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Neural correlates of breath work, 
mental imagery of yoga postures, 
and meditation in yoga 
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Objective: Previous research has shown numerous health benefits of yoga, a 
multicomponent physical and mental activity. The three important aspects of 
both traditional and modern yoga are breath work, postures, and meditation. 
However, the neural mechanisms associated with these three aspects of yoga 
remain largely unknown. The present study investigated the neural underpinnings 
associated with each of these three yoga components in long- and short-term 
yoga practitioners to clarify the neural advantages of yoga experience, aiming 
to provide a more comprehensive understanding of yoga’s health-promoting 
effects.

Methods: Participants were 40 Chinese women, 20 with a long-term yoga 
practice and 20 with a short-term yoga practice. Functional near-infrared 
spectroscopy was conducted while participants performed abdominal 
breathing, mental imagery of yoga postures, and mindfulness meditation. The 
oxygenated hemoglobin concentrations activated in the brain during these 
three tasks were used to assess the neural responses to the different aspects 
of yoga practice. The self-reported mastery of each yoga posture was used to 
assess the advantages of practicing yoga postures.

Results: Blood oxygen levels in the dorsolateral prefrontal cortex during breath 
work were significantly higher in long-term yoga practitioners than in short-
term yoga practitioners. In the mental imagery of yoga postures task, self-
reported data showed that long-term yoga practitioners had better mastery 
than short-term practitioners. Long-term yoga practitioners demonstrated 
lower activation in the ventrolateral prefrontal cortex, with lower blood oxygen 
levels associated with performing this task, than short-term yoga practitioners. 
In the mindfulness meditation task, blood oxygen levels in the orbitofrontal 
cortex and the ventrolateral prefrontal cortex were significantly higher in long-
term yoga practitioners than in short-term yoga practitioners.

Conclusion: The three core yoga components, namely, yogic breathing, 
postures, and meditation, showed differences and similarities in the activation 
levels of the prefrontal cortex. Long-term practice of each component led to the 
neural benefits of efficient activation in the prefrontal cortex, especially in the 
dorsolateral prefrontal cortex, orbitofrontal cortex, and ventrolateral prefrontal 
cortex.
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Introduction

Yoga, a multicomponent physical and mental activity, is 
increasingly favored by the public as a healthy practice. Practicing 
yoga can not only improve physical fitness but also help the 
practitioner achieve a state of mental balance, a sense of inner peace, 
and more harmonious interactions with the external environment 
(Brinsley et al., 2022; Joshanloo, 2022; Cagas et al., 2023). There are 
many varieties of yoga styles practiced worldwide. Although each yoga 
style has its own characteristics, evidence has shown that breath work, 
postures, and meditation are the three core components of almost all 
yoga classes (Mandlik et  al., 2023). Currently, there is substantial 
evidence indicating that the behavioral effects of these three yoga 
components are not exactly the same, and each possesses its distinct 
set of benefits (Prado et al., 2014; Domingues, 2018; Vonderlin et al., 
2020; Das et  al., 2021; Maleki et  al., 2022). However, the neural 
underpinnings of the three yoga components remain largely unknown. 
Thus, the present study aimed to examine the specific neural correlates 
associated with each of the three components within a single study.

Although little is known about the underlying neural 
characteristics of the yoga components, many researchers have 
compared the explicit effects of the separate yoga components. Semich 
(2012) explored how performing various postures only or a having a 
combined yoga practice of breath work, postures, and meditation 
affected perceived stress levels among the participants. They found 
that multi-component yoga was more effective than performing yoga 
postures alone to lower perceived stress levels (Semich, 2012). 
Wheeler et al. (2019) examined the individual effects of postures, 
breath work, and meditation on stress responses and found that these 
three yoga aspects reduced state anxiety with no difference between 
the three components. Studies associated with breath work have found 
that breath training can enhance lung function and reduce anxiety 
(Kupershmidt and Barnable, 2019; Maleki et al., 2022). Yoga posture 
training has been shown to correct poor body posture (Jorrakate et al., 
2015), increase body balance (Prado et al., 2014), and decrease anxiety 
(Domingues, 2018). Studies associated with meditation show that 
meditation effectively relieves emotional problems and improves well-
being (Vonderlin et al., 2020). Thus, these study results indicated that 
all three components not only have similar benefits, such as reducing 
emotional distress, but also have their own unique advantages.

Changes in explicit performance are often a result of 
corresponding changes in neural activity. Revealing how changes at 
the neural level are elicited by practicing specific yoga aspects can 
facilitate the development of yoga interventions in both healthy and 
clinical populations. In recent years, a few studies have used functional 
near-infrared spectroscopy (fNIRS) technology to explore the neural 
correlates of each of the three yoga components separately. In research 
on yogic breathing, Bhargav et al. (2014) observed significant changes 
in prefrontal cortex (PFC) activity after high frequency yogic 
breathing in healthy people. Singh et al. (2016) measured the effect of 
uninostril yogic breathing on PFC hemodynamics. They observed that 
right nostril yogic breathing increased activity in the left PFC more 

than left nostril yogic breathing (Singh et al., 2016). However, the 
neural underpinnings, as assessed by fNIRS, associated with yogic 
abdominal breathing remain largely unknow. The present study aimed 
to address this gap. Yogic breathing consists of a variety of styles in 
which slow and deep abdominal breathing is a basic and core 
technique. Yildiz et  al. (2022) examined the impact of four yogic 
breath styles on brain health using a 3 T magnetic resonance imaging 
system. They found that the assessed meditator of brain health changes 
greatest during abdominal breathing (Yildiz et al., 2022). Burt et al. 
(2023) used fNIRS to find that activity in the PFC increases with 
increased breathing effort. Since abdominal breathing requires more 
effort in abdominal muscular recruitment than natural breathing 
(Bahensky et al., 2021), we hypothesized that the PFC hemodynamics 
during abdominal breathing would increase.

Other studies have focused on posture-based yoga. Chen et al. 
(2021) used fNIRS to find that yoga posture training, such as 
practicing the tree pose, activates the supplementary motor area, 
improving balance on one leg, which can be  used as an exercise 
therapy for people with impaired balance (Chen et al., 2021). Dybvik 
and Steinert (2021) used fNIRS to investigate brain activity during 
yoga posture practice. They found differences in prefrontal activation 
when comparing simple postures to complex postures, differences 
that represented different cognitive loads (Dybvik and Steinert, 
2021). The postures used in these studies are relatively simple; a 
novice with no practice experience could also complete these 
postures with guidance. Long-term yoga practitioners can perform 
many difficult postures with increased posture practice over time that 
short-term practitioners cannot. Since long-term exercise facilitates 
neuroplasticity of certain brain functions (Hötting and Röder, 2013), 
how different brain activities are evoked by these more difficult 
postures between long-term and short-term yoga practitioners may 
provide better understanding of the neural characteristics associated 
with yoga posture practice. Thus, the present study used mental 
imagery of yoga postures to assess whether neural activity differed 
between difficult vs. simple yoga postures in long-and short-term 
yoga practitioners.

Numerous clinical studies using fNIRS have shown that 
mindfulness meditation interventions can relieve emotion problems 
(Gundel et al., 2018) and improve attention and cognitive control 
performances (Gao and Zhang, 2023). Choo et al. (2019) highlighted 
the role of PFC activity during mindfulness meditation. Gao and 
Zhang (2023) observed a stronger activation of the dorsolateral PFC 
(DLPDC) during mindfulness meditation. But few studies have 
explored the neural responses to yogic mindfulness meditation. Jiang 
et al. (2021) found that brain activity in the PFC increased during an 
inhibitory control task after a yogic mindfulness meditation 
intervention. At present, there is limited research examining how PFC 
hemodynamics change during yogic mindfulness meditation. The 
effect of yogic mindfulness meditation practice experience on PFC 
activity also remains unclear.

Thus, the present study compared neural changes during 
abdominal breathing, mental imagery of postures, and mindfulness 
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meditation between long-and short-term yoga practitioners to 
further explore the separate neural responses to each yoga 
component. The study analyzed concentration changes in 
oxyhemoglobin caused by neural activation in the DLPFC, 
ventrolateral PFC (VLPFC), and orbitofrontal cortex. The DLPFC is 
important for regulating attention and is closely related to cognitive 
function (Mooneyham et al., 2016). The orbitofrontal cortex (OFC) 
has a wide connection with the emotional center and is closely related 
to emotion regulation (Kral, 2020). The VLPFC participates in self-
related processing (Joshanloo, 2022) and motor activity (Selleck et al., 
2018). As previously stated, the results of the aforementioned studies 
indicate that the three yoga components are associated with decreases 
in negative emotion and increases in attention focus and cognitive 
and motor control performances. Each of these functions is 
controlled largely by the various subdivisions of the PFC. Thus, 
we hypothesized that experienced yoga practitioners would show 
similar but also unique neural activities in the various subdivisions 
of the PFC during breath work, mental imagery of yoga postures, and 
mindfulness meditation. We  also hypothesized that practice 
experience in the three yoga components would enhance neural 
activity in the corresponding PFC area.

Materials and methods

Participants

A total of 40 women were recruited from yoga studios in China: 
20 long-term yoga practitioners and 20 short-term yoga 
practitioners. All participants were native Chinese women between 
18 and 40 years of age. Long-term yoga practitioners practiced yoga 
more than 3 times a week for a mean (SD) of 6.05 (1.39) years, 
whereas short-term yoga practitioners practiced yoga more than 3 
times a week for a mean (SD) of 0.91 (0.38) years. Table  1 
summarizes the demographic characteristics of the participants. 
This study was approved by the Shanghai University of Sport Ethics 
Committee and was performed in accordance with the ethical 
standards laid down in the 1964 Declaration of Helsinki and its later 
amendments. All participants provided written informed consent 
prior to the study.

Stimuli

The present study selected 30 yoga posture images. Of them, 
15 were simple postures and 15 were difficult postures. Each 
difficult posture was an advanced version of the corresponding 
simple posture, and there were some similarities in the 
activation of the muscles between the simple and difficult 

postures. All images were consistent in size and luminance. 
Table 2 gives the names of the postures that were used.

Procedure

The experiment consisted of three tasks: abdominal breathing 
(task 1), mental imagery of yoga posture (task 2), and mindfulness 
meditation (task 3). After the participants had been introduced to the 
experiment, the fNIRS instrumentation (NIRSport2, NIRx, Germany) 
was placed on them. Participants performed these three tasks while 
fNIRS data were recorded. The three tasks were compiled and run 
using E-Prime 3.0 software (Psychology software tools, INC, 
America). The three tasks were presented in a random order.

Task 1 began with a 10-s fixation screen appearing on a monitor, 
followed by a black blank screen for 3 min. During those 3 min, 
participants were instructed to practice abdominal breathing with 
their eyes closed, keeping the breath slow and deep and coming from 
the abdomen. They were further instructed that as they reached the 
end of each inhalation to begin exhaling without holding their breath 
(see Figure 1).

Task 2 began with a 20-s fixation screen, followed by the 
presentation of images of 15 different postures, each of which was 
presented for 3 s. Participants were instructed to view each image and 
imagine the activation of their body muscles as though they were 
performing each posture themselves. The experiment consisted of two 
groups of posture images: one group of 15 simple postures and one 
group of 15 difficult postures (Table 2). The order in which these two 
groups of images was presented was random, and each image in each 
group appeared twice. Participants were then asked to view these 
images again and to self-rate their mastery of each posture using the 
following scale: 1 represented not at all; 2, occasionally; 3, relatively 
easy; and 4, very easy. We did not conduct fNIRS while the participants 
self-reported their mastery of each posture (see Figure 1).

Task 3 began with a 10-s fixation screen, followed by a black blank 
screen for 3 min. During those 3 min, participants were asked to 
practice open monitoring mindfulness meditation. The participants 
were instructed to close their eyes while attempting to focus attention 
and stay aware of the present moment, thoughts, feelings without any 
judgement, that is, maintaining an open and receptive attitude to the 
moment (Kabat-Zinn, 2021) (see Figure 1).

Data acquisition and analyses

The fNIRS data were collected with the NIRSport2 system 
(NIRx, Germany). We acquired 760 and 850 nm dual-wavelength 
near-infrared light to measure the relative concentration changes of 
oxyhemoglobin and deoxyhemoglobin (Yamashita et  al., 1996) 

TABLE 1 Demographic and yoga training characteristics of participants.

Characteristic (years) Long-term practitioners Short-term practitioners t-test scores

Mean SD Mean SD

Age 31.95 7.13 28.50 6.99 0.13

Educational level 14.55 1.87 15.30 1.78 0.20

Yoga training 6.05 1.39 0.91 0.38 <0.01

https://doi.org/10.3389/fnins.2024.1322071
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2024.1322071

Frontiers in Neuroscience 04 frontiersin.org

based on the modified Beer–Lambert law (Cope et al., 1988) with a 
sampling frequency of 10 Hz. For the fNIRS experiment, eight 
sources and seven detectors (yielding 20 channels) were placed over 
the PFC region. The distance between the source and the detector 
was 3 cm. Sensors were located by aligning the bottom row of 
electrodes with the International 10–20 AF7-Fp1-Fpz-Fp2-AF8 line 
(Jurcak et al., 2007). Researchers have identified a correspondence 
between the location of fNIRS channels and specific brain regions 
(Okamoto et al., 2004; Tsuzuki et al., 2007). In the present study, the 
ventrolateral prefrontal cortex (VLPFC) was represented by 

channels 1, 3, 18, and 20; the DLPFC, by channels 2, 5, 8, 9, 10, 15, 
and 17; the OFC, by channels 4, 11, 13, and 19; and the frontopolar 
prefrontal cortex (FPA), by channels 6, 7, 12, 14, and 16 (see 
Figure 2).

The fNIRS data were evaluated with Homer2 software 
(MGH-Martinos Center for Biomedical Imaging, Boston, MA, 
United  States) using MATLAB (MathWorks, Natick, MA, 
United States). Motion artifacts were detected as signal changes more 
by than10% of the standard deviation of the signal within 0.5 s and 
were removed by wavelet filtering (Molavi and Dumont, 2012). 

TABLE 2 Postures used for performing mental imagery of yoga postures.

Simple postures Difficult postures

Mountain pose with arms up Handstand pose

Downward facing dog pose Headstand pose

Plant pose Crane pose

Locust pose Full locust

Cat pose Scorpion pose

Tree pose Standing sun dial pose

Cobra pose Snake king pose

Wide legged forward bend Tortoise pose

Imaginary chair pose Upsidedown chair

Forearm plank pose Forearm balance

Pigeon pose Hanuman pose

Triangle pose Extend hand to big toe pose

dancer pose Lord of the dance pose

bridge pose Wheel pose

Skyscraper pose Tiptoe pose

FIGURE 1

Procedures for the three yoga component tasks.

https://doi.org/10.3389/fnins.2024.1322071
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2024.1322071

Frontiers in Neuroscience 05 frontiersin.org

Baseline drift was removed using a high-pass filter with a cutoff 
frequency of 0.01 Hz, and a low-pass filter with a frequency of 0.1 Hz 
was used to reduce the impact of the heartbeat, respiration, blood 
pressure, and skin blood flow signals. The changes in the oxygenated 
hemoglobin (HbO) concentration were calculated using the modified 
Beer–Lambert law. The average response of each participant in the 
three tasks at 20 channels was obtained by using the block average 
(Strangman et al., 2002).

Statistical analysis

Statistical analyses were performed in SPSS, version 22.0 (IBM 
Inc.). The independent samples t-test was used to determine the 
difference between two groups in the HbO concentration at 20 
channels in the PFC during breath work and meditation. The self-
reported mastery of each yoga posture and the HbO concentration 
activated in the PFC while processing that yoga posture were analyzed 
by two-way repeated-measures analyses of variance (ANOVAs), with 
main effects of group (long-term vs. short term yoga practitioners) 
and posture difficulty level (simple vs. difficult). The Benjamini-
Hochberg false discovery rate procedure was used for the fNIRS data 
(Benjamini and Hochberg, 1995). Values are presented as means ± 
SDs. Differences with 2-sided p-values <0.05 were considered 
statistically significant.

Results

Task 1: breath work

The results of independent samples t-tests showed that the HbO 
concentration in the DLPFC (channel 9) of long-term yoga 
practitioners was significantly higher than that of short-term yoga 
practitioners (p = 0.014) during abdominal breathing. The increased 

activation in the DLPFC during breath work in long-term yoga 
practitioners may suggest a benefit of yogic breathing on DLPFC 
function (see Table 3).

Task 2: mental imagery of yoga postures

Repeated-measures ANOVA results for the self-reported mastery 
of yoga postures revealed a significant main effect of group 
(F(1, 19) = 30.276, p < 0.001, η p

2 = 0.614) and of posture difficulty level 
(F(1, 19) = 468.058, p < 0.001, η p

2 = 0.961), and a significant interaction 
between group and posture difficulty level (F(1, 19) = 25.831, p < 0.001, 
η p

2 = 0.576). Long-term yoga practitioners reported better mastery 
than short-term yoga practitioners of both simple (p = 0.007) and 
difficult (p < 0.001) yoga postures (see Figure 3).

Repeated-measures ANOVA results for the HbO concentration in 
the PFC during mental imagery of yoga postures revealed significant 
main effects or interactions between group and posture difficulty level 
in 3 (1, 3, and 20) of 20 channels. These channels were located over the 
VLPFC (see Table 4). After using post hoc tests and controlling for 
multiple comparisons using the Benjamini-Hochberg false discovery 
rate procedure, we  found that the data from channel 3 remained 
significant (see Figure 4; Table 5) (Benjamini and Hochberg, 1995). 
There was a significant main effect of group (F(1, 19) = 9.035, p = 0.007, 
η p

2 = 0.322) and of posture difficulty level (F(1, 19) = 9.873, p = 0.005, η p
2 

= 0.342). Long-term practitioners showed significantly lower 
activation than short-term practitioners in the VLPFC associated with 
the mental imagery of yoga postures. In addition, VLPFC activity 
elicited by mental imagery of the difficult postures was significantly 
lower than that elicited by the simple postures. There was also a 
significant interaction between group and posture difficulty level 
(F(1, 19) = 5.987, p = 0.024, η p

2 = 0.240). The HbO concentration in the 
VLPFC of long-term practitioners elicited by difficult postures was 
significantly lower than that of short-term practitioners (p = 0.008). By 
contrast, there was no significant difference in the VLPFC HbO 
concentration between these two groups during the mental imagery 
of simple postures (see Figure 4).

Task 3: mindfulness meditation

The independent samples t-test results showed that the HbO 
concentration in the OFC of long-term yoga practitioners during 
mindfulness meditation was significantly higher than that of short-
term yoga practitioners for channel 4 (p = 0.013) and channel 11 
(p = 0.011). The HbO concentration in the VLPFC cortex of long-term 
yoga practitioners was significantly higher than that of short-term 
yoga practitioners (p = 0.032) (see Table 6).

Discussion

The aim of this study was to characterize neural responses to 
three yoga-specific components: breath work, yoga postures, and 
mindfulness mediation. Participants with long-and short-term yoga 
practice experience completed abdominal breathing, mental 
imagery of yoga postures, and mindfulness meditation while fNIRS 
data were recorded. The results supported one of our hypotheses, 

FIGURE 2

Each channel corresponds to an area within the prefrontal cortex.
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namely, that experienced yoga practitioners showed similar but also 
unique neural activities in the various subdivisions of the PFC 
during the three yoga tasks. Hemodynamic changes in the DLPFC 
improved only during abdominal breathing, and OFC activity 
increased only during mindfulness meditation. The activity in the 
VLPFC changed during both mental imagery of postures and 
mindfulness meditation. To the best of our knowledge, this is the 
first demonstration of fNIRS comparing the neural characteristics 
of different yoga components. Consistent with our results, Desai 
et al. (2015) reviewed 15 studies using electroencephalography and 
found that breathing, meditation, and posture practice elicited 
similar but unique enhancements of brain wave activity. Alpha 
waves improved in amplitude and frequency during all three yoga 
components; the amplitude and frequency of beta waves increased 
only during breathing, and theta wave activity improved after both 
posture practice and breathing (Desai et al., 2015). Our hypothesis 
that the three components of yoga training would enhance activity 
in the corresponding PFC area was not fully accurate. During 
abdominal breathing and mindfulness meditation, we  observed 
higher PFC activity in long-term yoga practitioners than in 

short-term yoga practitioners. However, long-term yoga 
practitioners showed much lower activity in the VLPFC compared 
with short-term yoga practitioners. Below, we  discuss this 
finding further.

Breath work

Our fNIRS data showed that the HbO concentration in the 
DLPFC of long-term yoga practitioners was significantly higher than 
that of short-term yoga practitioners during abdominal breathing. 
The increased HbO concentration may be due to better slow breath 
control that led to better perfusion and oxygenation in long-term 
yoga practitioners. This may be a mechanistic underpinning of the 
deep abdominal breathing control benefits from long-term yoga 
experience. An enhanced ability to control breathing has been related 
to physical and mental health in daily life (Stutz and Schreiber, 2017). 
Zaccaro et al. (2022) compared the aftereffects of slow nasal breathing 
with a session of mouth breathing at the same respiratory rate. They 
showed that slow breathing modulates brain activity and hence the 

TABLE 3 Mean changes in HbO concentration assessed in four prefrontal cortical areas through 20 fNIRS channels during abdominal breathing 
between long-and short-term yoga practitioners.

Long-term 
practitioners

Short-term 
practitioners

Area Channel Mean/μm SD Mean/μm SD t p-value Corrected-p Cohen’s d

OFC

4 0.0063 0.0204 −0.0020 0.0194 1.308 0.199 0.796 0.417

11 0.0051 0.0164 0.0018 0.0123 0.715 0.479 0.932 0.228

13 0.0004 0.0109 0.0014 0.0155 −0.235 0.815 0.932 0.075

19 0.0006 0.0114 0.0002 0.0116 0.086 0.932 0.932 0.035

VLPFC

1 0.0089 0.0402 −0.0013 0.0247 0.945 0.351 0.468 0.306

3 0.0066 0.0172 0.0024 0.0287 0.561 0.578 0.578 0.178

18 0.0522 0.2253 −0.0024 0.0150 1.054 0.299 0.468 0.342

20 0.0049 0.0108 0.0011 0.0121 1.038 0.306 0.468 0.331

DLPFC

2 −0.0048 0.0400 −0.0059 0.0281 0.097 0.923 0.961 0.032

5 0.0137 0.0328 0.0029 0.0246 1.160 0.253 0.455 0.373

8 −0.0004 0.0122 −0.0006 0.0192 0.050 0.961 0.961 0.012

9 0.0281 0.0453 −0.0165 0.0368 3.364 0.002 * 0.014* 1.081

10 0.0000 0.0152 −0.0053 0.0168 1.045 0.303 0.455 0.331

15 0.0259 0.1052 −0.0026 0.0299 1.138 0.263 0.455 0.369

17 0.0062 0.0293 −0.0014 0.0158 0.998 0.325 0.455 0.323

FPA

6 0.0036 0.0131 0.0025 0.0179 0.220 0.827 0.827 0.070

7 0.0052 0.0095 0.0042 0.0157 0.240 0.812 0.827 0.077

12 0.0046 0.0160 −0.0018 0.0211 1.082 0.286 0.715 0.342

14 0.0084 0.0191 −0.0010 0.0127 1.801 0.080 0.400 0.580

16 0.0043 0.0163 0.0005 0.0148 0.774 0.444 0.740 0.244

p-values were corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate procedure. OFC, orbitofrontal cortex; VLPFC, ventrolateral prefrontal cortex; DLPFC, 
dorsolateral prefrontal cortex; FPA, frontopolar cortex; fNIRS, functional near-infrared spectroscopy; HbO, oxygenated hemoglobin; SD, standard deviation; *p < 0.05.
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subjective experience to the point of inducing a non-ordinary state 
of consciousness (Zaccaro et  al., 2022). The increased HbO 
concentration in the DLPFC may also represent a benefit of 

long-term yogic breathing experience on DLPFC function. DLPFC 
is a cognition area responsible for planning, organizing, and 
regulating and is closely related to functions such as attention, 

FIGURE 3

Self-reported mastery of yoga postures.

TABLE 4 Main effects and interactions during mental imagery of simple and difficult yoga postures for VLPFC activity (as assessed by HbO 
concentration) between long-and short-term yoga practitioners.

Long-term 
practitioners

Short-term 
practitioners

Area Channel Mean SD Mean SD Practice effect Posture 
difficulty 

effect

Practice × 
posture 
difficulty

VLPFC

1

simple postures −0.0432 0.0378 −0.0791 0.6531 F(1, 19) = 10.283 F(1, 19) = 0.910 F(1, 19) = 1.208

difficult postures −0.0584 0.3940 0.3224 0.9905 p = 0.005, ηp2 = 0.351 p = 0.352, ηp2 = 0.046 p = 0.285, ηp2 = 0.060

3

simple postures 0.2007 0.1829 0.1857 0.3011 F(1, 19) = 9.035 F(1, 19) = 9.873 F(1, 19) = 5.987

difficult postures −0.2301 0.3297 0.0577 0.3007 p = 0.007, ηp2 = 0.322 p = 0.005, ηp2 = 0.342 p = 0.024, ηp2 = 0.240

18

simple postures −0.1177 0.3339 0.0330 0.3528 F(1, 19) = 0.085 F(1, 19) = 0.149 F(1, 19) = 0.243

difficult postures 0.0430 1.2800 −0.0206 0.5158 p = 0.774, ηp2 = 0.004 p = 0.704, ηp2 = 0.008 p = 0.628, ηp2 = 0.013

20

simple postures 0.2089 0.1948 0.1234 0.1928 F(1, 19) = 1.251 F(1, 19) = 15.536 F(1, 19) = 7.181

difficult postures −0.1760 0.2414 0.0226 0.3161 p = 0.277, ηp2 = 0.062 p = 0.001, ηp2 = 0.450 p = 0.015, ηp2 = 0.274

HbO, oxygenated hemoglobin; VLPFC, ventrolateral prefrontal cortex; SD, standard deviation; *p < 0.05.
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memory, and emotional control (Hertrich et al., 2021; Wischnewski 
et al., 2021). Studies have provided strong evidence for the advantages 
of regular yogic breathing on cognition. Yogic breathing has shown 
benefits for verbal and spatial cognition, memory, sustained attention 
and emotional regulation (Marshall et al., 2014; Ma et al., 2017). The 
current study provides new neural evidence for the cognitive benefits 
of yogic breathing.

Mental imagery of yoga postures

The self-assessment scores of yoga posture mastery indicated that 
the mastery levels of long-term yoga practitioners on both simple and 
difficult postures were higher than those of short-term yoga 
practitioners. Consistent with the present result, a previous study also 
observed a posture control advantage suggesting possible benefits in 
supraspinal feed-forward motor adaptations associated with yoga 
training (Pinto et al., 2022).

Inconsistent with our hypotheses, the present fNIRS data 
showed that the activation level of the VLPFC was significantly 
lower in the long-term yoga practitioners than in the short-term 

yoga practitioners during mental imagery of difficult yoga 
postures. The postures we selected for the mental imagery task may 
have impacted the neural results. Dybvik and Steinert (2021) used 
fNIRS to explore brain activity when participants actually 
practiced yoga postures and found that brain activation was 
significantly higher in difficult postures compared with simple 
postures. The inconsistency across studies for these results may 
be due to the different neural underpinnings associated with the 
two experimental paradigms. It is likely that using imagery for 
performing the postures in our study versus actually performing 
the postures as in the study by Dybvik et  al. involve different 
neural correlates. Our findings suggest that long-term experienced 
practitioners required less neural activity to image more difficult 
postures than short-term yoga practitioners, which may have 
largely benefited from long-term posture training experience. 
Another previous study found that long-term exercise facilitated 
neuroplasticity associated with brain functions (Hötting and 
Röder, 2013). The VLPFC is part of a default mode network 
involved in self-awareness. Evidence indicates that activation of 
the default mode network is stronger during a resting state and is 
significantly decreased during target tasks (Sheline et al., 2009). 

FIGURE 4

HbO concentration changes in the VLPFC (channel 3) between long-and short-term yoga practitioners during mental imagery of simple and difficult 
yoga postures.

TABLE 5 Mean changes in HbO concentrations in the VLPFC between long-and short-term yoga practitioners during mental imagery of difficult 
postures.

Long-term practitioners Short-term practitioners

Area Channel Mean SD Mean SD p-value Corrected-p

VLPFC

1 −0.0584 0.3940 0.3224 0.9905 0.095 0.127

3 −0.2301 0.3297 0.0577 0.3007 0.002* 0.008*

18 0.0430 1.2800 −0.0206 0.5158 0.860 0.860

20 −0.1760 0.2414 0.0226 0.3161 0.026 0.052

p-values were corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate procedure. HbO, oxygenated hemoglobin; VLPFC, ventrolateral prefrontal cortex; SD, 
standard deviation; *p < 0.05.
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Consistent with these observations, the lower activation in the 
VLPFC observed during mental imagery of yoga postures in the 
present study may indicate more efficient neural recruitment. 
Findings in a study by Hertrich et al. (2021) suggested that the 
cognitive load associated with difficult postures is greater than that 
for simple postures during the actual performance. The more 
difficult the posture, the greater the cognitive load and the stronger 
the corresponding PFC activation. Cecchini et al. (2016) found 
that motor imagery is developed linked to the development of 
motor skills. Therefore, enhanced activation in the PFC during 
actual performance of postures may be a reasonable interpretation 
for efficient neural recruitment during the mental imagery 
of postures.

Mindfulness meditation

The HbO concentration in the OFC and VLPFC of long-term 
yoga practitioners during mindfulness mediation was significantly 

higher than that of short-term yoga practitioners. The results 
confirmed our hypotheses that yogic meditation training 
experience would amplify activities in the corresponding PFC 
area. Consistent with our results, Nascimento et  al. (2018) 
reported increased activation of the PFC, especially in the OFC 
and VLPFC, during meditation. Other studies have also found a 
close neural association between meditation and these two brain 
areas. Kong et al. (2016) found that mindfulness was positively 
associated with OFC activation. Kurth et al. (2023) observed a 
negative relationship between age and OFC, and surprisingly, 
age-related declines in the OFC is diminished in meditation 
practitioners. Mooneyham et al. (2016) reported that mindfulness 
meditation was associated with the VLPFC. Meditation practice 
also enhanced the functional connectivity of the VLPFC to other 
brain regions (Barrós-Loscertales et al., 2021). Taken together, 
these studies indicate the neural benefits associated with yogic 
mindfulness meditation practice experience. Our findings provide 
additional neural evidence for the many behavioral studies 
showing the advantages of mindfulness meditation. Numerous 

TABLE 6 Mean changes in HbO concentrations between long-and short-term yoga practitioners during mindfulness meditation as assessed in 20 
prefrontal fNIRS channels over four cortical areas.

Long-term 
practitioners

Short-term 
practitioners

Area Channel Mean/
μm

SD Mean/
μm

SD t p-value Corrected-p Cohen’s d

OFC

4 0.0046 0.0130 −0.0113 0.0209 2.881 0.006* 0.013* 0.914

11 0.0102 0.0270 −0.0129 0.0177 3.210 0.003* 0.011* 1.012

13 −0.0025 0.0132 −0.0109 0.0197 1.579 0.123 0.164 0.501

19 0.0013 0.0119 −0.0042 0.0146 1.326 0.193 0.193 0.413

VLPFC

1 0.0007 0.0106 −0.0038 0.0067 1.548 0.131 0.174 0.507

3 0.0022 0.0133 −0.0087 0.0202 1.960 0.058 0.116 0.637

18 0.0017 0.0194 −0.0032 0.0110 0.924 0.362 0.362 0.311

20 0.0037 0.0126 −0.0059 0.0095 2.741 0.010* 0.032* 0.86

DLPFC

2 0.0011 0.0077 0.0000 0.0227 0.188 0.852 0.852 0.065

5 0.0080 0.0134 −0.0014 0.0134 1.752 0.093 0.608 0.701

8 −0.0027 0.0131 −0.0055 0.0134 0.667 0.509 0.852 0.211

9 −0.0061 0.0159 0.0158 0.0504 −1.172 0.261 0.608 0.586

10 0.0028 0.0172 0.0051 0.0318 −0.268 0.790 0.852 0.090

15 −0.0019 0.0215 −0.0051 0.0151 0.441 0.663 0.852 0.172

17 0.0075 0.0294 −0.0030 0.0140 1.383 0.175 0.608 0.456

FPA

6 −0.0024 0.0297 −0.0063 0.0111 0.539 0.593 0.593 0.174

7 −0.0009 0.0213 −0.0052 0.0100 0.773 0.445 0.556 0.258

12 0.0032 0.0160 −0.0029 0.0131 1.325 0.193 0.322 0.417

14 0.0009 0.0169 −0.0062 0.0120 1.460 0.153 0.322 0.484

16 0.0027 0.0120 −0.0032 0.0139 1.444 0.157 0.322 0.454

p-value was corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate procedure. OFC, orbitofrontal cortex; VLPFC, ventrolateral prefrontal cortex; DLPFC, 
dorsolateral prefrontal cortex; FPA, frontopolar cortex; fNIRS: functional near-infrared spectroscopy; HbO, oxygenated hemoglobin; SD, standard deviation; *p < 0.05.
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studies have found that mindfulness meditation benefits mental 
refreshment, attention, emotional control, and self-awareness, 
which are associated with the OFC and VLPFC (Shen et al., 2020; 
Miyashiro et al., 2021; Shen et al., 2023).

Limitations

The present study has some limitations. First, the present 
study lacks scientific behavioral assessments. Thus, it was not 
possible to connect the neural advantages of each yoga component 
with the corresponding behavioral advantage, reducing the 
significance of this study for practical application. Future research 
exploring the benefits of yoga should combine accurate behavioral 
measurements for breathing, posture imagery, and mindfulness 
meditation with neural indicators. Second, although we balanced 
the two groups for age and educational level, differences between 
the two groups beyond yoga training may still have confounded 
the results. Future research should recruit participants with no 
yoga experience and conduct long-term yoga interventions to 
more accurately explore the neurobehavioral benefits of yoga. 
Third, each of the three yoga components can be  further 
subdivided into several categories, the benefits of which should 
be further explored in future research.

Conclusion

PFC activation, as assessed using HbO concentrations during 
fNIRS, showed some similarities as well as differences during the 
performance of the three core components of yoga practice, 
namely, yogic breathing, posture imagery, and mindfulness 
meditation. Long-term yoga practice experience was associated 
with the neural benefit of efficient activation in the PFC. Long-
term mindfulness mediation experience improved brain activity 
in both the OFC and VLPFC, whereas long-term yogic breathing 
improved brain activity in the DLPFC. Long-term yoga posture 
practice experience was associated with efficient neural 
recruitment in the VLPFC, as reflected by lower activation during 
mental imagery of yoga postures.
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