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Introduction: Occupational Noise Induced Hearing Loss (ONIHL) is one of the 
most prevalent conditions among mine workers globally. This reality is due 
to mine workers being exposed to noise produced by heavy machinery, rock 
drilling, blasting, and so on. This condition can be compounded by the fact that 
mine workers often work in confined workspaces for extended periods of time, 
where little to no attenuation of noise occurs. The objective of this research 
work is to present a preliminary study of the development of a hearing loss, early 
monitoring system for mine workers.

Methodology: The system consists of a smart watch and smart hearing muff 
equipped with sound sensors which collect noise intensity levels and the 
frequency of exposure. The collected information is transferred to a database 
where machine learning algorithms namely the logistic regression, support 
vector machines, decision tree and Random Forest Classifier are used to classify 
and cluster it into levels of priority. Feedback is then sent from the database to 
a mine worker smart watch based on priority level. In cases where the priority 
level is extreme, indicating high levels of noise, the smart watch vibrates to 
alert the miner. The developed system was tested in a mock mine environment 
consisting of a 67 metres tunnel located in the basement of a building whose 
roof top represents the “surface” of a mine. The mock-mine shape, size of the 
tunnel, steel-support infrastructure, and ventilation system are analogous to 
deep hard-rock mine. The wireless channel propagation of the mock-mine is 
statistically characterized in 2.4–2.5 GHz frequency band. Actual underground 
mine material was used to build the mock mine to ensure it mimics a real mine 
as close as possible. The system was tested by 50 participants both male and 
female ranging from ages of 18 to 60 years.

Results and discussion: Preliminary results of the system show decision tree had 
the highest accuracy compared to the other algorithms used. It has an average 
testing accuracy of 91.25% and average training accuracy of 99.79%. The system 
also showed a good response level in terms of detection of noise input levels of 
exposure, transmission of the information to the data base and communication 
of recommendations to the miner. The developed system is still undergoing 
further refinements and testing prior to being tested in an actual mine.
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Introduction

Occupational noise-induced hearing loss (ONIHL) is a significant 
concern within the mining industry in South Africa (Khoza-Shangase, 
2022), given the documented prevalence of high noise levels (Edwards 
et al., 2011). This prevalence of ONIHL is attributed to factors such as 
the nature of mining activities, the confined and reflective work 
environments, and the use of equipment in mines. These factors 
significantly increase the risk of exposure to hazardous noise levels, 
which are the primary cause of hearing problems among mine workers 
(Matetic, 2005; Strauss et al., 2012). Due to these factors, it has been 
estimated that one in four mine workers will develop ONIHL. As mine 
workers proceed to their mid-60’s, the incidence increases, with four 
out of five mine workers presenting with hearing impairment (NIOSH, 
2023). To address this issue, South African mines implement hearing 
conservation programs (HCPs) aimed at protecting workers’ hearing 
health and minimizing the risk of ONIHL. The country has legislation 
and regulations that mines must adhere to such as the Occupational 
Health and Safety Act (OHSA) of 1993 (Republic of South Africa, 
1995), along with its Noise-Induced Hearing Loss Regulations of 2003, 
which govern occupational health and safety in South Africa. These 
regulations set out specific requirements for noise exposure limits, 
hearing protection, audiometric testing, and the implementation of 
HCPs. The OHSA sets permissible noise exposure limits (NELs) for 
different industries and activities, including the mining industry. The 
regulations specify that the daily personal noise exposure level should 
not exceed 85 decibels (dB) for an eight-hour work shift.

Legislation and regulations, as part of the hierarchy of controls, 
also declare that, through risk assessments, employers are required to 
conduct noise risk assessments to determine the potential for hearing 
loss and identify areas where noise control measures are necessary. 
This involves measuring noise levels, evaluating exposure durations, 
and identifying high-risk areas or job tasks. At the same time, 
engineering controls measures should be  in place to reduce noise 
levels at their source (NIOSH, 2023). This may involve using quieter 
machinery and equipment, isolating noisy equipment, or 
implementing sound insulation measures (Moroe and Khoza-
Shangase, 2018a,b).

Additionally, employers are required to implement administrative 
controls to minimize workers’ exposure to excessive noise (Musiba, 
2015). These controls may include limiting exposure time, scheduling 
rest breaks in quieter areas, and implementing job rotation to reduce 
individual exposure levels.

On the level of the employee and ranked as the last option on the 
hierarchy of controls, when engineering and administrative controls 
are insufficient to reduce noise levels to acceptable limits, employers 
are required to provide suitable hearing protection devices (HPDs) to 
their employees (NIOSH, 2023), HPDs that are properly selected, 
maintained, and used in accordance with regulations (Suter, 2002). 
Furthermore, employees must undergo regular audiometric testing as 
a crucial component of HCPs (Moroe et al., 2022). Employers are 
required to provide baseline audiograms for employees exposed to 
noise levels at or above the action level, followed by periodic 
audiometric monitoring to detect early signs of hearing loss (Moroe 
et al., 2022). Additionally, education and training should form part of 
HCPs where the goal is to raise employees’ and supervisors’ awareness 
about the risks of ONIHL (Moroe et al., 2018), proper use of HPDs 
(Ntlhakana et  al., 2015), and the importance of complying with 

hearing conservation measures. For HCPs to be successful, legislation 
and regulations dictate that employers must maintain records of noise 
measurements, risk assessments, audiometric tests, and training 
provided to employees, and that these records should be  readily 
available for inspection by relevant authorities (Amedofu and Fuente, 
2008; Moroe N., 2020). Compliance with and enforcement of these 
regulations and legislation is the responsibility of the South African 
Department of Employment and Labour, which is responsible for 
enforcing occupational health and safety regulations, including those 
related to ONIHL.

Key points in South  African legislation regulations, which 
comprehensively cover the hierarchy of controls including noise level 
limits, hearing conservation programs, engineering controls, 
education and training, monitoring and reporting are similar to those 
meant to be adhered to globally including in the Americas (Latin 
America, Canada, and the United  States) and the rest of Africa 
(Arenas and Suter, 2014; Moroe et al., 2018). The main difference is 
the application and implementation of these, for example what each 
country’s defined values for permissible exposure limit (PEL) is, and 
if and how legislation enforcement occurs (Moroe et al., 2018). Where 
some countries ensure effective enforcement of regulations through 
inspections, penalties for non-compliance, and incentives for 
compliance; other countries do not (Moroe et al., 2018).

While HCPs in South  Africa aim to address ONIHL, several 
challenges exist in their implementation (Moroe et al., 2018; Khoza-
Shangase et  al., 2020). Some documented common challenges 
associated with these programs include; lack of awareness and 
education among both employers and employees regarding the risks 
of ONIHL and the importance of hearing conservation measures 
(Moroe et al., 2018; Kanji et al., 2019). Inadequate and insufficient 
training and supervision regarding the implementation of HCPs, 
where employees and supervisors receive no or limited training on 
identifying noise hazards, selecting appropriate hearing protection, 
and conducting regular audiometric testing (Moroe and Khoza-
Shangase, 2018a,b). Limited resources, including capacity versus 
demand challenges around audiologists in the country, leading to 
inadequate noise control measures, insufficient provision of HPDs, 
and limited access to audiometric testing facilities (Moroe et al., 2018; 
Pillay et al., 2020). Compliance issues around hearing conservation 
regulations where employers struggle to meet the requirements for 
noise measurements, risk assessments, audiometric testing, and 
recordkeeping, mostly due to some employers not prioritizing hearing 
conservation or attempting to cut costs by disregarding regulations 
(Khoza-Shangase, 2022). Linguistic, cultural and behavioral factors 
where, for example, attitudes towards wearing HPDs pose challenges; 
and the language used for training and education is incongruent with 
the employees (Moroe N., 2020). Effective enforcement and 
monitoring can be a challenge, influenced by insufficient resources 
and limited inspections by regulatory authorities resulting in 
inadequate enforcement of regulations and insufficient follow-up on 
non-compliant mines (Khoza-Shangase, 2022); and cumulative noise 
exposure and burden of disease (HIV/AIDS and TB) where some 
employees are exposed to high noise levels from multiple sources, 
both in their occupational and non-occupational environments, and 
suffer concurrent toxins exposure where they are on ototoxic 
treatments for HIV/AIDS and TB (Khoza-Shangase, 2022), thus 
increasing their risk of ONIHL and making it more challenging to 
control and mitigate the effects solely through workplace HCPs that 
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do not take these factors into account. Addressing these challenges 
requires a multi-faceted approach that can be supported by the use of 
Internet of Things (IoT)-based hearing loss early monitoring systems 
as part of HCPs (Mardonova and Choi, 2018).

The main objective of this research work is to present a 
preliminary development of an AI based early monitoring system that 
integrates smart hearing protection with smart mine wearable 
watches. The developed system can provide significant benefits for 
mine workers as a form ONIHL early warning system. This system 
combines the capabilities of IoT devices, such as sensors and 
wearables, to monitor noise exposure levels and facilitate real-time 
monitoring and protection of the workers’ hearing when exposed to 
hazardous noise levels. By integrating IoT technology, smart hearing 
protection devices, and wearable watches, the current researchers aim 
to have a system that enables real-time monitoring, personalized 
protection, and early detection of hearing loss risks for mine workers. 
This system aims at enhancing worker safety, promoting proactive 
hearing health management, and contributing to a culture of 
prevention in the mining industry.

This early warning system includes numerous factors, for it to 
be efficient and successful, with positive outcomes for any HCP. Firstly, 
there has to be IoT sensors for noise monitoring that get strategically 
deployed in the mining environment to measure and monitor noise 
levels. These sensors can be  placed in key areas or attached to 
equipment to capture accurate and real-time noise data. In the current 
study, these sensors are part of smart hearing muffs that transmit the 
data to a central monitoring system for analysis. The miners wear 
smart hearing protection devices (SHPDs) with smart watches which 
are also equipped with sensors. These SHPDs can have built-in noise 
sensors and connectivity capabilities to communicate with the central 
monitoring system. The SHPDs can adjust noise attenuation levels 
based on real-time noise exposure and provide workers with audio 
cues and alerts. The mineworkers are provided with wearable watches 
that act as a central hub for integrating various IoT devices and 
functionalities. These watches can connect to the SHPDs, IoT sensors, 
and other wearables, consolidating data and enabling real-time 
monitoring, communication, and alerts. Secondly, the early warning 
system must have real-time monitoring and feedback capabilities, 
where the IoT-based system continuously collects noise data from the 
sensors and SHPDs, transmitting it to the wearable watches. Mine 
workers can access real-time noise exposure information, receive 
alerts when noise levels exceed safe thresholds, and obtain feedback 
on their personal noise exposure. Thirdly, the system can allow for 
data analysis and insights development, where the collected data is 
analysed by the central monitoring system to identify patterns, trends, 
and potential risks. Machine learning algorithms can be employed to 
recognize patterns of noise exposure and detect early signs of hearing 
loss. The system can generate personalized reports and insights for 
individual workers and mine management. This can be done because 
the system has alert mechanisms, where if the system detects excessive 
noise levels or potential risks of hearing loss, it triggers alerts through 
the wearable watches. These alerts can be  visual or auditory or 
vibrotactile, ensuring that mine workers are immediately aware of the 
hazards and can take necessary actions, such as adjusting their work 
practices or seeking quieter areas. Lastly, the system is set up to 
integrate with existing mine management systems and databases, 
allowing for seamless data sharing and accessibility. This integration 
facilitates comprehensive analysis, reporting, and decision-making 

processes related to hearing health and safety in the mining 
environment. Such an early warning system requires provision of 
comprehensive training to mine workers on using the IoT-based 
system, including the proper use of SHPDs and wearable watches. This 
includes conduction of awareness programs to educate workers about 
the importance of hearing protection and the benefits of the early 
monitoring system. These training sessions, and refresher courses, 
need to be conducted regularly to ensure effective and ongoing usage 
of the system. Ensuring that privacy and security considerations have 
been addressed is important as well. Implementation of robust privacy 
and security measures to protect worker data collected by the IoT 
devices, with compliance with data protection regulations (POPIA), 
secure data transmission protocols, and clear communication on data 
usage and privacy policies are essential to build trust among mine 
workers where such an IoT-based system is being used as part of HCPs 
(Ntlhakana et  al., 2022). Another important consideration is the 
making sure that a robust maintenance plan to address issues related 
to IoT devices, wearables, and sensors is in place. Regular updates, 
calibration, and technical support are crucial to maintaining the 
reliability and accuracy of the system.

Once the AI-based ONIHL early warning system is in place, it can 
bring numerous value and benefits to both workers and the mining 
industry. This value and advantages include the following: Improved 
worker safety, early detection and intervention, personalised risk 
assessment, increased awareness and education, cost reduction, 
regulatory compliance, long-term data analysis, continuous 
monitoring, enhanced Occupational Health Programs (OHPs), and 
technological advancement and innovation. These benefits can 
be crucial in the context of mines, where noise is excessive.

Background

Mining employees exposed to high noise levels often experience 
difficulty hearing high-frequency sounds initially (Edwards et  al., 
2010; Grobler et  al., 2020). Regardless of age or gender, the 
measurement of hearing loss is typically assessed through percentage 
loss of hearing (PLH) and standard threshold shifts (STS) (Department 
of Labour, 2001; Department of Mineral Resources, 2016). PLH is 
determined by calculating the decline in hearing thresholds at specific 
frequencies (0.5, 1, 2, 3, and 4 kHz), and a baseline audiogram is 
established using this data (Department of Labour, 2001). 
South  African hearing conservation practitioners employed this 
method for defining hearing loss for compensation purposes between 
2001 and 2016 (Department of Labour, 2001). The STS method, based 
on the International Organization for Standardization (ISO) standard 
ISO1999:2013, considers an 8 dB decline as indicative of early 
ONIHL. Since 2016, South  African mines have utilized the STS 
method to assess miners’ hearing, tracking STS deterioration as a 
precursor to hearing loss (Strauss et al., 2012; Grobler et al., 2020). In 
2008, the Department of Mineral Resources and Energy (DMRE) 
established NIHL milestones for the mining industry, aiming to 
prevent hearing deterioration beyond 10 % in occupationally exposed 
individuals after December 2008 (Department of Minerals and 
Energy, 2008; Msiza, 2014). Despite efforts, hearing loss prevention 
was not entirely successful (Edwards and Kritzinger, 2012; Moroe and 
Khoza-Shangase, 2018a,b), leading to revised milestones in 2014, 
where no employee’s STS should exceed 10 dBHL from the baseline 
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when averaged at 2000, 3000, and 4,000 Hz in one or both ears by 
December 2016 (MHSC, 2015; Moroe N. F., 2020). Therefore, STS 
became a prioritized metric for measuring hearing loss in miners.

Normal hearing is denoted as 0 dBHL (Chamber of Mines, 2016), 
and a STS is defined as an average shift in hearing threshold of 10 
dBHL. While no hearing loss occurs at this stage, any shift greater than 
10 dBHL should be reported, triggering further investigation and 
intervention (Chamber of Mines, 2016). A shift exceeding 25 dBHL 
for one or both ears indicates actual hearing loss, requiring diagnostic 
audiometry confirmation (Department of Mineral Resources, 2016). 
The use of STS to describe the hearing function of workers exposed to 
excessive noise levels has been a global practice since the early 2000s 
(Heyer et al., 2011; Masterson et al., 2015). The hearing loss prevention 
efforts in the South African mining industry, aligned with the NIHL 
2016 milestones, now mirror those of developed countries like the 
United States. However, the efficacy of these interventions will only 
be assessed in 2024 (MHSC, 2015).

Developing an Artificial Intelligence (AI) based Occupational 
Noise Induced Hearing Loss (ONIHL) early warning system for mine 
workers can be a valuable initiative to safeguard their hearing health. 
Such a system can help identify potential risks and provide timely 
alerts to prevent or mitigate the harmful effects of noise exposure. The 
development process for such a system requires numerous steps 
depicted in Figure 1.

At present, various wired (Dohare et al., 2015; Ikeda et al., 2021; 
Kolade et  al., 2021; Kolade and Cheng, 2021) and wireless 
communication technologies are available that meet the minimum 
mandatory criteria for the data broadcast speed and range to support 
remote mining operations and advanced monitoring systems. The 
data transmission diagram by Ikeda et al. (2021) and Figure 2.

The internet and WIFI technologies that are currently 
implemented in the mines ensure the efficient transmission and 
transfer of information. The transmission diagram in Figure  2 
demonstrates how the smart technology is integrated with 
hearing protection.

Materials and methods

Development of the AI based early warning system.

Procedure

A smart system that continuously monitors noise levels in mine 
environments was developed. This system is made up of noise 
attenuation headphones, server-based AI algorithms and a smart 
watch. The headphones are equipped with sound sensors, and they 
collect information about the sound (sound intensity levels and the 
frequency) an individual mining employee is being exposed to. The 
dataset that contains the sound level of exposure for each mine worker 
is transmitted from the headphones to storage in a database. The 
collected data (sound intensity levels and frequency) is then fed into 
the trained AI model on the server.

To develop, train and test the AI subsystem of the smart system, a 
comprehensive dataset with various features is collected from various 
environments in a platinum mine. The features of interest in the 
collected data were noise level measurements, duration of exposure, 
corresponding audiometric test results, age, and gender. The data was 
cleaned and relevant features that can be used by the AI model such 

FIGURE 1

Development process for an AI-based ONIHL early warning system.
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as duration of exposure, sound intensity of exposure and frequency, 
were extracted. The audiometric data were combined with the noise 
exposure data to establish the relationship between noise levels and 
hearing loss progression. This step was essential in training the AI 
models to recognize patterns and detect early signs of ONIHL. Machine 
learning techniques, random forest, support vector machines and 
logistic regression were utilized to train the AI model. For the AI 
subsystem, the target feature was the threshold shift of a miner worker 
defined as the average change in hearing of 10 decibels or more at 
speech frequencies (2,000–4,000 Hz) in both or one ear in comparison 
to the mine workers baseline audiogram. A 10-fold cross validation 
was ran with a split of 80 and 20% randomly shuffled training and 
testing set, respectively. The K means is used to cluster the mine 
workers and then using the threshold shift, the mine workers are 
classified the mine worker according to level of priority. A predicted 
threshold shift of less than 40 is viewed as low priority, between 40 and 
60 is moderate priority, a threshold shift between 60 and 90 has a high 
priority and a threshold shift of greater than 90 has extreme priority. 
The various levels of priority are linked to various recommendations 
messages which are communicated to the mining employee via the 
smart watch. The low priority does not receive any messages while 
moderate priority receives a message to remind the mine workers to 
continue wearing their hearing protection correctly. The high and 
extreme priority receive a warning message and in addition to that a 
vibrotactile signal is triggered on the smart watch.

Demographics and inclusion criteria

The initial training of the AI model required data. The data set 
used was obtained from a platinum mine in South  Africa. The 
demographics of the dataset used to train the AI model is as follows: 
A total of 12,596 mine workers are in the platinum mine where this 
study was conducted. 11% of this mining population is female and 

89% male. The age distribution indicates appropriate variation with 
6,800 workers being younger than 40 years, 4,800 between ages 41 and 
55, and 996 being between the ages of 55 and 65 years of age. The 
designed system targets occupations that are normally exposed to 
occupational noise for extended periods of time. Therefore, a dataset 
for 1,350 employees consisting of both male and female mining 
employees with ages ranging from 18 to 60 years old was used to train 
the AI model. This sample size for training the AI model was deemed 
adequate for reliable results as a good sample size is usually 
approximately 10% of the population, if this does not exceed 1,000 
(Carmen and Betsy, 2007).

General description of the subsystems of 
the developed early warning system

Figures  3, 4 shows the block diagram and the pictorial 
representation of the Occupational Noise-Induced Hearing Loss and 
early warning system.

The mining employee is exposed to the level of noise the machine 
produces. A smart watch that capitalizes on the availability of WIFI 
and sensors in the mining environment is used to communicate with 
the hearing protection to provide mine workers with information 
about their surrounding and to enable communication. With the 
smart watch, the location of the individual mine worker can 
be established in real time by the mining administrators on the surface 
of the mine. This facilitates the ability of the administrators to check 
the conditions of the location, for example, the level of noise in the 
location where the mine worker is currently located. Personalised 
warning or recommendation messages can be sent to the mine worker. 
The important features the smart watch has for monitoring of the 
mine worker’s state of hearing are: Mine worker’s real-time location 
tracking, incident reporting and feedback-based communication. The 
mine workers can use the smart watch to report on incidences related 

FIGURE 2

The data transmission diagram (Ikeda et al., 2021).
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to excessive noise that could be coming from faulty equipment or 
malfunctioning hearing protection. The integration of the system with 
Artificial intelligence permits for the real time automated early 
warning and recommendations alerts to be sent to the mine workers. 
The sound sensors set up within the mines provide essential 
information on areas within the mines with excessive noise that could 
be due to equipment failure. The mine worker can receive immediate 
alerts through the vibration of the smart watch. The smart watch 
applies IoT and can communicate with the hearing protection via 
Bluetooth technology. Several authors have made use of the ESP-32 as 
the basis for their smart-watch design (Volsa et al., 2022; Himi et al., 
2023; Joseph, 2023; Puckett and Emil, 2023). The smart hearing 
protection can monitor real time noise levels using the sensors 
installed on it and cloud technology. The current levels of exposure to 
sound, which includes the intensity, and the frequency of exposure is 

collected by the hearing protection and transmitted to the cloud 
storage via a mobile app.

The mining administrators can conduct real time monitoring of 
the sound levels and the frequencies using the datasets. With this 
integrated system, the employees can be informed of their current 
levels of exposure at any time. With the integrated system, the mine 
worker can be  informed whether the hearing protection is worn 
correctly or not. The mine worker can also be provided with warnings 
in the form of vibration of the smart watch which is integrated with 
the smart hearing device or other visual systems that can also 
be integrated into this system. The information collected from the 
smart watch and the hearing protection is stored in a robust data 
storage solution. To ensure control over the data and the application 
of the AI models, cloud storage is chosen. This type of storage ensures 
that the data can be recovered in case there is a problem on site in the 

FIGURE 3

The block diagram of the ONIHL early warning and monitoring system.

FIGURE 4

A pictorial representation ONIHL early warning and monitoring system.
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mines. The cloud storage also requires little expertise for 
implementation with a few resources.

The AI subsystem is used in estimation of the mine worker’s 
threshold shift. The degree of priority is classified with the change in 
threshold shift. There are four classes of priority of threshold shift. 
These classes are low, moderate, high and extreme. The mining 
employee’s threshold shift is categorized and depending on the 
category recommendations are provided. The AI subsystem is also 
used to process the sound intensity patterns at particular frequencies 
and to provide the mine workers with recommendations of the actions 
they should take if necessary. Further details on the AI subsystems 
have already been published by the authors in previous works 
(Madahana et  al., 2019a,b, 2020). The feedback loops allow for a 
two-way communication between the mine administrators on the 
surface and the mine employees. The feedback loops are from the 
mine administrator to the smart watch and from the smart watch to 
the hearing protection. These two systems can also be decoupled and 
in case the smart watch is not functioning, then the hearing muffs can 
still be used and in this case, the mine worker will depend on other 
visual warning systems in the mines that have been integrated with 
the system as a supplement.

Implementation of the laboratory test rig

The laboratory test rig was built to test the proposed system. It 
consists of a smart watch, smart headsets, computer cluster, cloud 
storage, hydraulic shaping machine, Variable Direct Current (VDC) 
machine. The hydraulic shaping machine emits noise between 90 to 
110 decibels depending on the various settings and activities. The 
Variable direct current emits a noise of 91.3–100.7 decibels. The 
system is connected as shown in Figures 3, 4, the drilling machine is 
replaced with the hydraulic shaping Machine and the VDC machine. 
The variable direct current machine shown in Figure  5C. The 
participants have their hearing checked in the psychometric booth 
shown in Figure 5D to ensure that their state of hearing health is 
known. The participant wears both the smart watch and the smart 
headset. The information obtained from the smart watch and the 
headset is transmitted via WIFI to a cloud storage. The information is 
then extracted from the cloud storage, AI models are applied to 
process the information and the appropriate recommendation is sent 
to the participant. The Participant tests the systems by moving 60 m 
away and thereafter, the distance is reduced until the participant is 
0.5 m away from the machine. Different recommendation messages 
are sent to the participant smart watch at the various distance. The 
sound level metres in Figure 6 are used to measure the sound intensity 
of the machine. Figure  5A shows the shearing machine, which is 
simulated using hydraulic shaping machine, shown in Figure 5B. The 
preliminary integrated prototype is tested by allowing user to wear 
both the headphone and the smart watch, exposing them to noise at 
various decibels and frequency and observing the recommendations 
messages that are sent to the smart watch. One of the significant roles 
that audiologist plays during the testing of the integrated system is 
verification and validation of the system. The South African Mines 
usually have an audiologist who designs the Hearing Conservation 
Program for the mine. It is therefore imperative that audiologists 
be involved in the research, designing, testing and implementation of 
any system that would assist in minimizing the risks of ONIHL in the 

mines. The audiologist provides valuable feedback on the suitability of 
the integrated system and whether the user is wearing the hearing 
protection correctly.

The entire testing is conducted in the presence of audiologists to 
ensure that the participants are not exposed to any occupational noise 
and that the smart muffs provide sufficient attenuation.

Figure 7A shows the overall systems diagram of the Smart watch. 
The functioning of the smart watch is centred around the ESP32-
WROOM-32 development board provides computational power as 
well as wireless internet and Bluetooth connectivity. The user inputs 
are switches which allow the mine worker to switch the watch on and 
off as well as toggle between various functions. The watch is powered 
by a Li-po battery, and a power management system is used to control 
the charging and discharging of the battery. Various sensor inputs are 
available to provide functionality during surface mining activities: (1) 
The ambient light sensor automatically adjusts the brightness of the 
screen and saves battery life. (2) The magnetometer is to be used for 
direction (compass). (3) Heart rate and Oxygen Saturation sensing for 
cardiovascular health. (4) The accelerometer for motion detection. 
During sub-surface mining, the magnetometer may be affected by the 
underground environment. The outputs of the smart watch are: (1) 
The Watch display which can be  used to read time as well as 
notifications related to sound level and warnings related to NIHL due 
to environmental conditions. (2) The haptic vibration motor will 
vibrate during notifications as sent to the watch as well as when the 
mine worker is not wearing the hearing protection. (3) A micro-SD 
card is also available to log data.

Figure  7B shows the overall systems diagram of the Smart 
Earmuffs. Traditional earmuffs are equipped with additional sound 
sensors that can collect information from the environment. Similar to 
the smart watch, the ESP32-WROOM-32 development board 
provides computational power, wireless internet connection and 
Bluetooth connectivity. The user inputs are switches which allow the 
mine worker to switch the earmuffs on and off. The earmuffs are 
powered by a Li-po battery and a power management system is used 
to control the charging and discharging of the battery. The various 
sensor inputs are available to provide functionality during both 
surface and sub-surface mining activities: (1) The Microphones are 
used to pick up ambient sound to be used for a noise level meter that 
measures ambient sound in decibels. The noise level meter 
measurements are used to provide the mine worker with an 
instantaneous warning should the sound level reach dangerous limits. 
These warning messages appear on the smart watch accompanied by 
vibrations from the haptic vibration motor. In addition, the readings 
are sent wirelessly by the ESP32 for further processing in the cloud. 
(2) The capacitative sensors are used to detect whether the mineworker 
is correctly wearing the hearing protection. The messages are sent to 
the cloud and can be seen by administrators and warning messages 
are sent to the smart watch accompanied by vibration from the haptic 
vibration motor.

Test environment

Performing experiments in real underground environments is a 
rigorous process that requires permission from the mining stake 
holders. In addition to that, it can hinder normal operations from 
occurring while exposing researchers to unnecessary risks (Hussain 
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et al., 2017). For rapid and repetitive testing of the developed prototype 
the Wits mock mine built under the Chamber of Mines building at the 
University of the Witwatersrand, Johannesburg (South Africa) was used. 
Some of the aspects of a mine that have previously been tested in this 
mock mine are and not limited to mine safety, tunnel economics, 
improved ventilation, energy savings and communication within a mine 
(Hussain et al., 2017). Comparable to actual mine, is made up of three 
sections: an arc shaped tunnel in the basement of the building, a stope 
panel and a vertical shaft. The tunnel is closed on one side and open on 
the other side. The roof of the mock mine represents the surface of the 
mine, and it is shallow from the open end and gets deeper towards the 
closed end. The mock-mine shape, size of the tunnel, steel-support 
infrastructure, and ventilation system are analogous to deep hard-rock 
mines. Actual underground mine material has been used to build the 
mock mine to ensure it mimics a real mine as close as possible. The 
mock mine is equipped with a weather station, asset management 
system, seismometer, crack meter, stress meter, asset management and 
video analytics system. The wireless channel propagation of the mock-
mine is statistically characterized in 2.4–2.5 GHz frequency band 
(Zaman et  al., 2018). Data from various systems is collected and 

FIGURE 5

(A) The hydraulic shaping machines. (B) Shearing machine. (C) Variable direct current machines. (D) Psychometric booth.

FIGURE 6

Sound level meter.
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displayed in the control room adjacent to the mock mine. The mock 
mine has an intelligent lamp room that prevents miners with inoperative 
equipment to enter the mine. It also has a rescue chamber, where all the 
miners can gather in case of a disaster. The tunnel for the mock mine is 
shown in Figure 8. The sample size used for the first stage of testing was 
50 individuals made up of both male and female participants, whose 

ages ranged from 18 years to 60 years. The experimental protocols 
employed were approved by the ethics committee (The University of the 
Witwatersrand) and concur with the Helsinki Declaration. The study 
falls within the greater scope of another study titled “Feedback based 
estimation of Noise Induced Hearing Loss in the mines” and it has an 
ethical clearance number W-CBP-180305-01.

Results and discussion

Results

Table 1 shows the performance of the machine learning algorithm 
used. The Random forest classifier outperformed the other algorithms.

Table 2 shows the testing of the integrated system.

Discussion

In the context of the ONIHL, early warning and monitoring system 
for the mining industry, proactive and predictive approaches hold 
significant importance. By taking a proactive stance, the system identifies 

FIGURE 7

(A) Overall systems diagram indicating the subsystems in the ESP32 Smart watch. (B) Overall systems diagram indicating the subsystems in the ESP32 
Smart Earmuffs.

FIGURE 8

Wits mock mine tunnel.
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potential risks before they escalate, thus allowing for timely risk 
identification. It allows for the early detection of elevated noise levels and 
emerging patterns that could lead to hearing loss among mine workers. 
Early identification enables the implementation of preventive measures. 
These measures could include timely interventions, adjustments in work 
practices, or the use of enhanced PPE to minimize the risk of occupational 
noise-induced hearing loss. The predictive approach and the system’s 
predictive capabilities, driven by machine learning algorithms, allow for 
continuous monitoring of noise levels and associated factors. This ensures 
that any changes or trends in the working environment are promptly 
detected. Machine learning algorithms used in the developed system are 
trained to recognize patterns in the data. This includes identifying specific 
combinations of noise intensity, duration of exposure, and other variables 
that correlate with an increased risk of hearing loss. Predictive analytics 
help in forecasting potential issues based on these patterns. The predictive 
nature of the system enhances the alert mechanism. Instead of responding 
solely to current conditions, the system can anticipate future risks based 
on historical data, providing a more optimized and proactive alert system. 
Predictive analytics assist in the efficient allocation of resources. By 
forecasting when and where increased noise exposure is likely to occur, 
mine operators can deploy interventions strategically, focusing resources 
where they are most needed.

Combining proactive and predictive approaches allows for the 
development of comprehensive risk mitigation strategies. This involves 
not only addressing immediate concerns but also planning for long-term 
measures to reduce the overall risk of ONIHL in the mining 
environment. The goal is to enhance worker safety. Proactive measures 
prevent potential risks, while predictive analytics contribute to a more 
sophisticated and responsive safety infrastructure. This, in turn, 
minimizes the likelihood of ONIHL incidents. Being proactive in 
identifying and addressing risks ensures that the developed system aligns 
with regulatory standards. This is crucial for maintaining compliance 
with occupational health and safety guidelines specific to noise exposure 
in mining operations. By adopting proactive and predictive approaches, 
the ONIHL early warning and monitoring system aims for a lasting 
impact. Continuous evaluation, refinement, and adherence to safety 
protocols contribute to sustained worker well-being over the long term.

An alert mechanism that triggers warnings when the AI model 
detects excessive noise levels or predicts an increased risk of ONIHL 
for mine workers was implemented. These alerts can be sent to the 
workers, supervisors, or safety officers through visual or auditory 
means. Integrated smart hearing protection and wearable mining 
watches can contribute to hearing loss prevention as they could 
be categorized as PPE and administration in the hierarchy of controls. 

TABLE 1 Performance of the machine learning algorithms.

Model Average training accuracy Average testing accuracy

Logistic regression 74.56 77.25

Support vector machines 86.00 99.12

Decision tree 92.25 99.89

Random forest classifier 91.88 99.58

TABLE 2 Testing of the integrated system.

Distance of participant 
from machine (meters)

Priority level Recommendation Observation

Machine off Low priority None No recommendations messages were 

received

60 low None No recommendations messages were 

received

50 low None No recommendations messages were 

received

40 low Please wear your hearing protection Successful SMS

30 Moderate Hearing protection should be worn correctly Successful SMS

20 Moderate Hearing protection should be worn correctly Successful SMS

10 Moderate Hearing protection should be worn correctly Successful SMS

5 High Hearing protection should be worn correctly or step out of 

the section

Successful SMS

2 High Hearing protection should be worn correctly or step out of 

the section

Successful

1 High Hearing protection should be worn correctly or step out of 

the section

Successful

0.5 Extreme  • Hearing protection should be worn correctly or step out 

of the section

 • Vibration.

Successful SMS and vibration
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These form part of preventative audiology efforts where the focus is 
on preventive care rather than compensatory care. This preventive goal 
is achieved when the smart watch and the hearing protection work 
collaboratively to ensure preservation of hearing among mine workers 
by sending alerts and recommendation messages regarding the work 
context as well as the miner’s state of hearing.

Recommendations and conclusions

In summary, the importance of proactive and predictive approaches, 
as in the proposed, lies in their ability to prevent, identify, and address 
risks systematically, fostering a safer and healthier working environment 
for mine workers. The ONIHL early warning and monitoring system 
employs a holistic approach, integrating advanced technologies, machine 
learning, and real-time monitoring to effectively address the risk of 
ONIHL in the mining industry. Bearing the above in mind, several steps 
remain to be completed in future. Firstly, evaluation and refinement of the 
system still needs to be done. The performance of the AI model and the 
effectiveness of the early warning system need to be  continuously 
evaluated. In this process, feedback from mine workers and stakeholders 
will be collected to identify areas for improvement and refine the system 
accordingly. Secondly, regulatory compliance needs to be ensured. The 
developed system requires the researchers to ensure that it aligns with 
relevant safety regulations and standards for noise exposure in mining 
operations. Compliance with occupational health and safety guidelines is 
crucial to ensure the well-being of workers. Lastly, deployment and 
training of the system is yet to be performed. The system still needs to 
be deployed in mine sites and adequate training be provided to workers 
and supervisors on how to interpret and respond to the warnings. Regular 
training sessions and awareness programs can help promote a safety-
conscious culture. The development design and preliminary 
implementation of a test prototype for a ONIHL early warning and 
monitoring system has been presented. This system will play a 
fundamental role in ensuring that the risks of ONIHL in the South African 
mines is minimized or mitigated. For this system to be work efficiently, 
mine workers will have to be trained on the correct ways to wear the smart 
watches and the hearing protection.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary materials, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving humans were approved by University of the 
Witwatersrand ethics committee. The studies were conducted in 

accordance with the local legislation and institutional requirements. 
Written informed consent for participation was not required from the 
participants or the participants’ legal guardians/next of kin in 
accordance with the national legislation and institutional requirements.

Author contributions

MM: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Investigation, Methodology, Project administration, 
Software, Validation, Writing – original draft. JE: Data curation, 
Investigation, Methodology, Software, Validation, Writing – review & 
editing. BS: Formal analysis, Investigation, Validation, Writing – 
review & editing. KK-S: Conceptualization, Formal analysis, 
Investigation, Methodology, Supervision, Validation, Writing – review 
& editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. The authors 
would like to thank School of Mining Engineering, Faculty of 
Engineering, University of the Witwatersrand, Johannesburg, 
South Africa for providing financial assistance for the publication of 
this manuscript.

Acknowledgments

We would like to acknowledge the School of Mining, future Tech 
Laboratory for allowing their facilities to be used. We would also like 
to acknowledge the Department of Speech Pathology and Audiology 
for providing some of the required equipment.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References
Amedofu, G., and Fuente, A. (2008). “Occupational hearing loss in developing 

countries” in Audiology in Developing Countries. eds. B. McPherson and R. Brouillette 
(New York: Nova Science Publishers), 189–221.

Arenas, J. P., and Suter, A. H. (2014). Comparison of occupational noise legislation in the 
Americas: an overview and analysis. Noise Health 16, 306–319. doi: 10.4103/1463-1741.140511

Carmen, V., and Betsy, M. (2007). Understanding power and rules of thumb for 
determining sample size. Tutor. Quant. Methods Psychol. 3, 43–50. doi: 10.20982/
tqmp.03.2.p043

Chamber of Mines. (2016). Noise Team on the Mine Health and Safety Milestones. 
Johannesburg: Chamber of Mines.

https://doi.org/10.3389/fnins.2024.1321357
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.4103/1463-1741.140511
https://doi.org/10.20982/tqmp.03.2.p043
https://doi.org/10.20982/tqmp.03.2.p043


Madahana et al. 10.3389/fnins.2024.1321357

Frontiers in Neuroscience 12 frontiersin.org

Department of Labour. (2001). Circular Instruction No. 171 – The Determination of 
Permanent Disablement Resulting From Hearing Loss Caused by Exposure to Excessive 
Noise and Trauma. Pretoria: Department of Labour.

Department of Mineral Resources. (2016). Guidance Note for the Implementation of 
Standard Threshold Shift in the Medical Surveillance of Noise Induced Hearing Loss. 
Pretoria: Department of Mineral Resources

Department of Minerals and Energy. (2008). Presidential Mine Health and Safety 
Audit. Pretoria: Department of Minerals and Energy.

Dohare, Y. S., Maity, T., Das, P. S., and Paul, P. S. (2015). Wireless communication and 
environment monitoring in underground coal mines–review. IETE Tech. Rev. 32, 
140–150. doi: 10.1080/02564602.2014.995142

Edwards, A. L., Dekker, J. J., Franz, R. M., Van Dyk, T., and Banyini, A. (2011). Profile 
of noise exposure levels in South African mining. J. South. Afr. Inst. Min. Metall. 111, 
315–322. Available at: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S222
5-62532011001700003&lng=en&tlng=en.

Edwards, A., and Kritzinger, D. (2012). Noise-induced hearing loss milestones: past 
and future. J. South. Afr. Inst. Min. Metall. 112, 865–869.

Edwards, A., van Coller, P., and Badenhorst, C. (2010). Early identification of noise 
induced hearing loss: a pilot study on the use of distortion product otoacoustic emissions 
as an adjunct to screening audiometry in the mining industry. Occupat. Health South. 
Africa 6, 28–35.

Grobler, L. M., Swanepoel, D. W., Strauss, S., Becker, P., and Eloff, P. B. Z. (2020). 
Occupational noise and age: a longitudinal study of hearing sensitivity as a function of 
noise exposure and age in South African gold mine workers. S. Afr. J. Commun. Disord. 
67:a687. doi: 10.4102/sajcd.v67i2.687

Heyer, N., Morata, T. C., Pinkerton, L., Brueck, S. E., Stancescu, D., Panaccio, M. P., 
et al. (2011). Use of historical data and a novel metric in the evaluation of the 
effectiveness of hearing conservation program components. Occup. Environ. Med. 68, 
510–517. doi: 10.1136/oem.2009.053801

Himi, S. T., Monalisa, N. T., Whaiduzzaman, M., Barros, A., and Uddin, M. S. (2023). 
MedAi: a smart watch-based application framework for the prediction of common 
diseases using machine learning. IEEE Access 11, 12342–12359. doi: 10.1109/
ACCESS.2023.3236002

Hussain, I., Cawood, F., and van Olst, R. (2017). Effect of tunnel geometry and 
antenna parameters on through-the-air communication systems in underground mines: 
survey and open research areas. Phys. Commun. 23, 84–94. doi: 10.1016/j.
phycom.2017.03.002

Ikeda, H., Kolade, O., Mahboob, M. A., Cawood, F. T., and Kawamura, Y. (2021). 
Communication of sensor data in underground mining environments: an evaluation of 
wireless signal quality over distance. Mining 1, 211–223. doi: 10.3390/mining1020014

Joseph, J. (2023). A Fully Functional DIY ESP32 Smart Watch with Multiple Watch 
Faces, Heart Rate Sensor, Compass and Games. Available at: https://circuitdigest.com/
microcontroller-projects/diy-smart-watch-using-esp32-final-part (Accessed February 
20, 2023)

Kanji, A., Khoza-Shangase, K., and Ntlhakana, L. (2019). Noise-induced hearing loss: 
what south African mineworkers know. Int. J. Occup. Saf. Ergon. 25, 305–310. doi: 
10.1080/10803548.2017.1412122

Khoza-Shangase, K. (2022). “Confronting realities to hearing conservation 
programmes in South African mines” in Occupational Noise-Induced Hearing Loss: An 
African Perspective. eds. K. Khoza-Shangase and N. F. Moroe (Cape Town, South Africa: 
AOSIS Books, AOSIS Publishing (Pty) Ltd), 17–38.

Khoza-Shangase, K., Moroe, N. F., and Edwards, A. (2020). Occupational hearing loss 
in Africa: an interdisciplinary view of the current status. South Afr. J. Commun. Disord. 
67, 1–3. doi: 10.4102/sajcd.v67i2.700363

Kolade, O., and Cheng, L. (2021). Markov model characterization of a multicarrier 
narrowband Powerline Channel with memory in an underground mining environment. 
IEEE Access 9, 59085–59092. doi: 10.1109/ACCESS.2021.3072669

Kolade, O., Familua, A. D., and Cheng, L. (2021). Channel models for an indoor power 
line communication system. IET Commun. Technol. Netw. Smart Cities 90:67.

Madahana, M., Ekoru, J., Mashinini, T., and Nyandoro, O. T. C. (2019a). Noise level 
policy advising system for mine workers. IFAC Papers Online 52, 249–254. doi: 10.1016/j.
ifacol.2019.09.195

Madahana, M., Ekoru, J., Mashinini, T., and Nyandoro, O. T. C. (2019b). Mine workers 
threshold shift estimation via optimization algorithms for deep recurrent neural 
networks. IFAC Papers Online 52, 117–122. doi: 10.1016/j.ifacol.2019.09.174

Madahana, M., Nyandoro, O. T. C., and Ekoru, J. (2020). Intelligent comprehensive 
occupational health monitoring system for mine workers. IFAC Papers Online 53, 
16494–16499. doi: 10.1016/j.ifacol.2020.12.751

Mardonova, M., and Choi, Y. (2018). Review of wearable device technology and its 
applications to the mining industry. Energies 11:547. doi: 10.3390/en11030547365

Masterson, A., Deddens, J., Themann, C., Bertke, S., and Calvert, G. M. (2015). Trends 
in worker hearing loss by industry sector, 1981-2010. Am. J. Ind. Med. 58, 392–401. doi: 
10.1002/ajim.22429

Matetic, RJ, 31st International Conference of Safety in Mines Research Institutes, 2-5 
October 2005, Brisbane, Queensland, Australia. Australia: Safety in Mines Testing and 
Research Station (Simtars), pp. 133–137; (2005).

MHSC (2015). ‘Every mine worker returning from work unharmed every day. Striving 
for Zero Harm’ - 2014 occupational health and safety summit milestones. J. Occupat. 
Health South. Africa 20:6.

Moroe, N. (2020). Occupational noise induced hearing loss in the mining sector in 
South Africa: perspectives from occupational health practitioners on how mineworkers 
are trained. South Afr. J. Commun. Disord. 67, e1–e6. doi: 10.4102/sajcd.v67i2.676

Moroe, N. F. (2020). Occupational noise-induced hearing loss in south African large-
scale mines: exploring hearing conservation programmes as complex interventions 
embedded in a realist approach. Int. J. Occup. Saf. Ergon. 26, 753–761. doi: 
10.1080/10803548.2018.1498183

Moroe, N., and Khoza-Shangase, K. (2018a). Management of occupational noise 
induced hearing loss in the mining sector in South Africa: where are the audiologists? 
J. Occup. Health 60, 376–382. doi: 10.1539/joh.2018-0020-OA

Moroe, N. F., and Khoza-Shangase, K. (2018b). Research into occupational noise 
induced hearing loss in south African large-scale mines: access denied? AAS Open Res. 
1:4. doi: 10.12688/aasopenres.12829.1

Moroe, N., Khoza-Shangase, K., Kanji, A., and Ntlhakana, L. (2018). The management 
of occupational noise–induced hearing loss in the mining sector in Africa: a systematic 
review–1994 to 2016. Noise Vib. Worldw. 49, 181–190. doi: 10.1177/0957456518781860

Moroe, N. F., Ntlhakana, L., Luisa Petrocchi-Bartal, L., and Khoza-Shangase, K. 
(2022). “Hearing conservation programmes implementation in african mining contexts: 
occupational audiology in action” in Occupational Noise-Induced Hearing Loss: An 
African Perspective. eds. K. Khoza-Shangase and N. F. N. F. Moroe (Cape Town: AOSIS 
Books), 61–73.

Msiza, D. (2014). The Road to Zero Harm: New Milestones. Mine Health and Safety 
Council, Johannesburg.

Musiba, Z. (2015). Classification of audiograms in the prevention of noise-induced 
hearing loss: a clinical perspective. South Afr. J. Commun. Disord. 67, e1–e5. doi: 
10.4102/sajcd.v67i2.691

NIOSH. (2023). National Institute for Occupational Safety and Health, Mining 
Program. Available at: https://www.cdc.gov/niosh/mining/topics/
hearinglosspreventionoverview.html. (Accessed June 15, 2023)

Ntlhakana, L., Kanji, A., and Khoza-Shangase, K. (2015). The use of hearing protection 
devices in South Africa: exploring the current status in a gold and a non-ferous mine. 
Occupat. Health South. Africa 21, 10–15.

Ntlhakana, L., Nelson, G., Khoza-Shangase, K., and Dorkin, E. (2022). Occupational 
hearing loss for platinum miners in South Africa: a case study of data sharing practices 
and ethical challenges in the mining industry. Int. J. Environ. Res. Public Health 19:1. doi: 
10.3390/ijerph19010001390

Pillay, M., Tiwari, R., Kathard, H., and Chikte, U. (2020). Sustainable workforce: south 
African audiologists and speech therapists. Hum. Resour. Health 18, 1–13. doi: 10.1186/
s12960-020-00488-6

Puckett, S., and Emil, J. (2023). ecoSync: an energy-efficient clock discipline data 
synchronization in Wi-fi IoMT systems. Electronics 12:4226. doi: 10.3390/
electronics12204226

Republic of South Africa (1995). Occupational Health and Safety Act, 1993, Hazardous 
Chemical Substance Regulations 1995. GNR 1179 of 25 August 1995, Government 
Printers, Pretoria. Available at: http://www.safetycon.co.za/documents/Hazardous%20
Chemical%20Substances%20Regulations. (Accessed March 18, 2018)

Strauss, S., Swanepoel, D. W., Becker, P., Hall, J. W. I. I. I., and Eloff, Z. (2012). 
Prevalence and degree of noise-induced hearing loss in south African gold miners. 
Occupat. Health South. Afr. 18, 20–25. doi: 10.10520/EJC128495

Suter, A. H. (2002). Construction noise: exposure, effects, and the potential for remediation: 
a review and analysis. AIHA J. 63, 768–789. doi: 10.1080/15428110208984768398

Volsa, S., Batinic, B., and Stieger, S. (2022). Self-reports in the field using smart 
watches: an open-source firmware solution. Sensors 22:1980. doi: 10.3390/s22051980

Zaman, I., Förster, A., Mahmood, A., and Cawood, F., "Finding Trapped Miners with 
Wireless Sensor Networks," 5th International Conference on Information and 
Communication Technologies for Disaster Management (ICT-DM), Sendai, Japan, 2018; 
(2018). pp. 1–8.

https://doi.org/10.3389/fnins.2024.1321357
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1080/02564602.2014.995142
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532011001700003&lng=en&tlng=en
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532011001700003&lng=en&tlng=en
https://doi.org/10.4102/sajcd.v67i2.687
https://doi.org/10.1136/oem.2009.053801
https://doi.org/10.1109/ACCESS.2023.3236002
https://doi.org/10.1109/ACCESS.2023.3236002
https://doi.org/10.1016/j.phycom.2017.03.002
https://doi.org/10.1016/j.phycom.2017.03.002
https://doi.org/10.3390/mining1020014
https://circuitdigest.com/microcontroller-projects/diy-smart-watch-using-esp32-final-part
https://circuitdigest.com/microcontroller-projects/diy-smart-watch-using-esp32-final-part
https://doi.org/10.1080/10803548.2017.1412122
https://doi.org/10.4102/sajcd.v67i2.700363
https://doi.org/10.1109/ACCESS.2021.3072669
https://doi.org/10.1016/j.ifacol.2019.09.195
https://doi.org/10.1016/j.ifacol.2019.09.195
https://doi.org/10.1016/j.ifacol.2019.09.174
https://doi.org/10.1016/j.ifacol.2020.12.751
https://doi.org/10.3390/en11030547365
https://doi.org/10.1002/ajim.22429
https://doi.org/10.4102/sajcd.v67i2.676
https://doi.org/10.1080/10803548.2018.1498183
https://doi.org/10.1539/joh.2018-0020-OA
https://doi.org/10.12688/aasopenres.12829.1
https://doi.org/10.1177/0957456518781860
https://doi.org/10.4102/sajcd.v67i2.691
https://www.cdc.gov/niosh/mining/topics/hearinglosspreventionoverview.html
https://www.cdc.gov/niosh/mining/topics/hearinglosspreventionoverview.html
https://doi.org/10.3390/ijerph19010001390
https://doi.org/10.1186/s12960-020-00488-6
https://doi.org/10.1186/s12960-020-00488-6
https://doi.org/10.3390/electronics12204226
https://doi.org/10.3390/electronics12204226
http://www.safetycon.co.za/documents/Hazardous Chemical Substances Regulations
http://www.safetycon.co.za/documents/Hazardous Chemical Substances Regulations
https://doi.org/10.10520/EJC128495
https://doi.org/10.1080/15428110208984768398
https://doi.org/10.3390/s22051980

	Development of an artificial intelligence based occupational noise induced hearing loss early warning system for mine workers
	Introduction
	Background
	Materials and methods
	Procedure
	Demographics and inclusion criteria
	General description of the subsystems of the developed early warning system
	Implementation of the laboratory test rig
	Test environment

	Results and discussion
	Results

	Discussion
	Recommendations and conclusions
	Data availability statement
	Ethics statement
	Author contributions

	References

