time. A video showing these pulsations in real time is available at doi: 10.6084/m9.figshare.24022932. For each view, a single-slice FFT 
spectrum is shown, where the peaks were identified following the procedure proposed in this study.
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FIGURE 3

MRI data acquisition along the cardiac cycle and respiration for 
Volunteer 7. Echo-planar imaging acquisition performed with 
concurrent physiological measurement of electrocardiogram in the 
7  T scanner. (A) Time series of ECG, respiration belt, and EPI signals. 
The EPI signal was temporally aligned with the physiological data 
using an external trigger signal from the scanner. The red lines 
represent the R-peaks of the ECG. (B) Frequency spectrum of the 
ECG, respiration belt, and EPI signals. The purple region highlights 
the common frequency band between the respiration and EPI 
signals, and the orange region highlights the common frequency 
band between the ECG and EPI signals.

The lower envelope observed across all spectra, which is a 
characteristic of the acquisition as evidenced by tests with a phantom 
(provided in the Supplementary material), was modeled by identifying 
and accumulating the minimum values along the frequency axis. 
Whenever the observed values exceed these minimums, indicating an 
increase in the signal, linear interpolation was employed to bridge 
between the identified minimum value and the subsequent minimum 
value observed when the signal decreased again. The smoothed 
spectrum was then divided by this envelope to reflect the relative 
increase. By subtracting one unit from this normalized spectrum, 
we obtained an adjusted spectrum optimized for peak identification.

To establish a baseline level, the most evident peaks in each 
adjusted spectrum were identified first. We calculated the mean and 
standard deviation of the adjusted spectrum, and their sum was used 
as the minimum threshold for detecting primary peaks (findpeaks 
implementation in Python). An exclusion zone of 0.667 Hz was 
applied around each identified peak, where this frequency range 
corresponds to the normal cardiac range of 60 to 100 beats per minute 
in healthy adults (Sapra et al., 2020). Regions in the adjusted spectrum 
outside the exclusion zones were assessed to establish a baseline level.

A spectrum peak was identified as those with a minimum 
height equal to the sum of the mean and standard deviation of the 
baseline level. To prevent small oscillations above this height from 
being classified as peaks, a minimum prominence of 1.5 dB 
was required.

2.4.2 Spectral spatial analysis
Spatial analysis was done by creating image masks based on the 

localization of voxels with significant signal in each frequency band. 
It was also performed for single-slice acquisitions, covering the 2D 
space acquired. Moreover, due to whole-brain coverage, a similar 
approach was employed for the entire brain images and specific brain 
regions (cGM, cWM and CSF).

Regarding the voxel analysis, the power map of a given frequency 
band was determined voxel-wise by averaging respective power values 
within the frequency band. For better visualization, each power map 
was then binarized with a chosen threshold (75% of the peak 
amplitude of the corresponding frequency band) and spatially 
smoothed using a Gaussian filter (sigma of 1.6), generating the final 
masks for each frequency band. These masks were overlaid on the 
original EPI and T1 weighted acquisitions for anatomical reference. 
The T1 weighted image was registered with the average EPI image of 
the dataset using SPM12.

For single-slice, whole-brain and brain regions (cGM, cWM and 
CSF), peaks were identified as shown in the previous section. For each 
of these peaks, the bandwidth corresponding to a 3 dB drop ( 2 2/  of 
the peak magnitude) and the area under the spectrum within this 
bandwidth were determined, aiming to identify potential biomarkers.

3 Results

A video was created based on the image series of the fast EPI data 
after acquisition and processing in Volunteer 1 (Figure 2). The video 
visually indicates the presence of periodical signal from the CSF flow. 
For this first volunteer, the acquired image covers only a few slices. 
However, it was still possible to apply the developed methodology to 
identify relevant frequencies, demonstrating the potential of using this 
approach even with single-slice acquisitions.

To confirm the presence of physiological signals such as 
respiration and cardiac motion, CSF temporal data was aligned with 
measurements from the electrocardiogram and respiration belt in 
Volunteer 7 for visual comparison of similarity between the 
physiological activities and the change in signal intensity from CSF 
regions (Figure 3A). The frequency spectrum of the datasets was also 
aligned following the same comparison as the time series data 
(Figure 3B). The two major signal bands were highlighted between the 
ECG and CSF data (around 1.1 Hz) and the respiration belt and CSF 
data (around 0.3 Hz).

To verify that various points of the brain contribute differently on 
the frequency spectrum, Figure 4 represents the frequency spectrum 
for 9 arbitrary points throughout the brain. The position of each point 
is described by the brain anatomy that it belongs to as shown on the 
top-right corner of each spectrum graph. Most of the points show 
frequencies around 1.2 Hz. Depending on the position, the signal 
shows the 0.3 Hz and/or the 2.4 Hz bands.

A frequency analysis was obtained from the EPI data for the 
single-slices acquisitions, whole-brain coverage, and in the following 
brain regions: cGM, cWM and CSF. Based on a developed 
methodology to identify relevant peaks (Figure 1), the most significant 
frequency bands were highlighted, and for each of them a peak 
magnitude, bandwidth for a 3 dB drop and area under this range were 
obtained (Figure 5). For all volunteers with whole-brain coverage, 
bands with similar center frequencies of approximately 0.3, 1.2, and 
2.4 Hz can be identified. Table 1 shows the center frequency for the 
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bands calculated for each volunteer. The frequency bands with centers 
at 0.3 and 1.2 Hz closely approximate the respiration and cardiac 
frequencies of a human adult (around 18 breaths per minute and 72 
heart beats per minute, respectively). These bands can be identified as 
Band 1 and Band 4 on Table 1. In terms of magnitudes discovered 
within these frequency bands for CSF regions, their averages are 
0.594 ± 0.378 (a.u.) and 1.747 ± 0.475 (a.u.), respectively. For the areas, 
their averages are 0.027 ± 0.017 (Hz) and 0.119 ± 0.037 (Hz), 
respectively. Finally, for the bandwidths, their averages are 
0.053 ± 0.006 (Hz) and 0.078 ± 0.016 (Hz), respectively.

The masks created per frequency band (Figure 6) show a spatial 
localization for the frequency band centered at lower frequencies, e.g., 
0.387 Hz (Figure 6A) and 1.151 Hz (Figure 6C) overlapping with brain 
regions with larger volume of CSF (the main ventricles and cerebral 
aqueduct). Similar patterns were observed for all volunteers as shown 
in Figure 7 as the mask for the heart rate band is demonstrated in each 
of the volunteer’s data.

For the larger frequency spectrum (dataset with TR of 51 ms), 
extra bands can be  identified, and the center of one of the most 
prominent band was calculated at around 3.5 Hz (Figure 8).

4 Discussion

We demonstrated a method to analyze the physiological brain 
pulsations in the human brain in-vivo using ultrafast 7 T EPI 
acquisitions, and an analytic approach to examine the dynamics of 
regional CSF signal pulsations. The raw visualization of the real-time 
signal (Figure 2) shows in-vivo CSF pulsations. The flow of CSF within 

the ventricles and in the subarachnoid space can be clearly visualized 
with changes in signal intensity. The time series and the frequency 
spectrum comparison between the collected physiological data and 
the EPI data (Figure 3) shows a direct alignment between the two 
types of data where the cardiac and respiration cycles can be observed 
in the EPI MRI data. The frequency analysis also shows consistent 
results across multiple volunteers, with similar frequency spectrums 
are observed.

Compared to previous studies (Fultz et al., 2019; Shanks et al., 2019; 
Yamada et al., 2020; Yang et al., 2022), we were able to achieve a greater 
frequency range, improved frequency resolution, and full brain coverage. 
This was made possible by utilizing ultrafast acquisition times (ranging 
from 51 to 155 ms), which allowed for whole-brain spectral analysis up 
to 9.8 Hz. Additionally, we  employed high SNR and homogeneous 
images by using a 7 T MRI with a customized radiofrequency (RF) coil 
system (Santini et al., 2018; Krishnamurthy et al., 2019; Santini et al., 
2021b). To optimize sequence parameters, we tailored the flip-angle to 
maximize the signal of the CSF flow and adjusted other parameters (e.g., 
acceleration factor) to minimize susceptibility-related distortions. 
We also selected a TE that could potentially capture the BOLD signal if 
functional connectivity data are warranted.

Based on the methodology implemented in this work, we can 
compare physiological brain pulsations across different tissue types 
and brain regions. In the frequency domain, there is evidence of more 
well-defined peaks in CSF regions than in other regions, with cGM 
following as the second most defined, and cWM as the third. This 
suggests a potential relationship between these measurements and 
CSF dynamics. Moreover, when comparing these peaks in terms of 
their respective magnitudes, areas under the curves, and bandwidths 

FIGURE 4

Frequency spectrum for nine selected points (A–I) throughout the brain for Volunteer 2. Some points show higher intensity on the 1.2 and 2.4 Hz bands 
(points A,B,E,F,G–I) whereas other show more on the 0.3 Hz band (points C,D,G). The labels describe the brain anatomy where the data was obtained.
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FIGURE 5

Frequency spectra and identified peaks in different participants and brain regions: (A) frequency spectra for the whole brain, cGM, cWM, and CSF 
regions for Volunteer 2, (B) frequency spectra of CSF across five different volunteers, (C) frequency bands identified in CSF regions for Volunteer 2, 
(D) frequency bands identified in the whole-brain coverage for Volunteer 2, (E) frequency bands identified in cGM for Volunteer 2, and (F) frequency 
bands identified in cWM for Volunteer 2.

for a 3 dB drop, we observe low variability across different volunteers 
for similar segments, indicating potential biomarkers for brain 
pulsations analysis.

The creation of frequency masks allowed for an analysis of the 
spatial localization of each frequency band. The presence of heart rate 
frequencies (1.2 Hz) in the ventricles validates the analysis as the 
arterial pulse wave in the choroid plexus, for instance, is known to 
influence the CSF motion (Bilston et al., 2010; Martin et al., 2012; Iliff 
et al., 2013). Additionally, the presence of high frequencies (over 2 Hz) 
responses can suggest a more turbulent flow that also aligns with 
regions of the main cerebral aqueduct. This work provides a basis for 
identifying new biomarkers for brain fluid dynamics. For example, the 
frequency spectrum can be analyzed for different brain diseases. The 
lower frequency bands (below 1 Hz) contain physiological signals that 

corelate with the heart rate and breathing, so brain conditions that 
affect those variables can be analyzed directly from the MRI data. The 
magnitude of each band may also provide insights into the coupling 
between the heart and breathing rates with the CSF pulsations, which 
may correlate with clearance rate. On the other hand, the higher 
frequency bands (above 1.8 Hz), can be correlated with sleep cycles 
and potential sleep studies (Xie et al., 2013).

5 Conclusion

The development of non-invasive neuroimaging methods and 
biomarkers of brain fluid dynamics is essential for studying brain 
diseases. This work presents a novel methodology to characterize the 
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TABLE 1 Values of identified frequency bands and respective magnitudes, areas under the curve and bandwidths for 3  dB drop in whole-brain coverage imaging.

Band 1 (0.247–0.387  Hz) Band 2 (0.484–0.516  Hz) Band 3 (0.763–0.914  Hz) Band 4 (1.129–1.312  Hz)
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CSF

Volunteer 2 0.318 0.565 0.026 0.056 – – – – 0.822 0.206 0.012 0.065 1.151 2.435 0.142 0.066

Volunteer 3 0.269 0.597 0.028 0.056 0.516 0.082 0.003 0.043 – – – – 1.312 1.507 0.115 0.085

Volunteer 4 0.387 1.197 0.054 0.057 – – – – 0.763 0.496 0.039 0.080 1.151 2.048 0.169 0.103

Volunteer 5 0.333 0.162 0.006 0.043 – – – – 0.806 0.119 0.006 0.072 1.129 1.374 0.095 0.068

Volunteer 6 0.247 0.450 0.021 0.053 0.484 0.073 0.005 0.070 0.914 0.128 0.008 0.074 1.226 1.369 0.075 0.068

Mean 0.311 0.594 0.027 0.053 0.500 0.077 0.004 0.057 0.826 0.237 0.016 0.073 1.194 1.747 0.119 0.078

Std Dev 0.055 0.378 0.017 0.006 0.023 0.006 0.001 0.019 0.064 0.177 0.015 0.006 0.076 0.475 0.037 0.016

Whole 

Brain

Volunteer 2 0.307 0.421 0.020 0.057 – – – – – – – – 1.151 0.961 0.056 0.065

Volunteer 3 0.269 0.477 0.022 0.055 – – – – – – – – 1.301 0.828 0.067 0.103

Volunteer 4 0.387 0.769 0.035 0.056 – – – – 0.763 0.208 0.016 0.084 1.151 0.977 0.094 0.107

Volunteer 5 0.333 0.070 0.002 0.028 – – – – 0.806 0.051 0.003 0.066 1.129 0.840 0.058 0.069

Volunteer 6 0.247 0.354 0.016 0.054 0.516 0.050 0.002 0.057 0.914 0.045 0.003 0.066 1.226 0.715 0.039 0.068

Mean 0.309 0.418 0.019 0.050 0.516 0.050 0.002 0.057 0.828 0.101 0.007 0.072 1.192 0.864 0.063 0.082

Std Dev 0.055 0.251 0.012 0.012 – – – – 0.078 0.092 0.008 0.010 0.071 0.107 0.020 0.021

cGM Volunteer 2 0.307 0.453 0.021 0.055 – – – – – – – – 1.151 0.781 0.046 0.065

Volunteer 3 0.269 0.510 0.024 0.054 – – – – – – – – 1.301 0.735 0.059 0.076

Volunteer 4 0.387 0.647 0.031 0.052 – – – – 0.774 0.177 0.016 0.088 1.161 0.882 0.066 0.089

Volunteer 5 0.344 0.077 0.002 0.035 – – – – – – – – 1.129 0.824 0.045 0.067

Volunteer 6 0.247 0.315 0.011 0.050 0.516 0.082 0.004 0.057 – – – – 1.226 0.711 0.040 0.066

Mean 0.311 0.401 0.018 0.049 0.516 0.082 0.004 0.057 0.774 0.177 0.016 0.088 1.194 0.786 0.051 0.073

Std Dev 0.056 0.216 0.011 0.008 – – – – – – – – 0.070 0.069 0.011 0.010

cWM Volunteer 2 0.307 0.315 0.015 0.055 – – – – – – – – 1.162 0.363 0.016 0.061

Volunteer 3 0.269 0.382 0.018 0.054 – – – – – – – – 1.301 0.253 0.018 0.090

Volunteer 4 0.387 0.423 0.025 0.056 – – – – 0.774 0.067 0.004 0.069 1.161 0.376 0.030 0.081

Volunteer 5 0.344 0.157 0.006 0.045 – – – – – – – – 1.140 0.501 0.028 0.063

Volunteer 6 0.247 0.230 0.011 0.055 – – – – – – – 1.226 0.391 0.022 0.067

Mean 0.311 0.302 0.015 0.053 – – – – 0.774 0.067 0.004 0.069 1.198 0.377 0.023 0.072

Std Dev 0.056 0.109 0.007 0.005 – – – – – – – – 0.066 0.088 0.006 0.013

(Continued)
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Band 5 (1.935 to 1.946  Hz) Band 6 (2.247 to 2.452  Hz) Band 7 (2.602 to 2.774  Hz) Band 8 (2.914 to 3.136  Hz)
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CSF

Volunteer 2 – – – – 2.314 0.655 0.054 0.107 – – – – 3.136 0.315 0.047 0.176

Volunteer 3 1.946 0.143 0.007 0.051 – – – – 2.613 0.480 0.077 0.202 – – – –

Volunteer 4 – – – – 2.355 0.355 0.057 0.180 – – – – – – – –

Volunteer 5 1.935 0.110 0.008 0.069 2.247 0.415 0.036 0.094 – – – – 3.054 0.133 0.014 0.119

Volunteer 6 – – – – 2.452 0.448 0.047 0.118 2.774 0.211 0.036 0.175 – – – –

Mean 1.941 0.126 0.007 0.060 2.342 0.468 0.049 0.125 2.694 0.346 0.057 0.189 3.095 0.224 0.031 0.148

Std Dev 0.008 0.023 0.001 0.013 0.086 0.131 0.009 0.038 0.114 0.190 0.029 0.019 0.058 0.129 0.024 0.040

Whole 

Brain

Volunteer 2 – – – – 2.314 0.241 0.023 0.114 – – – – 3.114 0.161 0.026 0.188

Volunteer 3 – – – – – – – – 2.613 0.253 0.038 0.171 – – – –

Volunteer 4 – – – – 2.355 0.146 0.025 0.197 – – – – – – – –

Volunteer 5 1.935 0.071 0.004 0.065 2.247 0.244 0.026 0.116 – – – – 3.065 0.080 0.008 0.124

Volunteer 6 1.935 0.047 0.003 0.056 2.452 0.218 0.022 0.124 2.774 0.118 0.018 0.174 – – – –

Mean 1.935 0.059 0.003 0.061 2.342 0.212 0.024 0.138 2.694 0.186 0.028 0.173 3.090 0.121 0.017 0.156

Std Dev 0.000 0.017 0.001 0.006 0.086 0.046 0.001 0.040 0.114 0.095 0.014 0.002 0.035 0.058 0.013 0.045

cGM Volunteer 2 – – – – 2.336 0.236 0.023 0.109 – – – – 3.114 0.198 0.028 0.174

Volunteer 3 1.946 0.107 0.005 0.053 – – – – 2.613 0.241 0.032 0.154 – – – –

Volunteer 4 – – – – 2.355 0.158 0.019 0.155 – – – – – – – –

Volunteer 5 1.935 0.083 0.004 0.062 2.247 0.242 0.031 0.152 – – – – 3.075 0.111 0.010 0.117

Volunteer 6 1.935 0.054 0.003 0.049 2.452 0.235 0.025 0.117 2.774 0.149 0.021 0.167 – – – –

Mean 1.939 0.081 0.004 0.055 2.348 0.218 0.025 0.133 2.694 0.195 0.026 0.161 3.095 0.155 0.019 0.146

Std Dev 0.006 0.027 0.001 0.007 0.084 0.040 0.005 0.024 0.114 0.065 0.008 0.009 0.028 0.062 0.013 0.040

cWM Volunteer 2 – – – – 2.336 0.080 0.008 0.120 – – – – 3.092 0.086 0.014 0.171

Volunteer 3 1.935 0.044 0.002 0.054 – – – – 2.602 0.069 0.008 0.141 – – – –

Volunteer 4 – – – – 2.355 0.054 0.005 0.097 – – – – – – – –

Volunteer 5 1.946 0.049 0.003 0.074 2.323 0.138 0.020 0.159 – – – – 3.097 0.067 0.007 0.125

Volunteer 6 1.935 0.027 0.002 0.057 2.441 0.110 0.009 0.098 2.774 0.068 0.009 0.151 2.914 0.035 0.002 0.073

Mean 1.939 0.040 0.002 0.062 2.364 0.096 0.011 0.119 2.688 0.068 0.009 0.146 3.034 0.063 0.007 0.123

Std Dev 0.006 0.012 0.001 0.011 0.053 0.037 0.007 0.029 0.122 0.001 0.000 0.007 0.104 0.026 0.006 0.049

TABLE 1 (Continued)
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frequency spectrum and spatial localization of CSF pulsations in the 
human brain. The use of ultrafast EPI in conjunction with 7 T human 
MRI and simultaneous collection of physiological data enabled the 
identification of primary components of CSF pulsations and their 
mapping spatially and temporally onto the MR image and 
physiological domains. The methodology showed low variability and 
repeatability in-vivo, making it a promising tool for potential studies 
of brain fluid dynamics and CSF flow. Future studies will explore this 
methodology in clinical studies to determine its implications for the 
diagnosis and treatment of brain diseases.
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FIGURE 6

Frequency spectrum of Volunteer 4 with spatial localization of the signal from 4 separate frequency bands. For each band, a spatial mask was applied 
to the T1 weighted image. The acquired data can be obtained from the inferior region of the brain (cerebellum) up to the middle of the brain. The 
bandwidth for each band is defined as those that result in a 3  dB drop. The center frequencies are (A) 0.387  Hz, (B) 0.763  Hz, (C) 1.151  Hz, and 
(D) 2.355  Hz. The acquisition was done using an EPI sequence with TR  =  155  ms with 19 slabs of 3  slices each for a total of 57 slices.
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FIGURE 7

Visualization of the mask created for each volunteer at approximately the same position in the brain (bottom of the brain and top of the cerebellum 
and at approximately the same frequency band); (A) for Volunteer 2 at 1.151  Hz; (B) for Volunteer 3 at 1.301  Hz; (C) for Volunteer 4 at 1.151  Hz; (D) for 
Volunteer 5 at 1.129  Hz; and (E) for Volunteer 6 at 1.226  Hz.

FIGURE 8

Frequency spectrum for Volunteer 2 done using an EPI sequence single slice with TR  =  51  ms. Maximum frequency of 9.8  Hz and frequency bands were 
highlighted based on the procedure developed in this work.
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