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A rotary transformer 
cross-subject model for 
continuous estimation of finger 
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learning approach for new 
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Introduction: Surface Electromyographic (sEMG) signals are widely utilized for 
estimating finger kinematics continuously in human-machine interfaces (HMI), 
and deep learning approaches are crucial in constructing the models. At present, 
most models are extracted on specific subjects and do not have cross-subject 
generalizability. Considering the erratic nature of sEMG signals, a model trained 
on a specific subject cannot be directly applied to other subjects. Therefore, in 
this study, we proposed a cross-subject model based on the Rotary Transformer 
(RoFormer) to extract features of multiple subjects for continuous estimation 
kinematics and extend it to new subjects by adversarial transfer learning (ATL) 
approach.

Methods: We utilized the new subject’s training data and an ATL approach to 
calibrate the cross-subject model. To improve the performance of the classic 
transformer network, we compare the impact of different position embeddings 
on model performance, including learnable absolute position embedding, 
Sinusoidal absolute position embedding, and Rotary Position Embedding (RoPE), 
and eventually selected RoPE. We conducted experiments on 10 randomly 
selected subjects from the NinaproDB2 dataset, using Pearson correlation 
coefficient (CC), normalized root mean square error (NRMSE), and coefficient 
of determination (R2) as performance metrics.

Results: The proposed model was compared with four other models including 
LSTM, TCN, Transformer, and CNN-Attention. The results demonstrated that 
both in cross-subject and subject-specific cases the performance of RoFormer 
was significantly better than the other four models. Additionally, the ATL 
approach improves the generalization performance of the cross-subject model 
better than the fine-tuning (FT) transfer learning approach.

Discussion: The findings indicate that the proposed RoFormer-based method 
with an ATL approach has the potential for practical applications in robot hand 
control and other HMI settings. The model’s superior performance suggests 
its suitability for continuous estimation of finger kinematics across different 
subjects, addressing the limitations of subject-specific models.
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1 Introduction

Surface electromyography (sEMG) is obtained by recording the 
electrical activity of muscles through the skin and can reflect the 
electrical activity of muscle fibers when they contract. sEMG has been 
widely used in intelligent prostheses, external skeletal robotic arms, 
space remote operations, industrial robot control, etc. It can 
be  integrated with deep learning techniques for regression-based 
kinematics estimation to intuitively comprehend human intents.

Recent advancements in deep learning (DL) technology, 
particularly attention-based Transformer models, have garnered 
considerable public interest, shifting the artificial intelligence 
paradigm from classic feature engineering to feature learning. For 
instance, a new convolutional visual transformer (CviT) with stacked 
set learning was proposed by Shen et al. (2022). and has tremendous 
potential for merging the sequential and spatial aspects of sEMG 
signals with the parallel training below. Burrello et al. (2022) proposed 
using Bioformers, a supersmall attention-based neural network 
architecture, to solve the problems of big resource consumption and 
difficult improvement of accuracy in sEMG signal gesture recognition 
tasks. Montazerin et al. (2022) proposed a gesture recognition model 
called ViT-HGR, which is the first to introduce visual transformer 
architecture into high-density sEMG signal gesture recognition tasks, 
leveraging its parallel computing advantages to overcome the long 
training time and memory limitations of deep learning models. Liu 
et al. (2023) proposed a CNN-Transformer hybrid network for high-
accuracy dynamic gesture recognition. It adopts continuous wavelet 
transform to obtain time-frequency representations of sEMG signals, 
uses attention mechanisms to combine local and global features, and 
achieves gesture recognition through multi-branch and multi-scale 
fusion to improve recognition accuracy and efficiency. However, the 
majority of these outcomes were produced in straightforward, static 
laboratory settings. External influences, such as muscle fatigue, 
electrode displacement, and the impact of arm posture, can easily 
affect the features of sEMG (Hill et al., 2016; Kusche and Ryschka, 
2019). Chen et al. (2022) proposed an extended spatial transformer 
convolutional neural network (EST-CNN) model, which automatically 
learns electrode displacement relationships through feature 
enhancement preprocessing and spatial transformation layers, further 
micro-adjusts rotation angles through tuning layers, can 
simultaneously achieve gesture recognition and autonomous motion 
calibration, and effectively improve recognition accuracy under 
electrode movement. Especially, sEMG signals have user-specific 
characteristics, resulting in large differences in amplitude and 
frequency between subjects even when collected from the same 
position with the same movement (De Luca, 2002). Recently, a BERT 
model has been proposed for estimating hand kinematics from sEMG 
signals, achieving SOTA performance in cross-subject cases (Lin et al., 
2022). However, the test data is not independent of the model’s 
training set.

Despite the fact that certain research implies that features in 
different subjects may have similar distributions (Xu et al., 2018), 
subject variability still leads to a dramatic drop in the previously 
trained model’s estimation performance (Xiong et al., 2021). Transfer 
learning approaches (Pan and Yang, 2010) can adjust the model so that 
it can be applied to other subjects. Fine-tuning (FT) is a popular deep 
transfer learning method although it might overfit when the target 
domain has insufficient labeled data. In addition to FT, domain 

adaptation (DA) is also a prominent TL approach, which enhances the 
target prediction function by minimizing the difference between the 
source and target domain feature distributions, requiring fewer target 
data while maintaining consistent performance compared to fine-
tuning. Ketykó et al. (2019) proposed a domain adaptation method 
that enhances the accuracy of recognition between sparse and high-
density sEMG signals through the approximating domain transfer, 
addressing inter-session and inter-subject differences. Du et al. (2017) 
proposed a deep-learning based domain adaptation method for intra-
session and inter-session gesture recognition tasks, addressing the 
limitation of conventional methods relying on a single session. Shi 
et al. (2022) proposed a multi-task dual-stream supervised domain 
adaptation network MDSDA based on CNN for long-term multi-
subject gesture recognition using sEMG signals. Experimental results 
show that MDSDA outperforms conventional CNN and fine-tuning 
in a long-term multi-subject environment, and static and dynamic 
gestures have separability, which helps reduce signal collection burden.

These recent studies on domain adaptation have taken an 
important step toward building cross-subject transfer learning models, 
but they are limited to gesture recognition and cannot be utilized to 
continuously estimate finger joint angles. Considering the complex 
anatomical structure and kinematic characteristics of the hand, it is 
more challenging to build a cross-domain universal model for finger 
kinematics estimation. Although the BERT-based cross-subject 
method (Lin et  al., 2022) can be  applied to several subjects 
simultaneously, it relies on new subject data during the model training 
phase. As a result, we present a new cross-subject model based on 
adversarial transfer learning (ATL) in this study to estimate the finger 
joint angles of new subjects independently of model training. First, a 
RoFormer model was established using sEMG and finger kinematics 
data from several subjects. The RoFormer model is then calibrated 
utilizing ATL and training data from new subjects. The suggested 
RoFormer model’s generalization performance to new individuals is 
verified on the NinaproDB2 dataset. In summary, the main 
contributions of this paper are:

	•	 The RoFormer-based cross-subject model for continuous hand 
movement regression was proposed for the first time, and the 
experimental results show that our method reaches state-of-
the-art performance both in cross-subject and subject-
specific cases.

	•	 An ATL approach was proposed to transfer knowledge from 
several subjects to a new subject in an adversarial learning 
manner, significantly improving the generalization ability of 
cross-subject models.

The outcomes obtained in this work show great potential in 
practical applications of robot hand control and will greatly promote 
the application of other HMI settings.

2 Related work

2.1 Long short-term memory network 
(LSTM)

When processing long sequence data, Recurrent neural network 
(RNN) models are prone to the problems of vanishing and exploding 
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gradients, which can cause the model to fail to effectively capture long-
term dependencies. LSTM (Hochreiter and Schmidhuber, 1997) is a 
form of RNN that aims to address the long-term dependency issue in 
typical RNN models through a combination of memory and 
forget gates.

In this study, the LSTM architecture was used as a comparison, 
with 4 interaction layers in each cell. We utilized a five-layer stacked 
LSTM to boost the model’s depth to improve its fitting ability. Each 
layer had a hidden dimension of 32.

2.2 Temporal convolutional network (TCN)

Due to the limitations of the convolutional kernel size, traditional 
convolutional neural networks are incapable of capturing long-term 
dependencies, making them unsuitable for modeling time-series data. 
To address this issue, TCN (Bai et al., 2018) was proposed. The three 
basic components of TCN are residual convolution, dilated 
convolution, and causally connected convolution. The one-way 
structure of causally connected convolution prevents it from seeing 
future data. TCN utilizes dilated convolution (Yu and Koltun, 2015) 
to increase the receptive field and decrease the linearly stacked CNN 
layers to capture longer relationships. TCN adopts a 1D fully 
convolutional network (FCN) (Long et  al., 2015) structure with 
hidden layers that are identical in length to the input layer.

In this study, we choose to use a total of 6 layers, comprising 1 
completely connected layer and 5 dilated causally connected 
convolution layers with residual blocks. The first five layers’ 
convolutional channels are set up as 32, 64, 32, and 10, respectively. 
Stride and kernel sizes are set to 3 and 1, respectively.

2.3 Transformer network

The Transformer neural network proposed by Vaswani et  al. 
(2017) has been widely adopted in natural language processing 
(Devlin et al., 2018) and speech recognition (Krishna et al., 2019). 
Transformer utilizes a combination of encoders and decoders to 
handle input and output sequences. In this study, only the encoder 
part is employed to estimate hand motions from sEMG signals. The 
Transformer Encoder is made up of several stacked blocks, each with 
two sub-layers: the Multi-Head Self-Attention Mechanism (MSA) and 
the Feed-Forward Neural Network (FFNN).

The self-attention (SA) mechanism computes the relevance of 
each position in the input sequence to all other positions, enabling the 
model to effectively capture long-range dependencies. The MSA 
mechanism enhances this capability by dividing the input information 
into multiple “heads,” which are then individually processed using 
SA. This enables the model to capture diverse features of the input 
information in separate representation spaces. The FFNN is also 
known as the Fully Connected (FC) Layer.

Furthermore, the Transformer model incorporates positional 
encoding to retain the positional information of each element in the 
sequence. Layer normalization and residual connections are applied 
in each attention and feed-forward layer before a final FC layer maps 
features to 10 joint angles. In this study, we stacked two encoder layers, 
each MSA module consists of five SA modules.

2.4 CNN-attention network

There are two main components of the CNN-Attention model: a 
multi-scale convolution module and a multi-head self-attention 
(MSA) module (Geng et  al., 2022). The multi-scale convolution 
module is made up of three parallel routes with convolution kernel 
sizes of three, five, and seven. To ensure that the sequence lengths of 
the input and output are equal, the convolution utilizes the proper 
padding. The average pooling layer receives the outcome of the first 
multi-scale convolution module to shorten the feature sequence and 
broaden the convolution’s receptive field. Then, an MSA architecture 
is utilized to estimate joint angles. In the present research, we stacked 
three MSA modules, each MSA module is made up of three single-
headed attention.

3 A transfer learning model based on 
RoFormer

3.1 RoFormer

While the previous models discussed have applicability in our 
field, some limitations remain. LSTM relies on prior data for training 
because of its RNN structure, it is challenging to accomplish hardware 
parallel acceleration, which leads to subpar real-time performance. 
TCN relies on CNN structure rather than RNN structure, resulting in 
unstable and fluctuating estimates. We  also compare the recently 
proposed models CNN-Attention and Transformer, both of which are 
based on attention mechanisms. The model could be  utilized to 
process extremely lengthy time sequences thanks to the design of 
parallel computing structure and attention mechanism. This is one of 
its unique advantages over RNN and CNN. Another thing they have 
in common is the use of absolute position encoding. Absolute position 
embedding has the advantages of being simple to implement and 
having a rapid calculation time, but its performance is not as good as 
the network using relative position coding.

Therefore, we adopt a rotary transformer (RoFormer) neural 
network, which uses Rotary Position Embedding (RoPE) instead 
of absolute position embedding in traditional transformers to 
improve the accuracy of continuous estimation of finger motions. 
The basic idea of RoPE is to enable the model to focus on relative 
positions through absolute position encoding. This model is 
introduced below.

3.1.1 Rotary position embedding (RoPE)
Su et al. (2021) pioneered the rotary position embedding (RoPE) 

method. Rather than directly adding sinusoidal embedding as in the 
original Transformer, they multiply the keys and queries of each 
attention layer by sinusoidal embedding.

In contrast to sinusoidal or learnable positional embedding, RoPE 
injects position information at each layer rather than simply the first. 
Furthermore, the values vector of the self-attention (SA) layer does 
not receive any positional information. Because the output of an SA 
layer is a linearly transformed, weighted sum of the input value 
vectors, the outputs of each SA layer include no explicit position 
information because position information is not inserted into the 
values. We adopted RoPE in our model.
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3.1.2 Model structure
To decrease the number of model parameters and accelerate 

convergence, we add a 1D convolutional neural network layer before 
RoFormer. In Figure 1, the procedure is depicted and explained.

The multi-head self-attention (MSA) and multi-layer perceptron 
network (MLP) modules make up the Transformer encoder. The MSA 
module calculates the correlation between each position element of 
the input sequence, and the MLP module performs deep 
transformation on each position element to obtain higher-level 
representation capabilities.

To provide a clearer description of the model, we represent the 
1-D input series as: X x x xt= [ ]0 1, , ,   and is then fed to a linear 

projection layer (E) to get the X x E x E x Ep p p
t
p= 

0 1, , ,  . The 

output of each layer of the encoder is defined as Z i Li 1≤ ≤( ), L is the 

number of encoder layers. We execute rotary position embedding 
(RoPE) on input before feeding it into these encoder layers, 
designating as Z0 (Eq. 1.1):

	
Z RoPE X p0 = ( )� (1.1)

where represents the output after X p  input to RoPE. The encoder 
uses layer normalization and residual skip connections to overcome 
the degradation issue. With this approach, each encoder layer can 
be characterized as (Eq. 1.2):

	

Z MSA LayerNorm Z Z

Z MLP LayerNorm Z Z

l l l

l l l

′
− −

′ ′

= ( )( ) +
= ( )( ) +

1 1

�

(1.2)

where (1 ),i L≤ ≤  finally, A linear layer is used to retrieve 
outcomes from ZL (Eq. 1.3):

	 Z Linear ZL= ( )� (1.3)

Following that, we give an introduction to the MSA and MLP 
modules. The self-attention (SA) mechanism can be thought of as a 

method for identifying relational dependencies among various sample 
points within the input Zi , which is accomplished via the queries 
matrix (Q), the key matrix (K), and the values matrix (V). By using a 
linear transformation, they are calculated (Eq. 1.4):

	 Q K V ZWQKV, ,[ ] = ,� (1.4)

The weight matrix is learnable, and after scaling Q and K, they are 
then used to compute the weights of V. The final result (Eq. 1.5) is 
obtained by taking the weighted sum of all the values of V:

	
SA Z QK

d
V

T

h
( ) =









softmax ,

�
(1.5)

The MSA block contains H separate attention heads that process 
inputs in parallel. Each head has its own learnable parameters and 
performs self-attention independently. The outputs from all H heads 
are then concatenated and projected to produce the final MSA result. 
This is an illustration of the MSA (Eq. 1.6):

	
MSA Z SA Z SA Z SA Z Wh

MSA( ) = ( ) ( ) … ( ) 1 2; ; ;
� (1.6)

WMSA represents a learnable weight matrix in each encoder layer. 
In addition, the MLP module is made up of two linear layers, with the 
Mish activation function (Mish, 2019) coming after the first layer to 
boost accuracy and convergence speed.

Due to the powerful ability of attention mechanisms and residual 
skip connections to extract features from small-scale sequential data, 
RoFormer is also feasible in multiple subjects. RoFormer can receive 
both future and past signals simultaneously, allowing it to extract 
features from the entire sequence rather than just the past signals. This 
makes RoFormer superior to classical TCN and RNN models in cross-
subject situations. The experiments part depicts the performance of 
RoFormer on NinaproDB2.

3.2 μ-law normalization

The sEMG signals of various subjects lie in distinct ranges with 
different distributions, in which Z-Score normalization may disturb 
their own features when several subjects are analyzed together. 

FIGURE 1

The construction of the rotary transformer(RoFormer) module. RoPE represents rotary position embedding. The sEMG’s temporal information can 
be captured by the model thanks to RoPE.
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Furthermore, a significant amount of important information on 
sEMG in the temporal domain lies near zero (Rahimian et al., 2020) 
and cannot be identified by linear method.

The RMS characteristic of sEMG is amplified using a nonlinear 
logarithmic scaling method known as μ-law normalization 
(Recommendation ITU-T, 1988), taking into account the current low 
amplitudes of multiple sEMG channels. The μ-law normalization 
calculation formula is (Eq. 1.7):

	
F signx x

|x |
t t

t( ) = ( ) +( )
+( )

ln

ln

1

1

µ
µ

�
(1.7)

where t is time, Each channel’s sEMG signal is represented by xt , 
and μ is the scaling parameter for the signal. In our experiment, μ is 
set to 220, which has been searched from 256 to 220 in the simulations. 
It has been proven that normalizing sEMG signals using the μ-law 
method can improve the network’s discrimination capability 
(Rahimian et  al., 2021). The enhancement of regression model 
performance by the μ-law method is illustrated in the experiments 
chapter, especially in the cross-subject case.

3.3 Adversarial transfer learning (ATL) 
approach

The proposed model’s overall framework is shown in Figure 2. The 
RoFormer network and adversarial transfer learning (ATL) approach 
make up its two key components. The RoFormer network can act as a 
model for multiple subjects or as a model applied to an individual subject. 
The RoFormer cross-subject model was calibrated using the ATL 
approach, which allows the mapping of features from several subjects to 
new individuals. The ATL approach is briefly explained as follows:

The effectiveness of transfer learning approaches in transferring 
prior knowledge from the source to the target domains has been 
demonstrated (Du et al., 2017; Ketykó et al., 2019; Shi et al., 2022). The 
present study proposes an ATL approach to transfer knowledge gained 
from multiple subjects to new individuals in an adversarial manner 
(Goodfellow et al., 2020) while calibrating the parameters of the cross-
subject model. The calibration process utilizing the ATL approach is 
depicted in Figure 3. A multi-subject source domain network (Multi-
s-net) is used to extract source domain (data from multiple subjects) 
features. A new subject target domain network (New-t-net) is used to 
extract target domain (data from new individuals) features. A domain 
discriminator (DD) works toward minimizing the disparity between 
the feature distributions of the source and target domains. The DD 
consists of Multilayer Perceptron (MLP). Multi-s-net, New-t-net, and 
DD comprise the ATL transfer learning approach, facilitating both 
domain adaptation and multi-subject model calibration.

Before transfer learning, the Multi-s-net is trained using 
supervised mean square loss on data from multiple subjects. Multi-
s-net and New-t-net share the same network architecture, with 
New-t-net initialized using the trained weights from Multi-s-net. 
During the process of ATL, the weights of the Multi-s-net remain 
fixed, while the weights of the New-t-net and DD are tuned to reduce 
the feature disparity between the source and target domains. The DD 
works to minimize domain discrepancy by attempting to differentiate 
between the two domains. Successful domain confusion by DD 
implies it can no longer distinguish the domains, indicating the 
minimum feature distance has been attained and knowledge 
transfer completed.

Drawing on the principles of adversarial learning (Goodfellow 
et al., 2020), the end-to-end adversarial transfer learning process is 
realized through formulae (1.8)–(1.11). Traditional transfer learning 
generally focuses on aligning marginal distributions across domains 
while neglecting feature consistency. Therefore, the current study 

Mul�ple Subjects 
Training Data

New Subject 
Training Data

New Subject 
Tes�ng Data

Conv1d

Mul�-Head
A�en�on

Add & Norm

Feed
Forward

Add & Norm

RoPE

Linear

 Adversarial Transfer Learning (ATL) 
Strategy

Updated Mul�-subject Model

Output

×2

FIGURE 2

The overall framework of the cross-subject model and the adversarial transfer learning (ATL) approach.
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optimizes DD and New-t-net using the loss function Ltotal to jointly 
account for:

	 L L L Ltotal DD mapping subject= + + � (1.8)

Ltotal consists of LDD , Lmapping  and Lsubject . Where LDD  
represents the loss function of DD, which is utilized to measure the 
domain discrepancy between the feature spaces of New-t-net and 
Multi-s-net.

	 L DD F DD FDD s t= − ( )( ) − − ( )( )log log 1 � (1.9)

Where Fs refers to features from multiple subjects, Ft refers to 
features from the new subject.

The sum of Lmapping  and Lsubject  represents the loss function of 
New-t-net. Where Lmapping  represents the degree of feature mapping 
from Multi-s-net to New-t-net. It can be described as:

	 L DD Fmapping t= − ( )( )log � (1.10)

To make New-t-net more sensitive to the new subject’s features 
during ATL, Lsubject  reweights the loss function.

	
( )( )

N 2

1
ˆsubjectL w Nnet x x= −∑

�
(1.11)

Where Nnet x( ) refers to the output of New-t-net, x̂  represents 
the labels of finger joint angles, N represents finger joint numbers 
which equals 10 in this study and w is a weighting coefficient.

The DD consists of Multilayer Perceptron (MLP). MLP is a neural 
network model with strong adaptive and self-learning capabilities. It 
should be noted that in this study, the features output by Multi-s-net 
(denoted with orange lines with arrows) and the features output by 
New-t-net (denoted with green lines with arrows) are input into DD 
respectively, as illustrated in Figure 3. These features are the output of 
the penultimate fully connected layer in the RoFormer network.

In this research, all of the models are constructed based on the 
Pytorch 2.0.1 framework and trained on an NVIDIA RTX 3060 
GPU. For training subject-specific and cross-subject models, the 
batch size is equal to 64, and the number of epochs is 400. The cross-
subject model learning rate is initially fixed at 1e-4, and the 

FIGURE 3

The adversarial transfer learning (ATL) approach. The DD is made up of MLP. The Source Labels refer to the finger joint angles labels from multiple 
subjects, while the Target Labels refer to the finger joint angles labels from a new subject.
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subject-specific model learning rate is initially set at 3e-4, both of 
them are halved after 200 epochs. While calibrating the cross-subject 
model with new users, the batch size is 64, the calibration rate is 1e-3, 
and the calibration period consists of 50 epochs.

4 Experiments

4.1 Dataset

The Ninapro database (Atzori et al., 2015) is the largest, publicly 
accessible hand sEMG database in the field. To facilitate evaluation, 
the RoFormer model is evaluated using the Ninapro database. 
We utilize the second Ninapro database (also known as DB2), which 
contains sEMG signal recordings of 40 healthy subjects in 50 
postures, such as wrist, hand, grasping, and functional movement 
patterns. The raw sEMG signals were collected from 12 electrodes 
using the Delsys Trigno wireless system, with a sampling frequency 
of 2 kHz. Simultaneously, the 22-sensor CyberGlove II data glove 
measures the hand kinematics at a sample frequency of 20 Hz before 
resampling to 2 kHz. Here, we  use 12-channel sEMG signals to 
estimate the finger angles of hand movements in Figure 4A. Moreover, 
we picked up six grasping actions for different objects are shown in 
Figure 4B for each participant.

	 1	 Subject selection: In this study, we selected 10 typical subjects 
from Ninapro DB2 for experiments. These subjects covered as 
much as possible all the subjects in the database in terms of 
height, weight, gender, age, and handedness. Range of 
characteristics of the examinee. For each subject, we selected 6 
representative grasping actions based on the shape and 
diameter of the object (Figure 4B). The main shapes include 
cylinders, spheres, and flat objects, and the diameters cover 
objects of large, medium, and small sizes.

	 2	 Data preprocessing: To reduce the impact of noise during 
data collection, we  extract the root mean square (RMS) 
feature of sEMG signals using a 100 ms sliding window and 
a step size of 0.5 ms. These features are then normalized 
using the ∝ -law method to scale the amplitude range of the 
sensor output.

To perform training and testing experiments on our proposed 
RoFormer network, for all subject-specific and cross-subject cases as 
well as model calibration for each new user, each movement (which 
included six trials) was divided into training and testing datasets. Four 
randomly chosen trials out of a total of six trials make up the training 
dataset; the other two trials are the testing dataset.

4.2 Performance metrics

	 1	 Pearson correlation coefficient (CC) is a widely adopted metric 
for quantifying the linear correlation between two variables. It 
assesses the extent of similarity between the expected motion 
and the estimated motion. CC has a value between −1 and 1. 
A higher CC value indicates a stronger correlation, indicating 
a more accurate estimation of the motion.

	 2	 Normalized Root Mean Square Error (NRMSE) is a metric for 
measuring prediction accuracy. It scales RMSE values for 
meaningful comparisons across angles. Smaller NRMSE 
indicates better estimation. With NRMSE, the estimation 
errors are scaled to [0, 1] uniformly for all angles.

	 3	 Coefficient of determination (R2) is a measurement of a 
regression model’s ability to accurately predict the data. The value 
range of R2 is 0–1. It shows the percentage of the dependent 
variable’s variance that can be  explained by the independent 
variables. The greater the R2 value represents the better estimation 
performance. Hence, we utilized R2 to calculate the variance 
between each joint angle’s measured and estimated values.

A B

FIGURE 4

Dataset Description. (A) Cyber Glove II with 22 channels, and we picked up 10 finger joint angles, which are indicated by red dots. (B) Six grasping 
movements.
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4.3 Experimental results

4.3.1 The effect of rotary position embedding
Figure 5 illustrates the performance of the RoFormer network 

applied with RoPE to continuously estimate the finger joint angle of 
each specific subject, and compares it with the transformer network 
applying absolute position embedding, including learnable position 
embedding (Learnable PE) and sinusoidal position embedding 
(Sinusoidal PE). In keeping with our proposed RoFormer model, the 
original input is fed into the transformer model after passing through 
a 1D convolutional neural network (conv1d) layer. The results show 
that the model applied with RoPE has an average CC of 0.8539 ± 0.029 
an average NRMSE of 0.1080 ± 0.0087 and an average R2 of 
0.6763 ± 0.064, which is better than the other two embedding. 
Compared to learnable position encoding, these values are 2.4% 
higher 0.0072 lower, and 4.6% higher respectively; compared to 
sinusoidal position encoding, CC and NRMSE are 3.8% higher and 
0.0096 lower and 6% higher, respectively. Statistical analysis shows 
that the proposed RoPE outperforms the Sinusoidal PE in terms of CC 
(p < 0.05).

4.3.2 The effect of μ-law normalization
In the current research, we first study the performance of our 

RoFormer model with LSTM, TCN, Transformer, and CNN-Attention 
methods in subject-specific situations. We  only utilized a single 
subject’s data to train the subject-specific models. Next, we study the 
performance of the cross-subject model, in which the training dataset 
is drawn from several subjects, and the test data is drawn from each 
individual in the training set. In the subsequent cross-subject 
experiments, the sEMG signals from all 10 subjects were combined 
and used as the training data.

To compare μ-law normalization and Z-score normalization, 
we apply them to subject-specific models and multi-agent models, 
respectively. In our study, μ is set to 220. The results depicted in 
Tables 1, 2 exhibit the substantial superiority of our method over other 
models, both in cross-subject and subject-specific cases. This 
illustrates the powerful ability of our proposed RoFormer method to 
extract features from the sEMG series. It is worth noting that models 
applying with μ-law regularization outperform models applying with 
Z-Score regularization in our study, especially in the cross-subject 
case. This is because μ-law normalization can better amplify low 
magnitudes and preserve the scale of larger values, while Z-Score 
normalization may disturb the original features of each subject itself 
when several subjects are analyzed together.

The RoFormer model performs similarly to the other models 
when Z-Score normalization is applied. However, when μ-law 
normalization is applied, significant improvements are brought to the 
RoFormer model, but the performance of other models is not greatly 
improved. Cross-subject models inevitably lead to performance 
degradation compared to subject-specific models, but this 
is acceptable.

4.3.3 The effect of the ATL approach
When test subjects are not contained in the training set, the 

performance of the cross-subject model drops dramatically. Therefore, 
we  propose an adversarial transfer learning (ATL) approach for 
improving the accuracy of finger joint angle estimation under cross-
subject cases. During model calibration for each new individual, 

we first built the cross-subject model based on the training data from 
the other 9 subjects excluding the new individual, then calibrated the 
cross-subject network with the new user’s training data utilizing the 
ATL approach. Following a short calibration, the performance of five 
models was evaluated sequentially on 10 new users. Moreover, to 
highlight the improvement of the ATL approach on cross-subject 
model generalization performance, we compare it with the fine-tuning 
(FT) transfer learning method. In the following experiments, all 
models were applying μ-law normalization.

We compared the average performance of five models applying 
different transfer learning approaches. NoTL indicates the cross-
subject model that was tested using new individual data not in the 
training set without applying any transfer learning approach. The CC, 
NRMSE, and R2 were utilized as the performance metrics, respectively. 
As demonstrated in Figure 3, the FT strategy is applied to all models, 
where the average CC, NMRSE, and R2 of RoFormer are 0.776 ± 0.034, 
0.1205 ± 0.0081 and 0.601 ± 0.046 respectively, which is better than the 
other four models. In terms of the performance of applying the ATL 
strategy, RoFormer also achieved the optimal performance average 
CC, NMRSE, and R2 were 0.841 ± 0.026, 0.1132 ± 0.0072, and 
0.652 ± 0.043, respectively. Furthermore, two transfer learning 
strategies were applied to the Roformer model respectively, and 
compared with the FT approach, the CC of ATL was 6.5% higher 
(p < 0.05). Statistical analysis showed that the ATL approach was 
significantly better than the FT approach in terms of CC (p < 0.05), 
showing better generalization performance.

5 Discussion

To build a cross-subject model to estimate the hand kinematics of 
new subjects, this study proposes a RoFormer-based method with an 
ATL approach. First, the RoFormer network is utilized to extract 
features from several subjects when building a cross-subject model. 
Then, the parameters of the cross-subject network are updated by the 
ATL approach. On the NinaproDB2 dataset, the newly put forward 
cross-subject model’s performance is verified. Our cross-subject 
model offers better generalization performance in addition to 
improved accuracy for subject-specific finger kinematics estimation 
when compared with the other four subject-specific models and the 
FT approach. We  also study the impact of different positional 
embedding, regularization methods, and transfer learning approaches 
on the model. This research contributes significantly to the 
generalization of deep learning approaches to robotic hand control 
and other HMI scenarios.

Firstly, in order to study the impact of RoPE on model 
performance, we compared the average performance of Transformer 
models applying different position embedding methods on 10 subjects 
of NinaproDB2. The results in Figure  5 showed that RoPE 
outperformed Sinusoidal position embedding and Learnable position 
embedding in terms of CC, NRMSE, and R2. This is because RoPE can 
capture the relative positional information of the sequence, thereby 
better representing the temporal relationships between multiple 
grasping actions. How to make use of the subject’s training data to 
enhance the generalization ability of the cross-subject model is a 
significant step. Among them, the μ-law normalization method plays 
a crucial role. Therefore, we  compared the effects of different 
regularization methods on model performance in single-subject and 
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FIGURE 5

Comparison of different position embedding (PE). The CC (A), NRMSE (B), and R2 (C) were utilized as the performance metrics, respectively.
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cross-subject tasks. We  train our proposed RoFormer model and 
LSTM, TCN, Transformer, and CNN-Attention models under 
different regularization methods, using CC, NRMSE, and R2 to 
measure the estimation quality. The results demonstrated that the 
μ-law normalization method greatly enhanced the cross-subject 
model’s performance. The proposed RoFormer model significantly 
outperforms other models both in single-subject and cross-subject 
cases, demonstrating that our method has a stronger generalization 
ability. The possible reason is that μ-law normalization can better 
exploit the hidden information of small-amplitude sEMG, while 
Z-Score normalization may disturb the original features of each 
subject itself when several subjects are analyzed together. Once each 
algorithm (LSTM, TCN, Transformer, CNN-Attention, and 
RoFormer) is applied to a cross-subject model, the performance 
declines substantially compared to the single-subject model. In 

particular, performance drops drastically when testing with a new 
individual that is not in the training set. Therefore, we propose an ATL 
approach to adapt the model to different subjects. The contribution of 
ATL to cross-subject modeling was further studied via comparison. 
The results in Figure  5 show that the ATL approach significantly 
improves the generalization ability across individual models in terms 
of CC, NRMSE, and R2 compared with the fine-tuning (FT) approach. 
FT only updates the parameters of the MLP layer within the cross-
subject network. In contrast, ATL is designed to work adversarially, 
enabling domain transfer and utilizing source data to address target 
data insufficiency (Hung et al., 2018). Better parameter optimization 
may be the reason why ATL performs better than FT.

This study has a few limitations as well. Firstly, we deliberately 
avoid unreasonable or poor data caused by collection errors in 
NinaproDB2. In comparison to the subject adversarial knowledge 

TABLE 2  Average performance of 6 movements on 10 subjects with 
Z-score normalization.

Model Ave.PCC Ave.NRMSE Ave.R2

LSTM 0.7963 0.1161 0.61484

TCN 0.8065 0.1141 0.6279

Transformer 0.7645 0.1246 0.5622

CNN-Attention 0.8157 0.1153 0.6389

RoFormer 0.8176 0.1149 0.6402

LSTM* 0.4812 0.2026 0.0614

TCN* 0.4349 0.2182 0.0329

Transformer* 0.4648 0.2048 0.0853

CNN-Attention* 0.4970 0.2162 0.0863

RoFormer* 0.5345 0.2047 0.1173

* stands for the cross-subject model that was tested using each subject from the training set 
after being trained on all 10 subjects’ data. The value in bold is the best result.

TABLE 3  Average performance of five models applying different transfer learning approaches.

Transfer learning 
approaches

Ave.PCC Ave.NRMSE Ave.R2

noTL

LSTM 0.420 ± 0.079 0.2113 ± 0.0113 0.202 ± 0.082

TCN 0.423 ± 0.066 0.2065 ± 0.0102 0.227 ± 0.084

Transformer 0.439 ± 0.059 0.2201 ± 0.0093 0.218 ± 0.076

CNN-Attention 0.456 ± 0.054 0.2241 ± 0.0085 0.237 ± 0.071

RoFormer 0.458 ± 0.043 0.2047 ± 0.0076 0.260 ± 0.069

FT

LSTM 0.526 ± 0.035 0.1601 ± 0.0086 0.270 ± 0.054

TCN 0.631 ± 0.036 0.1503 ± 0.0087 0.344 ± 0.052

Transformer 0.718 ± 0.035 0.1304 ± 0.0083 0.499 ± 0.048

CNN-Attention 0.752 ± 0.033 0.1208 ± 0.0082 0.574 ± 0.045

RoFormer 0.776 ± 0.034 0.1205 ± 0.0081 0.601 ± 0.046

ATL

LSTM 0.663 ± 0.029 0.1413 ± 0.0079 0.438 ± 0.046

TCN 0.701 ± 0.030 0.1322 ± 0.0085 0.501 ± 0.045

Transformer 0.766 ± 0.028 0.1264 ± 0.0074 0.552 ± 0.044

CNN-Attention 0.800 ± 0.027 0.1184 ± 0.0073 0.617 ± 0.043

RoFormer 0.841 ± 0.026 0.1132 ± 0.0072 0.652 ± 0.043

The value in bold is the best result.

TABLE 1  Average performance of 6 movements on 10 subjects with μ-law 
normalization.

Model Ave.PCC Ave.NRMSE Ave.R2

LSTM 0.6739 0.1383 0.4485

TCN 0.7288 0.1302 0.5107

Transformer 0.7719 0.1231 0.5682

CNN-Attention 0.8132 0.1120 0.6377

RoFormer 0.8562 0.1090 0.6752

LSTM* 0.5393 0.1750 0.1532

TCN* 0.6456 0.1651 0.2242

Transformer* 0.6935 0.1447 0.3901

CNN-Attention* 0.7694 0.1254 0.5374

RoFormer* 0.8146 0.1205 0.5711

* stands for the cross-subject model that was tested using each subject from the training set 
after being trained on all 10 subjects’ data. The value in bold is the best result.
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(SAK) transfer learning strategy proposed by Long et  al. (2023), 
we adopted the more efficient RoFormer model as the main body of 
the cross-subject model and utilized the μ-law normalization method 
to achieve more accurate estimation. Furthermore, we also simplify 
the structure of the domain discriminator. But there are also some 
shortcomings. The proposed method was only evaluated on six basic 
grasp actions performed by 10 intact subjects, which is far from 
covering the complex hand movements in our daily lives and also 
leads to insufficient robustness validation of our method. Secondly, 
the proposed RoFormer structure is based on attention mechanisms, 
which results in high inference latency. To accommodate the demands 
of real-world applications, the inference time should be cut down. 
Lastly, the newly proposed ATL approach often suffers from 
catastrophic forgetting (McCloskey and Cohen, 1989), compromising 
its ability to retain prior subject knowledge. In recent years, there have 
been some studies on lifelong learning methods (Hadsell et al., 2020) 
that can effectively address catastrophic forgetting, which can serve as 
a direction for our future research and improvement.

6 Conclusion

In the present study, we proposed a RoFormer-based cross-subject 
model for continuously estimating finger kinematics and an 
adversarial transfer learning(ATL) approach to improve the cross-
subject model’s generalization ability. RoFormer-based model can 
extract spatial and temporal information from sEMG, allowing them 
to better satisfy the needs of cross-subject scenarios of clinical settings. 
Simultaneously, μ-law normalization is adopted to replace Z-Score 
normalization in order to better exploit the hidden information of 
small-amplitude sEMG signals. Subsequently, four classic models for 
continuous motion estimation and a fine-tuning-based transfer 
learning approach are compared with our RoFormer-based cross-
subject model and ATL approach and validated on NinaproDB2. 
Future studies can incorporate more subjects, actions, and channels 
to assess the robustness and stability of the model. Recently, there have 
been many studies on efficient Transformers (Tay et al., 2020), among 
which Performers based on linear attention can improve model 
efficiency and shorten model inference time. RoPE is the sole kind of 
relative position embedding that can currently be utilized for linear 
attention and can be  used as a direction for future follow-up. 
Catastrophic forgetting refers to the drastic decline in the performance 
of a model on the original task after being trained on a new task. 
Transfer learning strategies often suffer from catastrophic forgetting. 

Lifelong learning can effectively improve the catastrophic forgetting 
problem and adapt the model to new subjects while retaining the 
knowledge of old subjects. It is anticipated that research on lifelong 
learning approaches or transfer learning strategies based on the 
Transformer model will make more contributions to human-
computer interaction.
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