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Robust gesture recognition based 
on attention-deep fast 
convolutional neural network and 
surface electromyographic signals
Chuang Lin 1*, Yuhao Wang 1 and Ming Dai 2*
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Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen, China

The surface electromyographic (sEMG) signals reflect human motor intention 
and can be  utilized for human-machine interfaces (HMI). Comparing to the 
sparse multi-channel (SMC) electrodes, the high-density (HD) electrodes have 
a large number of electrodes and compact space between electrodes, which 
can achieve more sEMG information and have the potential to achieve higher 
performance in myocontrol. However, when the HD electrodes grid shift or 
damage, it will affect gesture recognition and reduce recognition accuracy. To 
minimize the impact resulting from the electrodes shift and damage, we proposed 
an attention deep fast convolutional neural network (attention-DFCNN) model 
by utilizing the temporary and spatial characteristics of high-density surface 
electromyography (HD-sEMG) signals. Contrary to the previous methods, which 
are mostly base on sEMG temporal features, the attention-DFCNN model can 
improve the robustness and stability by combining the spatial and temporary 
features. The performance of the proposed model was compared with other 
classical method and deep learning methods. We  used the dataset provided 
by The University Medical Center Göttingen. Seven able-bodied subjects and 
one amputee involved in this work. Each subject executed nine gestures under 
the electrodes shift (10  mm) and damage (6 channels). As for the electrodes 
shift 10  mm in four directions (inwards; onwards; upwards; downwards) on 
seven able-bodied subjects, without any pre-training, the average accuracy 
of attention-DFCNN (0.942 ±  0.04) is significantly higher than LSDA (0.910 ±  
0.04, p  <  0.01), CNN (0.920 ±  0.05, p  <  0.01), TCN (0.840 ±  0.07, p  <  0.01), LSTM 
(0.864 ±  0.08, p  <  0.01), attention-BiLSTM (0.852 ±  0.07, p  <  0.01), Transformer 
(0.903 ±  0.07, p  <  0.01) and Swin-Transformer (0.908 ±  0.09, p  <  0.01). The 
proposed attention-DFCNN algorithm and the way of combining the spatial and 
temporary features of sEMG signals can significantly improve the recognition 
rate when the HD electrodes grid shift or damage during wear.
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1 Introduction

The interaction between humans and machines has gradually gained attention as a 
result of the development of robots and human-machine collaboration (Küçüktabak et al., 
2021). Electromyography (EMG) signals are a convenient and reliable way to establish a 
link between external machines and human motor intention (Artemiadis and Kyriakopoulos, 
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2010). They can be used to control individual devices or prostheses 
(Englehart and Hudgins, 2003). Surface electromyography (sEMG) 
signals are obtained by quantitatively measuring muscle activity, 
typically collected non-invasively through electrodes, providing a 
simple method for human-machine interaction. Nowadays, human-
machine interaction systems based on surface electromyography 
(sEMG) signals have been used in many fields such as prosthetic 
control, exoskeletons, and industrial robots. Meanwhile, sEMG 
gesture recognition has become the core of muscle connective 
interface (MCI) (Zheng et al., 2022).

Surface electromyography (sEMG) signals are generally 
categorized as sparse multi-channel (SMC) or high-density (HD) 
based on the number of sensors for measuring. The SMC method is 
more sensitive to the placement position of the electrodes due to the 
small number of electrode channels (Amma et al., 2015). Incorrect 
placement positions may affect the acquisition of sEMG signals, it 
limits the application of sEMG in muscle connective interface (MCI). 
In contrast, the HD method has numerous and dense electrode 
arrangements which can cover a larger range (Amma et al., 2015; 
Stango et al., 2015). Researchers have proposed various prosthetic 
control algorithms over the past many years (Fougner et al., 2012; Xu 
and Xiong, 2021). Nowadays, deep learning is being used in the 
processing of sEMG signals as artificial intelligence technology 
advances. Compared to traditional recognition methods, deep 
learning-based recognition methods have greater advantages due to 
their good expansibility and accuracy, as well as their end-to-end 
capabilities. As a type of time series signal, sEMG signal often leads to 
a lack of spatial information when used for gesture recognition. Geng 
et al. (2016) introduced the concept of sEMG images composed of 
HD-sEMG spaces to utilize spatial information, resulting in improved 
recognition results. In practical applications, high-density electrodes 
often experience electrode shift and damage, resulting in a decrease in 
the accuracy of gesture recognition. We should consider researching 
new methods to avoid this situation.

Tkach et al. (2010) studied the effects of different interference 
methods on electromyography signals, the results showed that moving 
electrode positions would reduce the classification accuracy of most 
features. Young et al. (2012) proposed that increasing the distance 
between electrodes from 2 cm to 4 cm to improve pattern recognition 
accuracy. In recent years, researchers have attempted to achieve 
gesture recognition based on neural networks. Wei et al. (2019) used 
multi-view deep learning method, achieving sparse multichannel 
sEMG gesture recognition. Zhang et  al. (2019) improved the 
performance of gesture recognition when electrode position is moved 
or damaged by utilizing featured sEMG image and CNN. Ameri et al. 
(2020) proposed a supervised adaptation method based on 
convolutional neural networks (CNNs) and transfer learning to solve 
the problem of insufficient calibration data due to short training time 
of classification and regression based control schemes. Kim et  al. 
(2021) studied the effects of posture groups, feature vectors, and 
electrode shift on hand posture recognition, and found that the 
accuracy of recognition increased as the number of electrode shift 
training increased. Wu et al. (2022) proposed a new method that can 
retain critical and stable information when the electrodes shift. Wang 
et al. (2023) enhanced the flexibility of the muscle interface through 
one-shot learning. By using HD-sEMG images for EMG pattern 
recognition, enabling easy switching between different usage situations 
and reducing the burden of retraining.

We propose a new model, which we named attention-deep fast 
convolutional neural network (attention-DFCNN). The model can 
resist the impact of electrode displacement by utilizing the temporal 
and spatial characteristics of HD-sEMG signals. The HD-sEMG 
signals are transformed into featured sEMG images and then put into 
the attention-DFCNN model. Compared to traditional methods and 
classical deep learning methods, attention-DFCNN exhibits better 
robustness and higher accuracy in gesture recognition against 
electrode shift and damage.

2 Methods

2.1 Dataset and preprocessing

2.1.1 Dataset
The University Medical Center Göttingen contributed the data 

used in the experiment (Stango et al., 2015). They were collected from 
three male able-bodied subjects and four female able-bodied subjects, 
and one amputee with unilateral trans-radial traumatic amputation. 
The average age of the able-bodied subjects was 29 years old, and the 
age of the amputee was 78 years old (53 years after the amputation). 
The sEMG signals were collected by using OT Bioelettronica with 192 
electrodes. The electrode was placed at one-third of the forearm near 
the elbow joint. The signals were amplified with a gain of 500 and 
sampled at 2,048 Hz. XSENS Technologies was placed on the subjects 
to track their motion during the experiment. It can record the center 
time of each trial. The reference electrode was positioned on the wrist, 
and the HD-sEMG grid was positioned on the forearm. In the 
experiment, nine gestures (see Figure 1) were classified, including 
ulnar deviation, radial deviation, hand opening, hand closing, wrist 
flexion, wrist extension, forearm supination, forearm pronation and 
the resting. Four repetitions were recorded for each gesture, and each 
subject performed the experiment 4 times. Every subject received a 
brief training on the movements demonstrated on a computer screen. 
For the transradial amputee, the number of electrodes was reduced by 
two rows of the grid due to the short stump, so that the electrodes 
comprised 6 rows and 24 columns (144 electrodes). The reference 
electrode was placed on the elbow. The motion trackers were placed 
on the contralateral arm. The subject performed mirror movements, 
attempting to replicate the tasks of the able-limb with the phantom 
limb. For more details of the data, please refer to the article (Stango 
et al., 2015).

2.1.2 Preprocessing
Because the tracking system recorded the sample corresponding 

to the central time of each movement, a static window of 2.2 s (4,500 
samples) centered on that sample was selected as the task window. A 
150 sample window was utilized to compute the root mean square 
(RMS) values of the sEMG. So, a task window (containing 4,500 
samples) is evenly divided into 30 parts, and a total of 30 sets of RMS 
values were calculated. The RMS is defined as:

 
RMS = =∑i

n
ix

n
1

2
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In order to conduct research on electrodes shift and electrodes 
damage, we  simulated two scenarios using collected datasets: 
electrodes shift 10 mm and electrodes shift 10 mm with damage in 
6 channels.

To simulate electrodes shifting 10 mm, we divide the datasets 
into training and testing sets in an interlaced manner based on 
their spatial arrangement. In the shift inwards, the black dots 
represent training electrodes, while the white dots represent testing 
electrodes. In the shift onwards, the white dots correspond to the 
electrodes used for training, while the black dots are used for 
testing. Shift inwards and onwards as shown in Figure 2. In the 
shift upwards, the black dots represent the training electrodes, 
while the white dots are the testing electrodes. In the shift 
downwards, the white dots signify the electrodes used for training, 
while the black dots signify the electrodes used for testing. Shift 
upwards and downwards as shown in Figure 3.

When simulating electrodes shift 10 mm and 6 electrodes 
damage, six randomly selected channels are replaced with Gaussian 
noise in both the training and testing sets. The electrode shift is 
same to above.

2.1.3 Featured sEMG image
The HD electrodes were placed on the forearm muscle groups 

to record sEMG signals. The able-bodied subjects used 192 
electrodes while the amputee group used 144 electrodes. For each 
sample, it is a 192-dimensional or 144-dimensional vector, and 
since we simulated electrode shift during the preprocessing stage, it 
becomes a 96-dimensional or 72-dimensional vector. To facilitate 
the extraction of spatial features, the data is transformed into a 
two-dimensional matrix according to the original relative placement 
of the collected electrodes, and then converted into an image called 
feature surface electromyography image (FSI). The FSI can 
simultaneously utilize the temporal features and the spatial features 
of HD-sEMG. Ninety-six or seventy-two HD electrodes were 
converted into matrices (for inwards/onwards shift, it is 8 ×  12 or 
6 ×  12, and for upwards/downwards shift, it is 4 ×  24 or 3 ×  24). 
For the above matrices, the elements of the matrix were treated as 
the pixels of the generated FSI (Geng et al., 2016). At the same time, 
a linear transformation is applied to convert the original sEMG 
signals from (−2.5 mV, 2.5 mV) to color grayscale images (0, 255). 
To improve training speed and reduce internal variance shift of the 

FIGURE 1

The photo display of nine gestures.
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data, we normalize each pixel of the FSI using the max-min. The 
max-min normalization is defined as:

 
′ =

−
−

x x x
x x

min

max min

Because one set of RMS values can be transformed into one FSI, 
and one gesture contains 30 sets of RMS values, each gesture was 
repeated 16 times, for a total of 9 gestures, a total of 4,320 FSIs can 
be generated for each subject’s data.

2.2 Compared models

2.2.1 Locality sensitive discriminant analysis
Locality sensitive discriminant analysis (LSDA) belongs to the 

manifold learning algorithm (Cai et al., 2007). Its main idea is to make 
the similar samples in the high-dimensional data neighbors 
be projected closer to the low-dimensional space by maximizing the 
edges of different classes in each partial area, and at the same time 
Keep samples of different classes away from each other, so that high-
dimensional data has stronger separability in low-dimensional space. 
This feature extraction method can achieve good results in 
gesture recognition.

2.2.2 Convolutional neural network
CNN is a common deep learning model mainly used for 

processing data with grid structures (Shelhamer et al., 2017). CNN 
has been successful in the realm of computer vision, a technology 
frequently utilized in image generation, object detection, and image 
classification. The ability of CNN to automatically extract features 
from input data is its key innovation. CNN incorporates specialized 
layers, such as convolutional layers and pooling layers, which exploit 
the spatial structure of the data. CNN utilizes convolution and 
pooling operations to automatically extract features from data like 
images and performs classification or regression tasks through fully 
connected layers. Its hierarchical structure and parameter sharing 
mechanism enable outstanding performance and efficiency in 
handling large-scale data and complex tasks. In this experiment, 
we set up a total of 3 convolutional layers, with input channels of 1, 
32, 64 for each layer. The kernel size is 3 ×  3 and step is 1 for 
each layer.

2.2.3 Temporal convolutional network
Temporal convolutional network (TCN) is a neural network 

architecture that can be used to solve time series forecasting (Bai 
et al., 2018). It can efficiently capture long-term dependencies in 
sequential data. TCN uses dilated convolutions to extend the 
receptive field exponentially without increasing the computational 
cost, enabling it to capture dependencies across long time spans. In 

FIGURE 2

Inwards/onwards shift 10  mm.

FIGURE 3

Upwards/downwards shift 10  mm.
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addition, it uses causal convolution. Causal convolution ensures 
that each output element only depends on the preceding elements 
in the input sequence, making the model suitable for real-time 
prediction tasks. It is a one-way structure, not two-way. This means 
that only previous causes can affect the future. It is a strictly time-
constrained model, so it is called causal convolution. In this 
experiment, we set the number of channels to 32, 64, 64, 32 and the 
kernel size to 3. The dropout is 0.3.

2.2.4 Long short-term memory
Long short-term memory (LSTM) was designed to model 

sequential data and capture long-term dependence (Hochreiter and 
Schmidhuber, 1997). It can effectively transmit and retain information 
in long-term sequences. LSTM can also solve the problem of vanishing 
gradients or exploding gradients in RNN. We use it as a compared 
model and set the layer number to 3, hidden size to 64, and dropout 
to 0.2. Attention-BiLSTM is an improved model of LSTM (Zhou et al., 
2016). Although LSTM can better capture long-term dependence, it 
can only encoder information in one direction. However, BiLSTM can 
process input information from both forward and backward 
directions. Attention is like humans who pay more attention to 
important information. It allows the model to dynamically assign 
different weights or importance to different elements of the input 
sequence. This enables attention to achieve better performance across 
a wide range of tasks. We set the same parameters as LSTM in the 
experiment, but with the addition of a bidirectional structure and an 
attention module.

2.2.5 Transformer
Transformer is currently the most popular model (Vaswani et al., 

2017). The key innovation of Transformer lies in its attention 
mechanism, which allows the model to capture global dependencies 
between input and output elements at different positions in the 
sequence. This eliminates the need for recurrent connections, making 
the Transformer highly parallelizable and allowing for more efficient 
training and inference. We set it as the compared method and set the 
head number to 8, encoder number to 2, and decoder number to 2. 
Swin-Transformer is a variant of Transformer (Liu et al., 2021), it is a 
new visual Transformer model suitable for computer vision tasks. It 
introduces a hierarchical and window-based approach to process 
images, enabling efficient and scalable modeling of visual information. 
Swin-Transformer divides the image into non-overlapping windows 
and operates on these windows at different scales. This hierarchical 
processing allows the model to capture both local and global 
contextual information efficiently. The advantage of the Swin-
Transformer model is that it can process images of any size, has high 
computational efficiency and good performance.

2.3 Attention-deep fast convolutional 
neural network

2.3.1 Structure of attention-DFCNN
We propose a new attention-DFCNN model that fully utilizes 

spatial and temporal features to reduce the impact of electrode shift 
and damage. Figure 4 depicts the architecture of the attention-DFCNN 
model. The small size of the kernel greatly reduces the complexity of 
parameter optimization.

The characteristic the attention-DFCNN model is that it uses 
FSI. FSI produces different signal strength distributions among 
different gestures. And the combination of spatial and temporal 
features can learn multidimensional representation information. In 
addition, CNN-based models can capture critical features even in the 
absence of some channels, effectively avoiding uneven data 
distributions caused by electrode shift and damage. Furthermore, by 
using FSI to convert 96 or 72 channels of sEMG data into 1 channel of 
image data, the training and inference time is accelerated, 
demonstrating the fast advantage of the model.

The input of the attention-DFCNN model consists of 8 ×  12, 4 ×  
24, 6 ×  12 or 3 ×  24 images. The first part of the model is 
convolutional layers. The first convolutional layer can extract signal 
spatial distributions corresponding to specific muscle positions and 
local information in FSI using the smallest local receptive field. After 
the convolutional layer (3 ×  3), we expand the number of channels 
before performing the next convolution. It can be equivalent to a local 
nonlinear transformer, which can map features to high dimensions, 
keeping the feature size unchanged, and allowing to learn more 
complex feature representations (Gu et al., 2018). In the convolutional 
layers, a residual connection is used to reduce the impact of overfitting.

After the convolutional layer is a squeeze and excitation 
(SE)-attention layer (Hu et  al., 2018). This attention mechanism 
mainly consists of three parts: squeeze, excitation and scale. In the 
squeeze operation, a global spatial average pooling operation is 
applied to the feature maps and transforms the H ×  W ×  C feature 
into a 1 ×  1 ×  C feature. This pooling operation aggregates 
information across the spatial extent of each channel, effectively 
summarizing the channel-level statistics. After the squeeze operation 
is the excitation operation. It learns to capture channel-wise 
relationships and generate a set of weights representing the importance 
of each channel. It is a multi-layer perceptron that is learnable and 
reduces the number of parameters through dimensionality reduction. 
The sigmoid function is used to obtain normalized weights between 
0–1, explicitly modeling the correlation between feature channels. 
We designate the excitation operation as s :

 
s F z W g z W W W z= ( ) = ( )( ) = ( )( )ex , ,σ σ δ2 1 ,

where z  represents the outputs of squeeze, δ  is the ReLU 
function, W1  and W2  are the parameters of the fully connected layer, 
σ  refers to the Sigmoid function. Finally, the scale operation scales 
the original features in the channel dimension by multiplying them 
with the width of the channel and adding them up weighted by the 
computed importance. The scale operation can be described as follow:

 
X F u s s u= ( ) =scale , . ,

where u is the output before the SE-attention layer, s is the output 
of the excitation operation.

The following three hidden layers are linear layers with 512, 256 
and 64 units, respectively. The last layer is a fully connected layer using 
the LogSoftmax function. It allows the network to learn hierarchical 
representations and extract high-level features from the input data. By 
connecting every neuron to every other neuron in the previous and 
next layers, it enables the network to capture complex relationships 
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and perform sophisticated computations, and then use the 
LogSoftmax function to generate a probability distribution for the 
specific samples corresponding to multi-classes gestures.

After each convolutional and linear layer, we add ReLU nonlinear 
activation function. The ReLU function uses a non-linear 
transformation that can learn more important features and improve 
the generalization for different individuals and gestures. Additionally, 
dropouts are added to the linear layer to reduce overfitting.

2.3.2 Training
In order to ensure the rationality and robustness of dividing the 

training sets and testing sets, we use K-fold cross-validation (K = 4). 
Due to converting the sEMG data into FSI during the preprocessing 
stage, and 4,320 FSIs were generated for each subject, so we used 3,240 
FSIs for training and 1,080 FSIs for testing in each cross validation. For 
each subject, separate training and testing are conducted. The 
electrodes with shift and damage were the same for all subjects. 
During training, the model weights were initialized using random 
initialization, which can effectively break the symmetry problem in 
the gradients. In this experiment, eight different methods, including 
LSDA, CNN, TCN, LSTM, attention-BiLSTM, Transformer, Swin-
Transformer, and attention-DFCNN were used on the same dataset. 
We built LSDA on MATLAB, and built other models on the Pytorch 
framework, comparing their performance on gesture recognition. All 
the models were trained on the same GPU (NVIDIA GeForce RTX 
4090). The learning rate is 0.001 and the batch size is 128 for all the 
method. To speed up the convergence and save computational 
resources, Adam was used as the training optimizer, all the deep 
learning models were trained for 200 epochs to converge.

We mainly classified nine gestures and analyzed the performance 
differences of the eight methods. The gesture recognition accuracy of 

96 electrodes for able-bodied subjects and 72 electrodes for one 
amputee was evaluated. To simulated the electrodes damage, Gaussian 
noise signals with a frequency of 50 Hz were randomly substituted for 
the sEMG signals collected by six electrodes in the same position in 
the training and test sets (Li, 2008). For 96 channels, we selected them 
for experimentation when the electrodes shift 10 mm or shift 10 mm 
and damage 6 channels. The same analysis was performed for the 
electrodes of amputees (72 channels) under shift and damage. The 
sEMG signals processed by RMS were directly used as the input of the 
model when using LSDA, TCN, LSTM, attention-BiLSTM and 
Transformer. However, for CNN, Swin-Transformer and attention-
DFCNN, the sEMG signals based RMS were converted into FSI as 
the input.

3 Results

The work studied the impact of the electrode shift and damage 
on gesture recognition using sEMG signals. There are four 
directions of the electrodes shift (inwards, onwards, upwards, 
downwards). The classification accuracies of the attention-DFCNN 
model were compared with the classical method LSDA and deep 
learning methods including CNN, TCN, LSTM, attention-BiLSTM, 
Transformer and Swin-Transformer. The Wilcoxon signed-rank 
test was applied to evaluate the significance of our method. For the 
able-bodied subjects, the count of the samples is 112 (the samples 
contain the result of 7 subjects, the result of cross-validation 
(K = 4), and the result of shift 4 directions). For the amputee, the 
count of the samples is 16 (the samples contain the result of 1 
amputee, the result of cross-validation (K = 4), and the result of 
shift 4 directions). The experiment showed that all the results 

FIGURE 4

The architecture of attention-DFCNN structure. 3*3@32 represents that the kernel size of the convolutional layer is 3 ×  3 and consists 32 filters. DP 
represents dropout. In the SE-attention structure, H, W, C represent the height, width and channels of the FSI, Fsq refers to the squeeze 
operation, Fex refers to the excitation operation and Fscale refers to the scale operation.
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display p-value <0.01. Considering the shift distance that may 
occur when wearing sEMG acquisition devices, our work only 
considered the electrodes shift of 10 mm. To verify the robustness 
of attention-DFCNN compared to other methods of the electrodes 
shift, further research was conducted by adding noise to simulate 
the electrodes damage during the shift.

3.1 The analysis of electrodes shift

The experimental results for seven able-bodied subjects with the 
electrodes shift 10 mm are summarized in Table  1. Four different 
electrode configurations (inwards, onwards, upwards, downwards) 
were used for the half-matrix (96 electrodes). The attention-DFCNN 
model achieved an average accuracy of 94.16% ±  3.91% in all 
configurations (inwards, onwards, upwards, downwards) and 
remained stable and reliable. The attention-DFCNN method 
outperformed other methods including CNN, TCN, LSTM, attention-
BiLSTM, Transformer and Swin-Transformer. The results indicate that 
the proposed model can adaptively use local spatial features and is 
robust to the effects of electrode shift while maintaining stability 
across different subjects.

Table  2 shows the results for the amputee subject. As the 
amputee used only 144 electrode channels, 72 electrodes were used 
with four configurations (inwards, onwards, upwards, downwards). 
The overall accuracy of the proposed model (57.08% ±  2.96%) was 
higher than that of the other compared methods and remained 
stable in different configurations. The reason why the accuracy of 
amputee is significantly lower than that of able-bodied subjects is 
mainly due to a decrease in the number of electrodes used to collect 
sEMG signals and a decrease in the ability of the amputee to control 
defective muscles. At the same time, there may be errors in the task 
of using the phantom limb to replicate the able-limb. The proposed 
attention-DFCNN model is based on temporal and spatial features, 
which can improve robustness to electrode shift and reduce the 
impact on recognition accuracy.

Figure 5 shows the confusion matrices of the average accuracies 
of 7 able-bodied subjects using the attention-DFCNN model. The four 
confusion matrices represent the electrodes shift 10 mm in four 
directions (inwards, onwards, upwards and downwards), and the 
coordinate axes 0–8 of the matrices represent nine different gestures. 
In most gesture recognition, the attention-DFCNN model can achieve 
more than 90% accuracy.

3.2 The analysis of electrodes shift and 
damage

The performance of the attention-DFCNN method was analyzed 
with the impact of electrodes shift and noise channels. When the 
electrodes shift 10 mm, the half matrices (96 electrodes) were used and 
added noise to the random 6 channels of the test and training datasets. 
The results are shown in Table 3. For seven able-bodied subjects, the 
recognition accuracy of attention-DFCNN still showed higher 
accuracy than other methods, with all the methods displaying p-value 
<0.01. Even with 10 mm electrode shift and noise channels, the 
proposed model can detect the noised channels while training and 
apply slight weight to them in order to lessen the effect caused 
by noises.

We also compared the results of shift and damage with the 
baseline test, only shift test, and only electrode damage test (as shown 
in Figure 6). We can observe that the attention-DFCNN model has the 
smallest decrease in accuracy. The results of shift and damage showed 
a 5.8% decrease in accuracy compared to the baseline test, and a 3.79% 
decrease compared to only shift test. At the same time, it can be found 
that the attention mechanism and convolutional structure can reduce 
the impact of electrodes shift on accuracy, and the dilated convolution 
of TCN can almost avoid the impact of electrode damage. In addition, 
by comparing the experimental results, it can be found that the larger 
standard deviation values are caused by some models not being able 
to adapt to electrode shift. Because the standard deviation values of all 
models were low in the baseline experiment. Due to insufficient 
training data, it is difficult to learn enough features for gesture 
recognition in complex situations such as electrode shift. In some 
cases, overfitting has occurred, so the recognition accuracy varies 
greatly for different subjects.

The same analysis was used in one amputee subject as shown in 
Table 4, seven methods were used to analyzed the performance. The 
attention-DFCNN model achieved a recognition accuracy of 54.27% 
±  5.45% (p < 0.01) when the electrodes shift 10 mm and electrode 
damage, and the difference between diverse transfer directions was 
not significant.

4 Discussion

We proposed the attention-DFCNN model, which is a fast and 
efficient framework based on FSI to mitigate the effects of electrode 

TABLE 1 The accuracies of 7 able-bodied subjects with the electrodes shift.

Inwards Onwards Upwards Downwards Average

LSDA 87.79 ± 3.00 87.97 ± 3.55 93.45 ± 2.21 94.75 ± 1.92 90.99 ± 4.11

CNN 87.82 ± 4.59 89.99 ± 4.62 95.30 ± 4.04 94.88 ± 3.13 92.00 ± 5.08

TCN 82.06 ± 7.76 84.95 ± 3.69 86.88 ± 5.20 81.83 ± 10.92 83.93 ± 7.31

LSTM 82.66 ± 6.87 82.09 ± 8.86 90.59 ± 8.45 90.25 ± 4.85 86.40 ± 8.12

Attention-BiLSTM 83.65 ± 3.64 80.58 ± 9.29 88.11 ± 6.03 95.10 ± 3.15 85.19 ± 6.86

Transformer 86.91 ± 7.14 87.75 ± 9.14 93.05 ± 6.99 93.41 ± 3.03 90.28 ± 7.21

Swin-Transformer 80.72 ± 11.55 91.31 ± 4.17 95.80 ± 4.06 94.46 ± 4.33 90.82 ± 8.53

Attention-DFCNN 90.17 ± 3.13 93.03 ± 3.42 97.17 ± 2.71 96.28 ± 2.02 94.16 ± 3.91

Compared the attention-DFCNN method with the comparative method, all the results display p-value <0.01.
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shift and damage. We  validate that the model improves the 
performance under two situations: shift 10 mm and shift 10 mm with 
damage 6 channels. Attention-DFCNN achieved accuracies of 94.16 
and 90.37% for able-bodied subjects. We  also improved the 
recognition accuracy of the amputee, reaching as high as 57.08 and 

54.27. While some other methods such as TCN and LSTM experience 
a significant drop in accuracy when electrode shift occurs, attention-
DFCNN maintains a high recognition accuracy with minimal 
variations across different shift types. The attention-DFCNN model, 
based on spatial and temporal features, also exhibits robustness to 

TABLE 2 The accuracies of 1 amputee subject with the electrodes shift.

Inwards Onwards Upwards Downwards Average

LSDA 54.15 ± 1.56 47.66 ± 2.17 50.25 ± 2.44 46.58 ± 2.10 49.66 ± 3.03

CNN 45.85 ± 2.15 49.59 ± 1.25 45.01 ± 2.45 42.95 ± 2.44 45.76 ± 2.45

TCN 40.25 ± 1.89 37.66 ± 2.05 42.01 ± 1.94 43.25 ± 2.59 41.09 ± 2.22

LSTM 41.98 ± 2.55 48.05 ± 3.58 36.98 ± 1.88 45.11 ± 2.22 43.03 ± 4.59

Attention-BiLSTM 46.12 ± 2.25 48.96 ± 3.12 41.20 ± 2.56 49.88 ± 3.89 46.54 ± 4.28

Transformer 51.02 ± 2.98 53.55 ± 1.96 46.87 ± 3.24 54.00 ± 1.95 51.36 ± 3.83

Swin-Transformer 45.55 ± 2.69 50.96 ± 2.15 46.23 ± 3.22 45.88 ± 2.55 47.16 ± 3.21

Attention-DFCNN 59.25 ± 1.54 59.23 ± 2.32 54.00 ± 1.26 55.82 ± 1.48 57.08 ± 2.96

Compared the attention-DFCNN method with the comparative method, all the results display p-value <0.01.

FIGURE 5

Confusion matrices of 7 able-bodied subjects with the electrodes shift 10  mm in four directions: (A) inwards; (B) onwards; (C) upwards; (D) downwards.
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electrode damage, which has only a slight impact on all participants. 
The deep learning model is able to assign different weights to signals 
corresponding to electrodes. As a result, the attention-DFCNN model 
can automatically detect noisy or missing signals from an alternative 

perspective, thus exhibiting better stability and robustness to electrode 
shift and damage.

Compared to research using the same dataset (Stango et al., 2015), 
our model has an advantage in recognition accuracy with the impact of 

TABLE 3 The accuracies of 7 able-bodied subjects with the electrodes shift and damage.

Inwards Onwards Upwards Downwards Average

LSDA 80.46 ± 5.43 79.40 ± 4.62 87.11 ± 3.46 89.60 ± 3.46 84.14 ± 6.00

CNN 81.66 ± 3.11 85.01 ± 3.72 91.36 ± 5.24 82.62 ± 4.66 85.16 ± 5.57

TCN 78.52 ± 10.79 80.14 ± 7.64 85.80 ± 7.41 82.79 ± 7.37 81.81 ± 8.43

LSTM 75.09 ± 6.09 83.45 ± 8.72 78.94 ± 6.65 76.33 ± 10.16 78.45 ± 8.28

Attention-BiLSTM 74.31 ± 7.15 83.80 ± 8.36 85.30 ± 6.84 81.03 ± 5.63 81.11 ± 7.92

Transformer 78.01 ± 7.77 87.87 ± 7.19 83.08 ± 7.17 79.91 ± 7.13 82.04 ± 7.75

Swin-Transformer 70.19 ± 9.45 89.22 ± 3.28 85.78 ± 9.01 85.62 ± 7.36 82.70 ± 10.42

Attention-DFCNN 86.74 ± 3.84 90.13 ± 5.52 91.76 ± 5.06 92.83 ± 4.76 90.37 ± 5.13

Compared the attention-DFCNN method with the comparative method, all the results display p-value <0.01.

FIGURE 6

The accuracies of 7 able-bodied subjects with base, shift 10  mm, damage 6 channels, shift and damage. Base represents no electrode shift and 
damage, shift represents only shift 10  mm, damage represents only damage 6 channels, shift and damage represent shift 10  mm and damage 6 
channels.

TABLE 4 The accuracies of 1 amputee subject with the electrodes shift and damage.

Inwards Onwards Upwards Downwards Average

LSDA 51.02 ± 2.05 42.85 ± 1.23 34.21 ± 1.56 34.88 ± 2.52 40.74 ± 6.84

CNN 42.00 ± 1.44 45.24 ± 1.99 37.51 ± 2.20 33.95 ± 3.02 39.68 ± 4.30

TCN 40.07 ± 2.12 34.54 ± 1.96 43.06 ± 2.11 34.26 ± 3.25 38.40 ± 3.38

LSTM 42.12 ± 2.55 36.54 ± 2.54 33.95 ± 4.23 33.89 ± 2.87 36.63 ± 3.85

Attention-BiLSTM 40.52 ± 2.12 42.78 ± 1.60 40.96 ± 3.25 36.10 ± 2.56 40.09 ± 3.54

Transformer 41.32 ± 3.12 55.46 ± 2.95 40.32 ± 3.66 58.44 ± 4.01 48.89 ± 9.32

Swin-Transformer 45.32 ± 3.24 52.14 ± 2.86 38.42 ± 2.65 49.41 ± 3.84 46.32 ± 6.95

Attention-DFCNN 45.82 ± 1.87 56.43 ± 1.32 54.32 ± 2.13 60.51 ± 1.54 54.27 ± 5.45

Compared the attention-DFCNN method with the comparative method, all the results display p-value <0.01.
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electrodes shift when using data from able-bodied subjects, especially 
inwards shift and onwards shift. This is because the deep learning 
approach utilizes the spatial features of the data and can selectively 
assign weights to the signal. However, for the amputee, our recognition 
accuracy significantly decreases. This may be because we use the deep 
learning model to achieve gesture recognition, and the data 
preprocessing method is different from that of Stango et al. (2015), and 
our training data is too limited, which makes it difficult for the model 
to learn enough features, which is unfavorable for deep learning models. 
Compared with other studies, for example, in this study (Ameri et al., 
2020), they used transfer learning to reduce the impact of electrode shift 
on sEMG recognition. This method may have better training and 
inference time than our model, but it requires recalibration during use. 
Moreover, when there is electrode damage, the accuracy of recognition 
may decrease significantly, and our model, due to the use of high-
density electrodes, will not produce this situation. In addition, compared 
with the study by He et al. (2020), they proposed a novel approach to 
avoid the influence of electrode shift by directly adjusting the worn 
electromyography collection device. The corrected recognition accuracy 
is almost the same as that without electrode shift. Our model has no 
advantage in recognition accuracy compared to their method, but in 
reality, it may not be convenient to adjust the wearing position multiple 
times to ensure recognition accuracy when worn for a long time. And 
our method can deal with the occurrence of electrode damage. 
We believe that our current algorithm for controlling prosthetics for 
amputees is still difficult, but it can be used for able-bodied individuals 
to remotely control robotic arms to perform specific tasks in hazardous 
areas (Park et al., 2019), or assist people in muscle strength training 
(Meattini et al., 2020).

5 Conclusion

We introduced an attention-DFCNN model based on spatial and 
temporal featured sEMG image to solve the problem of electrode shift 
and damage in gesture recognition when this situation occurs. At 
present, although able-bodied subjects have achieved excellent 
performance, the recognition accuracy of amputees is relatively low. 
In the future, we plan to utilize the idea of transfer learning to enhance 
the recognition performance of amputees by utilizing data from able-
bodied subjects.
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