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Currently, there is no established system for quantifying patterns of ocular 
ductions. This poses challenges in tracking the onset and evolution of ocular 
motility disorders, as current clinical methodologies rely on subjective 
observations of individual movements. We propose a protocol that integrates 
image processing, a statistical framework of summary indices, and criteria for 
evaluating both cross-sectional and longitudinal differences in ductions to 
address this methodological gap. We  demonstrate that our protocol reliably 
transforms objective estimates of ocular rotations into normative patterns of 
total movement area and movement symmetry. This is a critical step towards 
clinical application in which our protocol could first diagnose and then track the 
progression and resolution of ocular motility disorders over time.
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1 Introduction

There is currently no system to quantify patterns of ocular ductions. This is because most 
comparisons to others (cross-sectional) or to oneself (longitudinal) are made via subjective 
observations and codified with discrete numeric scales (von Noorden, 1996; Borchert, 2005). The 
absence of objective and continuous measurements leaves clinicians with a low-resolution 
estimate of their patient’s ocular range of motion. Furthermore, because ductions are typically 
treated as individual entities, descriptions of the total extent and/or symmetry of the ocular range 
of motion are sparse (Rowe and Hanif, 2011; Salvi et al., 2015; Campi et al., 2021). This lack of 
quantifiable patterns and criteria by which to detect their change stands in contrast to other areas 
of eye care where summary statistics derived from imaging technologies endow clinicians with 
the ability to gauge whether entire structures [e.g., the cornea (Doctor et al., 2020) and optic nerve 
(Hwang and Kim, 2012; Sullivan-Mee et al., 2013)] or functions [e.g., the visual field (Flammer, 
1986)] display patterns indicative of pathologic progression or therapeutic improvement.

Conventional video-based eye trackers, which use the location of the pupil and corneal 
reflection to estimate gaze position, fall short in addressing this issue because their recording range 
is narrower than the full range of ocular motion (Lee et al., 2019). The high spatial and temporal 
resolution of video-based eye trackers are instead ideal for detecting pathological eye movement 
dynamics (e.g., velocity) (Wong et al., 2006; Kemanetzoglou et al., 2021). Attaining objective 
measurements of both dynamic and static (i.e., the range of motion) properties of ocular motor 
function is ideal because post-insult motor adaptations may normalize eye movement dynamics 
yet leave the eye’s range of motion into the paretic field limited (Wong et al., 2006). Currently, 
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manual techniques such as the lateral version light reflex test (Urist, 
1967) and the limbus test (Kestenbaum, 2013) are used to measure the 
ocular range of motion in clinic. The basic premise of each approach is 
to compare the location of the limbus in eccentric gazes to its location in 
primary gaze: the difference in location is then used to estimate the 
magnitude and direction of ocular movement. A modified limbus test 
reliant upon digital photography has been used to measure versions in 
non-strabismic individuals (Lim et  al., 2014a) and in patients with 
muscle overactions (Lim et al., 2014b), thyroid ophthalmopathy (Leite 
et al., 2020), and ocular blow-out fractures (Lee et al., 2015). This method 
was also used to confirm an age-related decline in supraduction (Lee 
et al., 2019) originally documented with other techniques (Clark and 
Isenberg, 2001; Shechtman et  al., 2005; Kang, 2009). Recently, 
incorporation of machine learning elements which automatically 
segment the limbal boundaries has drastically reduced the workload 
required to derive the movement estimates (Kang et al., 2022; Lou et al., 
2022). This rapidity has placed automatic ocular-motor diagnostics 
closer to a clinical reality; however, there are several important steps to 
take prior to clinical application. First, because there have been limited 
attempts to quantify the global patterns of ductions, there is no 
framework available to judge whether a participant’s movements are 
overall indicative of pathology. Second, criteria for determining 
longitudinal changes in ductions and their associated patterns have not 
yet been established. This is important to address because the high 
amount of interparticipant variability present in normative ranges may 
make them less sensitive to change. Summary statistics with both features 
(i.e., intraparticipant comparisons and global amalgamation of data) 
have distinct diagnostic advantages because they simultaneously 
minimize the variance imposed by interparticipant factors (e.g., age, race, 
gender, and ocular biometrics) and maximize the variance present within 
or between a participant’s eyes (Sullivan-Mee et al., 2013). Thus, it is now 
time to leverage the automaticity of machine learning towards 
development of an ocular motility focused device like those routinely 
used for pattern and change analyses of the anterior segment (Greenstein 
et al., 2011), posterior segment (Leung et al., 2010), and visual function 
(Artes et al., 2011). This is essential to transform qualitative descriptors 
of both normal (e.g., “each eye’s range of motion is similar”) and 
abnormal (e.g., “the left lateral rectus is weak”) duction patterns into an 
intuitive database of biometric statistics.

In this paper, we present a proof of concept for our protocol which 
combines image processing, a framework of summary indices, and 
change criteria which are designed to initially describe and then detect 
both cross-sectional and longitudinal changes in a participant’s 
pattern of ductions. We first develop the techniques necessary for 
image analysis, next define mathematics which capture duction extent 
and symmetry, and last define criteria by which to establish clinically 
meaningful differences. We set forth a series of benchmarks related to 
each component to establish the validity of our protocol. The analyses 
and results described together show that our proposed protocol has 
the potential to first identify and then track the progression and 
resolution of ocular motility disorders over time.

2 Methods

2.1 Participants

Twenty non-strabismic participants (3 male, 17 female) between 
the ages of 22 and 48 years (95% CI: 25.0 to 27.7 years) were recruited 

to participate in the study. Each participant reported for a single 
recording session, lasting approximately 30 min, in which ductions of 
the right and left eye were recorded. All participants were required to 
take part in an informed consent discussion, and subsequently 
provide their consent, prior to beginning the experiment. This 
included evaluation of exclusion criteria (i.e., the presence of 
strabismus, amblyopia, and/or other neurological diseases). All 
experiments were reviewed and approved by Nova Southeastern 
University’s Institutional Review Board and conformed to the 
principles and applicable guidelines for the protection of human 
subjects in biomedical research.

2.2 Protocol

2.2.1 Image processing

2.2.1.1 Capture
We used an ELP brand digital camera (Shenzhen Ailipu 

Technology Company, Shenzhen, China) to capture images of the 
right and left eye in primary and eccentric gaze positions. Each 
participant was instructed to first look “straight ahead” and then to 
sequentially move their eye “as far as possible” along one of four 
pre-defined meridians. A modified tangent screen, constructed with 
cords of rope stretched across the horizontal, two diagonal, and 
vertical meridians, was centered 40 cm in front of each participant 
and was used to guide fixation (Supplementary Figure S1). Each 
meridian’s length of rope was constructed such that it extended 
beyond the mean maximal duction in each direction of gaze (Lim 
et  al., 2014a; Lee et  al., 2019). For example, assuming a viewing 
distance of 40 cm and a maximal duction of 70°, each rope’s length 
was made to be approximately 220 cm [70 110 40

° = ( )atan / ]. Several 
steps were taken to prepare each participant for recording. First, the 
non-recorded eye was occluded with an adhesive eyepatch. Next, one 
drop of Proparacaine HCL 0.5% was instilled in the eye to 
be recorded. Third, a white and black bullseye sticker was adhered to 
the lower cheek below the recorded eye. This was done to compensate 
for minor head translations which occurred during the recording. 
Fourth, each participant placed their mouth unto a custom bite bar 
apparatus. The apparatus consisted of the bite bar, a forehead rest and 
headband which together stabilized each participant’s head. Last, 
immediately prior to the commencement of recording, an ophthalmic 
speculum was inserted to stabilize and widen the palpebral aperture. 
This was done to minimize obscuration of the limbus by the lids. 
Frame capture, which occurred at 30 frames per second, began once 
a participant was stably fixating straight ahead. This was accomplished 
by instructing each participant to look “straight ahead” via fixation 
of a black knot indicating the center of the tangent screen. Each 
participant then performed at least five alternating fixations along 
each meridian (e.g., left, right, left, right, etc). While eccentrically 
fixating, participants were encouraged to move their eyes “as far as 
possible” along the rope guides until they could look no further. After 
a total of at least five alternating fixations were performed, 
participants then continued onwards to alternately fixate along the 
next meridian (e.g., up and left, down and right, up and left, down 
and right, etc.). This was done until ductions had been performed 
along all four meridians, a process which lasted approximately 1 min. 
The 30 fps sampling rate captured many frames per fixation; thus, to 
“distill” the data into one frame per fixation, one of the authors (KW) 
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manually selected a single frame in which the eye had appeared to 
move the furthest from each fixation’s collection of frames. This 
resulted in a total of eighty-two frames (two in primary gaze and five 
fixations per eight ductions in each eye) for each participant.

2.3 Segmentation

Benchmark I: model metrics are gaze independent.
Each of the frames was next submitted to a mask recurrent 

convolutional neural network (R-CNN) which segmented the iris, and 
thus, demarcated the limbus boundaries. The mask R-CNN is ideal for 
this task because it performs instance segmentation, a type of image 
segmentation that demarcates the shapes of objects on a pixel-by-pixel 
level (He et al., 2017). Our mask R-CNN was built on a ResNet 101 
backbone, instantiated in PyTorch, and initially trained on a collection 
of ground truth images annotated by the co-authors (KW & HR). The 
ground truth labels were created by first downloading a publicly 
available dataset of eye images on Kaggle and then using Photoshop 
to place elliptically shaped masks over visible portions of the iris. For 
images in which the eyelids obscured portions of the iris, the elliptical 
masks were chosen to best match the curvature of the visible portions 
of the iris. Images in which more than half of the iris was obscured 
were not annotated or used for training. Training was performed by 
feeding the annotated ground truth images into the mask R-CNN 
using a stochastic gradient descent (SGD) optimization algorithm. 
The learning rate was set to 0.001, the momentum to 0.9, and the 
weight decay to 0.0005. A learning rate scheduler was employed to 
decay the learning rate by a factor of 0.2 every 10 epochs. A validation 
set of labeled images captured with the co-authors’ (KW & HR) eyes 
gazing into various gazes, held open with an ophthalmic speculum, 
were used to fine tune the model parameters and conclude training. 
All frames captured from each participant performing ductions were 
then submitted to the mask R-CNN for iris segmentation. The 
diameter of each segmented iris was taken to represent the boundaries 
of the limbus. Supplementary Video S1 shows an example of identified 
limbus boundaries in one participant.

We evaluated the performance of our mask R-CNN using a test 
set of sixty randomly selected frames (three from each participant’s 
right and/or left eyes). The accuracy, sensitivity, specificity, and 
precision were computed in the following manner (Eqs 1–4):

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +  

(1)

 
Sensitivity TP

TP FN
=

+  
(2)

 
Specificity TN

TN FP
=

+  
(3)

 
Precision TP

TP FP
=

+  
(4)

True positives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN) represent correctly marked pixels, pixels that were 
correctly excluded, pixels that were mistakenly marked, and pixels that 
were incorrectly excluded. Each of the metrics reveals a different 
aspect of the mask R-CNN’s segmentation performance: accuracy is 
the ratio of correct predictions compared to all predictions, sensitivity 
shows the proportion of ground truth labeled pixels that were correctly 
marked, specificity shows the proportion of non-labeled pixels that 
were correctly excluded, and precision shows the ratio of correct 
markings over all markings. We  sorted and then compared each 
metric by and across duction types to determine whether the mask 
R-CNN was able to segment the iris, and thus identify the limbus, 
equivalently across all gaze positions.

2.4 Optimization

Benchmark II: optimization error is gaze independent.
The preceding steps of image capture and segmentation produced 

eighty-two sets of limbus coordinates in each participant. The basis for 
our estimation of ocular rotations is a comparison between the limbus 
coordinates identified in primary vs. eccentric gaze positions. This 
comparison is an ideal proxy for movement estimation because, unlike 
the pupil and corneal reflection (Nyström et al., 2016), the physical 
dimensions of the limbus are stable. Thus, because the apparent 
location and shape of the limbus change only during ocular rotations, 
comparison of limbus coordinates can be  used to estimate the 
magnitude and direction of movement (Wang and Sung, 2001; Wang 
et al., 2005). We used this philosophy to develop an optimization 
routine whose outputs were the magnitude and direction of ocular 
rotation. To do this, we considered the boundaries identified in each 
participant’s primary gaze to represent a reference ellipse from which 
all eccentric rotations began. The task of the optimization routine was 
then to find the rotation, which when applied to the reference ellipse, 
produced an estimated ellipse which best matched the observed 
elliptical boundaries present in eccentric gaze positions (Figure 1). 
This strategy removes the need to utilize pre-defined meridians along 
which to measure movements and is thus capable of estimating the 
magnitude and direction of any rotation.

We applied several biometric assumptions and unit conversions 
before beginning optimization. First, the center of rotation was 
assumed to lie 10.45 mm behind the limbus for all participants. This 
designation assumes a corneal sagittal depth of 2.5 mm (Sorbara et al., 
2013) and an ocular center of rotation located 12.95 mm from the 
corneal apex. This is a reasonable assumption for all participants given 
recent evidence that the location of the eye’s center of rotation is 
independent of the size of one’s globe (i.e., axial length) (Clark and 
Demer, 2020). The center of rotation is thought to translate during eye 
movements; however, because the direction and magnitude of such 
translations is participant-dependent and would require additional 
free parameters in our optimization routine, we chose to exclude them 
from our movement estimates and instead assume that the center of 
rotation remains fixed throughout all ocular rotations. Second, 
we assumed all axes of rotation were located within a single plane 
coincident with the center of rotation (i.e., Listing’s Plane). Third, the 
limbus coordinates were converted from pixels to millimeters to make 
the units of the limbus boundaries coincident with those of the 
biometric parameters. For this conversion, we  assumed that each 
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participant had a horizontal visible iris diameter of 11.75 mm 
(Bergmanson and Martinez, 2021). This allowed us to convert each set 
of limbus coordinates from pixels to millimeters by using the 
horizontal width of each participant’s reference limbus as the 
denominator in a conversion factor (i.e., millimeters per 
pixel = 11.75 mm / horizontal width of reference limbus in pixels). 
Fourth, image registration was used to determine if head movements 
had occurred: this was done by using MATLAB’s imregcorr  function 
to compare images of the bullseye sticker captured in the reference 
primary gaze positions to those of the bullseye sticker captured in 
eccentric gaze positions. This function was used to identify 
displacements of the sticker in pixels and has a one-pixel resolution. 
Each participant’s conversion factor was used to convert the 
displacements into millimeters and then shift the limbus coordinates 
opposite the displacements to counteract the intrusion of head 
movements into the data. Note that this correction can only account 
for translations, and not rotations, of the head. Given the concurrent 
use of a bite-bar, we  believe that the potential for either head 
translations and/or rotations to confound our data was minimal. This 
is shown by the minimal amounts of translation detected by sticker 
movement: the mean horizontal and vertical displacements were 0.24 
and 0.31 mm, respectively. Further, given that imregcorr’s one-pixel 
resolution, equivalent to 0.10 mm at the viewing distance used, was 
smaller than the displacements observed, image registration could 
also be  used to minimize the impact of head movements in less 
constrained experimental environments where the amount of head 
movement is likely to be larger. Supplementary Video S2 shows the 
outcome of this correction procedure in one participant.

Rotation parameters were next estimated using mathematical 
optimization. Each observed set of eccentric elliptical limbus 
boundaries were compared to their respective reference ellipses using 
an optimization routine was run by MATLAB’s fminsearch . The 
routine was tasked with estimating three free parameters: the axis 
(n param param= [ ]1 2 0 ) and angle (θ = param3) of rotation, with 
param1 and param2 representing the axes about which vertical and 
horizontal rotations, respectively, occurred. The minimum and 

maximum parameter values were bounded between −1 and 1 for the 
axis and between 0 and 90 for the angle. Each iteration of the routine 
produced an estimated ellipse by applying a rotation to the reference 
ellipse. The estimated ellipse was then compared to the observed 
ellipse using an error function which computed the total distance 
between corresponding points (i.e., those sharing the same angles 
relative to center) on the estimated ( p ) and observed ( p ) ellipses 
(Eq.  5). Optimization using this error function produces ellipses 
which are most similar in both location and shape.

 
ε =









∫

0

360

distance p p,

 
(5)

The routine continued until the error between the observed and 
estimated ellipses was minimized. At this point, the minimum error 
and optimized parameters for the comparison were saved. The 
optimized axis and angle for each observed vs. reference comparison 
were taken to represent the direction and magnitude of each duction, 
respectively. We  last selected three rotation estimates out of the 
possible five for each duction and participant using a criterion of least 
error. The least error estimates were chosen within each duction and 
participant to ensure that each participant’s eight ductions were 
represented in the group mean data. This resulted in a total of forty-
eight estimated rotations (three selected x eight ductions per eye) for 
each participant. As with the preceding model metrics, we sorted and 
then compared the mean error values across duction types to 
determine whether our optimization scheme estimated rotations 
equivalently across gaze positions.

2.5 Pattern quantification

In the second step of our duction recording protocol, 
we characterize each participant’s motility pattern using a framework 
of summary indices (Table  1). This framework is built on the 
philosophy that all ocular motility defects can be represented by a 
distinct set of monocular shapes (Figure 2, first two columns). The 
vertices of each shape are formed by a participant’s ductions. Then, 
scaling, rotation, or combination of the shapes accounts for differences 
in the absolute magnitudes and directions of one’s movement 
limitations. For example, unilateral pareses are described by the 
“monocular single” set containing a wedge and an octagon (Figure 2B). 
The size and orientation of the right eye’s wedge, shown in the first 
column and second row of Figure 2, indicates a complete adduction 
deficit. Scaling and rotation of this shape can be  performed to 
represent a single duction deficit of any magnitude or direction. The 
“monocular opposite” set, indicative of movement limitation along an 
entire meridian, includes an octagon and a bow-tie shape (Figure 2C). 
As before, the bow tie can be scaled or rotated to represent unilateral 
horizontal and/or vertical gaze palsies of different magnitudes. The 
“binocular same” (Figure 2D) and “binocular opposite” (Figure 2E) 
sets, containing wedges of similar or opposing orientation, are 
representative of gaze or vergence palsies, respectively. Our framework 
quantifies each shape by describing its boundaries (d

���
, ductions), area 

(MF , motor field), and symmetry (MB
� ���

, muscle bias). This results in a 
numerical system capable of characterizing any ocular motility 
disorder. This concept is akin, though not identical, to the use of 

FIGURE 1

Example of the optimization routine estimating the magnitude and 
direction of ocular rotation for a duction of the right eye. (A) The 
magnitude (θ, angle) and direction (n, axis of rotation) of the 
observed movement (red) were estimated by finding the parameters 
which produced the closest matching 2D projected ellipse. This was 
done by continually rotating each participant’s reference ellipse 
(black) to a new 3D location (brown) and (B) minimizing the distance 
between corresponding points on the estimated ( p , brown) and 
observed ( p , red) ellipses.

https://doi.org/10.3389/fnins.2024.1324047
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Willeford et al. 10.3389/fnins.2024.1324047

Frontiers in Neuroscience 05 frontiersin.org

Zernike polynomials for describing refractive errors. In our 
framework, we employ simple polygons as opposed to polynomials 
(Campbell, 2003; McAinden et al., 2011). Note that the number of 
vertices within each shape represent the number of ductions 
measured. For cases in which ocular-motor deficits occur 
symmetrically about a meridian, as in Figure 2B, a higher sampling 
density (i.e., number of measured ductions) would be  redundant 
because movement ability recovers similarly as gaze is shifted from 
purely horizontal to horizontal and up and from purely horizontal to 
horizontal and down. However, in cases where deficits are asymmetric 
about one or more meridians, a higher sampling density is necessary 
to veridically “capture” the pattern of motility.

The following sections enumerate the derivation of each index in 
the framework and show how the differencing of the monocular 
shapes also produces intuitive indices indicative of the laterality and 
type of ocular motility disorders. Comparison of the right eye’s shape 
to that of the left eye’s shape produces metrics indicative of binocular 
imbalances in synergistic muscle pairs (e.g., the right lateral rectus and 
left medial rectus), whereas comparison of the right eye’s shape to that 
of the left eye’s shape reflected about the vertical axis produces metrics 
indicative of binocular imbalances in the same muscle (i.e., the right 
and left lateral rectus). We set benchmarks to evaluate the ability of 
our image processing and statistical framework to capture normative 
patterns of non-strabismic ductions, shown in Figure 3 (Lim et al., 
2014a). These benchmarks offer a way to assess the validity of these 
two components, as previous studies have described individual 
ductions but have not provided a statistical summary of their patterns 
(Lim et al., 2014a; Lee et al., 2019; Lou et al., 2022).

2.6 Boundaries

Benchmark III: duction magnitudes are anisotropic.
The derivation of all indices begins with treating a participant’s 

ductions as a collection of eight vectors d
���

with magnitudes and 
directions d dMAG DIR@( ) and with origins of 0 0,( ) representing 

primary gaze. Each vector’s direction and magnitude are derived from 
the rotational axes (n) and angles (θ ) identified during optimization 
and are expressed in degrees. Two general operations are then 
performed on each eye’s collection of ductions: integration within the 
boundaries enclosed by the ductions is used to derive areas 
representative of movement extent and averaging of a participant’s 
duction vectors is performed to derive vector averages indicative of 
symmetry. The right- and left-eye’s indices are denoted by OD (oculus 
dexter) and OS (oculus sinister) subscripts.

2.7 Area

Benchmark IV: the right and left motor fields are equivalent.
Benchmark V: the motor discrepancy magnitude is smaller than 

the gaze discrepancy magnitude.
Our indices of area ask, “what is each eye’s total range of motion” 

and “are they the same?” The motor fields (MFOD  and MFOS ), first 
computed by Rowe and Hanif (2011), are the intraocular areas 
enclosed by all ductions. We  chose this name to compliment the 
terminology expressing the total extent of sensory space (i.e., the 
visual field). The similarity of the motor fields is captured by the motor 
and gaze discrepancies (MDisc and GDisc) which compare the extent 
of “matching ductions” (e.g., adduction, abduction, elevation…) or 
matching gazes (e.g., leftward, rightward, upward…) between the eyes.

The motor fields are derived by drawing a border around the tips 
of each participant’s duction vectors (Eq. 6). This creates an enclosed 
polygon whose area is the raw motor field (Eq.  7). MATLAB’s 
polyshape  and area  functions were used for each respective step. 
We then express the motor fields relative to the group mean to avoid 
the use of non-intuitive units (i.e., degrees squared) and to center the 
values about one (Eq. 8). Evaluation of the motor field then allows one 
to determine whether the extent of motor space is less than or greater 
than the population average. The motor and gaze discrepancies are 
derived by superimposing the motor fields and identifying the relative 
proportion of non-overlapping (i.e., monocular) areas. In practice, this 
is accomplished with set theory operations which first take the 
difference between the motor field polygons and then divide the sum 
of monocular areas by the combined area of both motor fields. The left 
eye’s polygon is reflected about the vertical axis prior to computation 
of the motor discrepancy to allow the comparison of matching 
ductions (Eqs  9, 10). The gaze discrepancy instead compares the 
motor fields “as they are” (Eq. 11). The motor and gaze discrepancy 
values are thus bounded between zero and one: a value of zero is 
obtained when there is complete overlap between the superimposed 
motor fields (no discrepancy) whereas a value of one is obtained when 
there is no overlap between the superimposed motor fields 
(maximum discrepancy).

 shape polyshape d n= ( )→


1  (6)

 MF area shapeRAW = ( ) (7)

 
MF MF

mean MF
i

N
=

( )→1  
(8)

TABLE 1 Framework of summary indices.

BOUNDARIES Magnitude of movement in a single direction

AREA What is the total magnitude of movement across all 

directions?

Motor fields (MFOD, 

MFOS )

Monocular area enclosed by all ductions

Discrepancies

(MDisc, GDisc)

Proportion of “monocular only” areas obtained when 

comparing the motor fields; either matching ductions or 

gazes compared

SYMMETRY Is movement magnitude the same in all directions?

Muscle biases

(MBOD
� ����

, MBOS
� ����

)

Magnitude of monocular asymmetry and direction of 

smallest / largest ductions

Differences

(MDiff
� �������

, GDiff
� �������

)

Magnitude of interocular asymmetry and direction of 

smallest / largest difference in ductions; either matching 

ductions or gazes compared

The framework’s indices summarize movement patterns (area and symmetry). Movement 
patterns provide a global view of intraocular (e.g., muscle biases, motor field) and interocular 
(e.g., differences and discrepancies) motility which is not always apparent when viewing 
individual ductions alone.
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 shape x yOS REFLECTED OS OS− = ∗ −( )1,  (9)
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shape shape
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=
− ∪

−
−

−
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( ee
area shape area shape
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OD OS REFLECTED
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GDisc
shape shape shape shape

area shape
OD OS OS OD

OD
=

−( )∪ −( ) 
∑ ( )) ( ) ,area shapeOS  

(11)

The combination of motor fields and discrepancy values are 
informative of both normal and abnormal ocular-motor function. 
First, the motor fields of non-strabismic participants should 

be equivalent because the total magnitude of ductions is similar in 
each eye. Next, because the magnitude of matching ductions (i.e., 
adduction in the right-eye vs. adduction in the left-eye) are more 
similar than the magnitude of matching gazes (i.e., leftward in the 
right-eye vs. leftward in the left-eye), the magnitude of the motor 
discrepancy should be smaller than that of the gaze discrepancy. This 
is schematically illustrated in Figures  3C,D. The amount of 
“non-overlap” is minimal when comparing the shape of the right eye’s 
ductions to the shape of the left eye’s reflected ductions (the motor 
discrepancy) whereas the amount of “non-overlap” is larger when 
computing the gaze discrepancy. Regarding motility defects, because 
unilateral defects will always produce a smaller and differently shaped 
motor field in one eye, they are characterized by the presence of 
motor field asymmetry and resultantly large motor and gaze 
discrepancies. The opposite is true for some types of bilateral defects 
in which equivalent motor field reductions may present with either a 

FIGURE 2

Summary indices reveal the laterality and type of ocular motility disorders (A-F). The amalgamation of area (shaded areas) and symmetry (arrows and 
circles) indices uniquely characterizes the laterality (monocular vs. binocular) and type (single, synergists, agonists, or complete) of motility defects. 
Red, blue, purple, and black shaded areas represent the right and left motor fields, the motor discrepancy, and the gaze discrepancy, respectively. 
Similarly, the red, blue, purple, and black and arrows represent the right and left muscle biases, the muscle difference, and the gaze difference. Arrows 
represent vectors with non-zero magnitude whereas circles represent vectors with no magnitude.
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large motor [e.g., gaze palsies (Strupp et al., 2014)] or gaze [e.g., 
vergence palsies (Ohtsuka et al., 2002)] discrepancy.

2.8 Symmetry

Benchmark VI: the muscle bias vectors should be equivalent in 
magnitude but opposing in direction.

Benchmark VII: the magnitude of the muscle difference vector 
should be smaller than the magnitude of the gaze difference vector.

Our indices of symmetry ask, “in which directions are ductions 
smallest and largest” and “in which directions are interocular 
differences smallest and largest?” Each index consists of two vectors: 
one pointing towards the largest value (pro) and the other pointing 
towards the smallest value (anti). Each of the symmetry indices can 
thus be considered dipoles which show the meridian along which 
duction magnitudes or their interocular differences vary most. The 
muscle biases (MBOD

� ���
 and MBOS

� ���
) show the meridian along which 

duction variability is greatest. Ductions are the result of forces exerted 
by multiple extraocular muscles, so in this spirit, the name “muscle 
bias” refers to the directions in which the collective forces are smallest 
or greatest (Kushner, 2006). The muscle difference (MDiff

� �������
) and gaze 

difference (GDiff
� ������

) instead show the meridian along which the 
magnitude of matching ductions or matching gazes vary most.

The muscle bias vectors are computed by first normalizing a 
participant’s ductions d

���
: all vectors are divided by the magnitude of 

the largest vector (Eq. 12). This set of vectors, d N
���

, has a range of 
magnitudes which lie between zero and one. Second, the vector 
average of a participant’s normalized vectors is computed: this is the 
pro-muscle bias MBPRO

� ���
 (Eq. 13). Multiplying the components of 

MBPRO
� ���

 by −1.0 produces the opposing anti-muscle bias vector 
MBANTI
� ���

 (Eq.  14). The initial normalization highlights 
intraparticipant duction asymmetries independent of the absolute 
duction magnitudes. The magnitude and direction of the muscle bias 
vectors are uniquely informative. The magnitude of the vectors, 
bounded between zero and one, represents the relative degree of 
intraocular asymmetry. The lower bound of zero occurs when a 
participant’s ductions are equivalent in magnitude and perfectly 
opposing in direction (minimal bias) and the upper bound of one 
occurs when a participant’s ductions are all executed in the same 
direction (maximal bias). The direction of the pro-muscle bias shows 
where duction magnitudes are typically largest whereas the direction 
of the anti-muscle bias shows where duction magnitudes are 
typically smallest.

 
d d

dN
��� �

�
� �

=
( )max  

(12)

FIGURE 3

Hypothesized patterns of normal ductions. Ductions are measured by asking a participant to look “as far as possible” in multiple directions, denoted by 
rope guides, with their right (A) and left (B) eyes. Ductions (red and blue solid lines) of both eyes are anisotropic: depressive movements are typically 
largest. This asymmetry is captured by the muscle biases (red and blue solid arrows) and anti-muscle biases (red and blue translucent arrows) which 
point towards the largest and smallest movements, respectively. The motor fields (red and blue translucent shading) are the areas enclosed by all 
ductions. Interocular comparisons show the degree of “mismatch” between matching ductions (C) or gaze positions (D). The muscle differences 
(purple arrows) and gaze differences (black) show where matching ductions or matching gazes are most different, whereas the motor discrepancy 
(translucent purple shading) and gaze discrepancy (translucent black shading) hold the total area of mismatch.
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 MB d d d nPRO N N Nn

� ��� � � �
= …( )1 2

, , /  (13)

 MB MBANTI PRO
� ��� � ���

= − ∗1  (14)

The muscle difference and gaze difference vectors are also 
derived via vector averaging. The distinction is that now vectors 
from each eye (d dOD OS

��� ���
, ) are compared to each other. There are 

several steps for each computation. First, for the muscle difference, 
the left eye’s vectors are reflected about the y-axis to allow 
comparison of matching ductions (Eq.  15). Second, vector 
subtraction is performed: the absolute difference between vectors is 
taken and then assigned the sign of the right eye’s components. This 
creates a set of difference vectors, diff MUSCLE

� ����
, whose magnitudes 

represent the absolute differences in matching duction magnitude 
and whose directions maintain the right eye’s conventions (Eq. 16). 
The difference vectors are then normalized by dividing by the 
largest difference vector magnitude (Eq. 17). Like the muscle biases, 
this normalization highlights differences in duction differences 
independent of their absolute size. The pro-muscle difference is 
then computed by taking the vector average of the difference 
vectors, and the anti-muscle difference is formed by multiplying the 
pro-muscle difference components by −1.0 (Eqs  18, 19). The 
computation of the gaze difference vectors is equivalent to that of 
the muscle difference vectors except the left eye’s collection of 
vectors are not reflected about the y-axis prior to interocular 
comparison (Eq. 20). Then, after normalizing the difference vectors 
(Eq. 21), vector averaging is performed to compute the pro-gaze 
difference and the anti-gaze difference (Eqs 22, 23). The utility of 
the gaze difference vectors lies in their correlation to experiential 
measurements and functional adaptations. This is because diplopia 
should be  most manifest in the direction where interocular 
differences in matching gazes are largest (GDPRO

� ���
) and least 

manifest where interocular differences between matching gazes are 
smallest (GDANTI

� ���
). The gaze difference vectors thus reveal the 

direction in which habitual head turns may be adopted and the base 
direction in which prism may be  prescribed to minimize 
symptoms (GDPRO

� ���
).

 d d dOS OS OS
REFLECTED X Y

���
= ∗− 1,  (15)

diff abs d d sign d
abs d

MUSCLE ODX OS X ODX

O

REFLECTED
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DDY OSY ODYd sign d
REFLECTED
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 GDiff diff diff nPRO GAZE GAZEn

� ������ � ���� � ����
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1
, /  (22)

 GDiff GDANTI PRO
� ������ � ���

= − ∗1  (23)

The indices of symmetry are further informative regarding the 
spectrum of ocular-motor function. The anisotropic ductions of 
non-strabismic participants should produce muscle biases equivalent 
in magnitude but opposing in direction because the largest ductions, 
typically depression and adduction, are equivalent between the eyes 
but oriented oppositely about the vertical axis. Thus, as with the 
motor fields and discrepancies, one would expect to find muscle 
difference vectors with magnitudes less than that of the gaze 
difference vectors because matching ductions are more similar in 
magnitude than that of matching gazes. The values of the motor fields 
and discrepancies can indicate abnormal ductions; however, do not 
show “where” the problem lies. This is accomplished by the indices of 
symmetry which “point towards” the affected directions. For example, 
coincidence of the muscle bias, muscle difference, and gaze difference 
directions is strongly suggestive of movement limitation in a single 
direction because the direction of the smallest duction (anti-muscle 
bias) is the direction where interocular differences are largest 
(pro-muscle and pro-gaze differences). The coincidence of all vector 
magnitudes is instead suggestive of movement limitation in opposing 
directions because the lack of intraocular or interocular asymmetry 
results in muscle bias, muscle difference, and gaze difference vectors 
with magnitudes near zero. For bilateral palsies, comparison of each 
eye’s muscle bias vectors can also impart differentiation between 
motility defects: the individual muscle bias directions will be either 
coincident or opposing when the same or different movement 
directions are impacted in each eye. In both cases, small magnitude 
difference vectors support the diagnosis of gaze and/or muscle 
palsies: there is a difference in movement extent that is symmetric 
about primary gaze.

2.9 Cross-sectional and longitudinal 
difference criteria

The initial two steps of our duction recording protocol produced 
estimates of a participant’s individual ductions as well as their overall 
area and symmetry. This data can be used for cross-sectional analyses 
which compare an individual to a normative population. How does a 
clinician next determine if these quantifications are indicative of 
longitudinal changes (i.e., pathological progression or therapeutic 
improvement)? The final component of our recording protocol sets 
this standard using a statistic called the minimal detectable change 
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(MDC). The MDC, also known as the within-subject standard 
deviation, represents the extent by which a value must change to 
surpass the anticipated magnitude of measurement error (Beekhuizen 
et al., 2009; Negrete et al., 2010; Furlan and Sterr, 2018; Piedrahita-
Alonso et al., 2022). It is expressed in the unit of measurement (e.g., 
for ductions, in degrees, and for indices, arbitrary units) and is derived 
from the standard error of measurement (Eq. 24) (Piedrahita-Alonso 
et al., 2022). The MDC is preferable to other statistics [e.g., coefficients 
of repeatability (Dolman et al., 2012)] because it is not biased by the 
magnitude of interparticipant variability (Piedrahita-Alonso 
et al., 2022).

 MDC SEm95 1 96 2= ∗ ∗.  (24)

The z-score of 1.96 utilized in our calculation establishes a 95% 
confidence interval for the anticipated differences, while the radical 
term at the end accounts for the uncertainty associated with 
repeated measurements.

The objective of our final set of computations was to compute a 
distribution of MDC values for individual ductions, indices of area, 
and indices of symmetry. These computations establish the magnitude 
by which a participant’s ductions, movement area, or movement 
symmetry must change to exceed fluctuations expected from 
measurement error. To compute the range of possible MDC values for 
each metric, we performed multiple iterations of repeated measures 
ANOVAs on subsets of randomly selected data. This approach 
produces the standard error of measurement, necessary for 
computation of the MDC, via the repeated measures ANOVA’s mean 
squared error (Eq. 25) (Atkinson and Nevill, 1998).

 
SEm MSE SSE

df= =
 

(25)

For duction magnitudes, we created 20 × 2 matrices holding two 
randomly chosen magnitudes selected from each of the twenty 
participant’s collection of ductions. This was done for each duction 
and eye; therefore, there were a total of sixteen 20 × 2 matrices each 
holding two out of the possible three least-error duction magnitudes 
within each duction and eye combination. A repeated measures 
ANOVA was run on each matrix to derive the mean squared error, 
standard error of measurement, and thus a single MDC value. The 
order of each participant’s magnitudes and directions were next 
shuffled and the preceding steps repeated 1,000 times to create a full 
distribution of possible MDC values. A similar approach was used to 
compute the MDC values for duction directions and for each index. 
For the indices of area and symmetry, the 20 × 2 matrices were 
formed by randomly selecting one rotation estimate from each of the 
eight ductions to compute each respective index. One more random 
selection was then performed to create a 20 × 2 matrix containing 
two estimates of each index for each participant. A repeated measures 
ANOVA was then run, and random selection repeated, until 1,000 
estimates of the MDC for each index had been computed. Shuffling 
was performed to ensure that most sequential combinations within 
and across participants were sampled. We did not set a benchmark 
for this section of our protocol, as MDC values have not yet been 
established for individual ductions. Furthermore, neither normative 
ranges nor MDC values have yet been defined for motility patterns. 

For a flow chart schematizing the entire protocol, please see 
Supplementary Figure S2.

3 Results

3.1 Image processing

Figure 4 shows the average input to our image processing pipeline: 
a collection of one-thousand images collected in primary (1 frame 
from each eye) and eccentric gazes (3 frames from each of the 8 
ductions and eyes) from twenty participants. Our benchmark of gaze-
independent model metrics was nearly achieved. Our mask R-CNN’s 
overall metrics of accuracy (98.94%), sensitivity (94.50%), specificity 
(99.31%), and precision (91.93%) show that it successfully segmented 
the iris, and thus limbal boundaries, of our participants (see Eqs 1–4). 
The sensitivity of the mask R-CNN varied slightly across gazes: it was 
highest in upward (98%) and lowest in downward (86%) gaze 
positions. The precision was similarly variable: it was highest for 
ductions executed down and right (95%) and lowest for those executed 
straight down (89%). This shows that downward movements had the 
highest number of false negatives (missed pixels) and false positives 
(misidentified pixels), respectively. An analysis of mean pixel locations 
in each category showed that this is because the model tended to 
underestimate the vertical location of limbus boundaries for 
downward movements: the mean vertical location of missed pixels 
was 260.11 (closer to the bottom of image) and that of mismarked 
pixels was 251.89 (closer to primary gaze). We used the average pixel 
to millimeter conversion to compute that this ten-pixel difference 
could account for approximately 0.70° of underestimation. The 
predominance of these mislabelings suggests that future iterations of 
the model may need to be exposed to, or “trained on,” a more extensive 
set of gaze downward photos.

There was also evidence of limited gaze-dependence in our error 
computations. The group mean error of the selected rotations (OD: 
0.35 mm, OS: 0.40 mm) was significantly smaller than that of the 
discarded rotations (OD: 0.46 mm, OS: 0.51 mm) in each eye 
(p < 0.001), confirming that the selection process did indeed remove 
estimates with the most error. The error between observed and 
estimated limbus boundaries was largest in adduction for both eyes 
(OD: 0.52 mm, OS: 0.69 mm). A comparison of the observed and 
estimated coordinates for adductive movements showed that the 
magnitude of adduction was likely underestimated in each eye. This 
is because the estimated ellipses for adductive movements were shifted 
in the abductive direction in each eye [i.e., rightward (0.21 @ 171.63°) 
and leftward (0.37 @ 0.54°) in the right and left eyes, respectively]. 
This matched a general trend for estimated ellipses to be displaced 
more rightward in the right eye and more leftward in the left eye when 
compared to the marked boundaries. The amount of potential error 
induced by these discrepancies was slightly larger than of that imposed 
by segmentation inaccuracies (~ 3° in both eyes).

3.2 Cross-sectional and longitudinal 
differences in duction patterns

Our protocol captured the interparticipant variability and 
anisotropy characteristic of ocular ductions. This is shown by the 
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group mean magnitudes and directions of the individual ductions, the 
group mean area indices, and the group mean symmetry indices. 
We show in the following sections that the latter two groups of data 
are convenient ways of summarizing multiple movements into 
singular metrics.

The top row of Figure  5 shows the distribution of duction 
magnitudes and directions for all participants. Duction magnitudes 
ranged between a minimum of 11.25° to a maximum of 62.87° across 
all directions, eyes, and participants. Participants with the overall 
smallest and largest ductions had mean magnitudes of 24.82° and 
49.46° across all directions and both eyes, respectively, with the mean 
duction magnitude being equivalent between the eyes for all 
participants (95% CI OD: 38.65–41.82°, OS: 38.70–41.36°, p = 0.75). 
The mean direction of each duction was consistent with the instructed 
meridians. Adductive (95% CI OD: 45.00–48.31°, OS: 46.90–50.50°) 
and adductive-depressive (95% CI OD: 40.78–44.01, OS: 41.87–
45.84°) movements tended to be the largest for both eyes. Each eye’s 
ability to move upward was smallest. (95% CI OD: 29.03–33.58°, OS: 
28.18–32.69°). This amount of normative variability in duction 
magnitude across participants and duction directions matches what 
has been previously documented with both image processing (Lim 
et al., 2014a; Lee et al., 2019; Lou et al., 2022) and psychophysical 
techniques (Shechtman et  al., 2005). The bottom row of Figure  5 
shows that the MDC values we computed for duction magnitude were 
instead remarkably consistent across ductions and tended to have 
values ranging between 4° and 8°. This means that our participants 
tended to repeatedly execute similarly sized ductions and that our 
protocol was able to measure each direction with similar precision. 
This range sets a threshold for signaling clinically significant 
longitudinal change: if a participant’s individual movement extent 
changes by >4°, further investigation is warranted. The MDC values 
for duction direction, albeit larger, can similarly be used to detect 
longitudinal changes in movement direction.

The area encompassed by the motor fields and the total area of 
discrepancy between them also conformed to our a-priori benchmarks 
(Figure 6). Each eye’s total movement extent was similar: the raw 

motor fields were not significantly different when compared between 
the right- and left-eyes (95% CI MFRAWOD

: 4309.15–4973.65 deg. 
squared, MFRAWOS

: 4253.88–4822.28 deg. squared, p = 0.47). Figure 6 
shows that, when normalized, our population’s right and left motor 
fields spanned values between ~15% smaller and larger than the group 
average (95% CI MFOD : 0.86–1.14, MFOS : 0.88–1.12). This is shown 
by the “halo” of translucent shading in the peripheral regions of the 
motor fields in Figures 6A,B. The distribution of motor discrepancy 
values was not significantly smaller than the gaze discrepancies as 
expected: their confidence intervals overlapped (95% CI MDisc: 0.12–
0.17, GDisc: 0.11–0.16). Their similarity is also shown by the average 
shapes via which each index was derived: the motor and gaze 
discrepancy shapes all resembled thin lines traversing high magnitude 
regions of the motor fields. The amount by which each of the area 
metrics need to change for clinical significance is shown in Panel 
I. Importantly, because each of the MDC values is smaller than that of 
the confidence intervals (and thus the normative ranges), it is likely 
that our protocol could detect baseline deviations in total movement 
area prior to these metrics becoming abnormal.

The muscle bias and difference vectors bring forward the 
anisotropy noted in individual ductions (Figure 7). The pro-muscle 
bias vectors tended to point inward and downward, thereby 
highlighting the relative “strength” of adductive and downward 
movements in each eye (Figure 7A, 95% CI MBPROOD

� ���
: 0.08–0.10 @ 

255.70–304.15°, Figure 7B, MBPROOS
� ���

: 0.10–0.12 @ 193.89° - 231.11°). 
This simultaneously highlights the relative “weakness” of abductive 
and upward movements (95% CI MBANTIOD

� ���
: 0.08–0.10 @ 75.70–

124.15°, MBANTIOS
� ���

: 0.10–0.12 @ 13.89°  - 51.11°). The average 
difference between a participant’s right vs. left muscle bias directions 
was close to the 90° expected by the approximate mirror symmetry of 
the extraocular muscles (95% CI: 62.52–77.43°), thus meeting our 
benchmark of opposing muscle bias directions. Further, because the 
muscle bias magnitudes were equivalent in size (p = 0.20), these 
findings show that the asymmetry in extraocular muscle function was 
similar between the eyes. The pro- and anti-muscle difference vectors 
(Figure  7C, 95% CI MDiff PRO

� �������
: 0.13–0.16 @ 331.83–28.60°, 

FIGURE 4

Average images captured for each duction. Each square shows the group mean photo obtained after averaging within and then across participants for 
all ductions in each eye (red borders  =  right eye, blue borders  =  left eye). Annotations show the gaze in which the eyes were directed.

https://doi.org/10.3389/fnins.2024.1324047
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Willeford et al. 10.3389/fnins.2024.1324047

Frontiers in Neuroscience 11 frontiersin.org

MDiff ANTI
� �������

: 0.13–0.16 @ 151.83° - 208.60°) show that adductive vs. 
abductive movements tended to be the most vs. least different when 
compared between a participant’s eyes. The variability in adduction 
magnitude has been noted previously and may be  attributable to 
occlusion of the opposing visual field one’s nose (Clark and Isenberg, 
2001). The group mean pro- and anti-gaze difference vectors told a 
similar story: leftward vs. rightward movements were most vs. least 
different following interocular comparison (Figure  7D, 95% CI 
GDiff PRO
� ������

: 0.14–0.21 @ 318.18–17.13°, GDiff ANTI
� ������

: 0.14–0.21 @ 
138.18° - 197.13°). This suggests that a participant’s ability to adduct 
with their right-eye or abduct with their left-eye may have been most 
variable during data collection. The gaze difference vectors did have 
slightly larger mean magnitudes (0.18 vs. 0.14); however, were not 
significantly different when compared to the muscle bias vectors 
(p = 0.06). This is in line with the equivocal comparisons found in our 
measures of area and again suggests that the normal difference 
between matching ductions and matching gazes may be  small in 
non-strabismic participants. The final two panels of Figure 7 show the 
MDC values for our symmetry measures segregated by vector 
magnitude and direction. Figure 7F shows that our protocol is least 

sensitive to changes in the mean direction of asymmetry. First, because 
the muscle biases would need to change by at least ~90° to 
be  longitudinally detected, small changes in asymmetry could 
be  missed. Similarly, the >180° values computed for the muscle 
difference and gaze difference vectors suggest that the derivation of 
these vector directions was highly sensitive to the individual ductions 
used to compute them. Reduction of the MDC values, and thus the 
measurement error inherent to our protocol, is explored in the 
Discussion section below.

4 Discussion

Our protocol is the first capable of automatically describing and 
detecting cross-sectional and longitudinal differences in the pattern 
of one’s ocular ductions. This was accomplished by integrating image 
acquisition, machine learning, mathematical optimization, summary 
statistics, and criterion setting. Comparison of the resultant image 
segmentations, rotation optimizations, area and symmetry 
descriptions, normative ranges, and change thresholds to our 

FIGURE 5

Normative and minimal detectable change (MDC) values for duction magnitude and direction. Panels in the top row show the mean magnitude and 
directions (solid square) with confidence intervals (solid lines, +/− 1.96 SEM) for the right (A) and left (B) eyes. Data from individual participants are 
shown as transparent circles. The magnitude is denoted by the grey numbers (degrees) and the direction, in increments, by the labels on the 
circumference of each panel. Panels in the bottom row show the MDC values for each duction’s magnitude (C) and direction (D); the error bars are 
confidence intervals representing the mean +/− 1.96 SEM MDC values derived from sequential resampling.
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benchmarks establish the validity of our protocol and show that it can 
produce repeatable quantifications of a participant’s pattern 
of ductions.

The primary objective of this manuscript is to demonstrate that 
our proposed protocol extends the number of ways in which 
clinicians and scientists may analyze ocular motility disorders. 
Motility defects often present with stereotypical movement patterns, 
yet, there have been limited attempts to summarize and quantify 
them. This scarcity of numeric ocular motility data has left 
hypotheses regarding the etiology and natural history of many 
paralytic strabismic disorders largely untested. For example, it is 
unclear how compressive vs. ischemic lesions of cranial nerves 
differentially impact ocular motility. A retrospective case report 
showed that most pupil-sparing ischemic lesions imparted diffuse 
ocular motility defects whereas compressive lesions imparted focal 
defects (Sanders et  al., 2001). If true, this differentiation could 
provide clarity to the still debated question of ordering costly 
neuroimaging in presumed ischemic nerve palsies (Chou et al., 2004; 
Volpe and Lee, 2014). Our framework has the power to make this 
differentiation because each pattern manifests as a different set of 
summary statistics. Unilateral diffuse motility defects are 
characterized by a small motor field and large discrepancies, whereas 
large magnitude muscle bias and difference vectors are instead the 
distinguishing feature of focal defects. The recovery phase of ocular 
pareses can also benefit from quantification. This is because the 
resolution of unilateral ocular pareses is typically judged using 
symptom-based criteria (Kim et  al., 2018). Using the MDC to 
evaluate the evolution of a patient’s area or symmetry indices 
towards their pre-paresis values provides a firm criterion against 
which to judge recovery. Further, performing large-scale studies of 
both range of motion and eye movement dynamics throughout the 
recovery phase has the potential to make past intuitions about the 
natural history of pareses [e.g., “recovering muscles can transmit 
high, but not low, frequency discharges” (Wong et  al., 2006), 
“ischemic palsies have the highest recovery rate,” “ischemic palsies 
resolve faster” (Kim et al., 2018)] concrete. Similar diagnostic and 

prognostic analyses are warranted for other conditions in which 
anecdotal evidence is used to “digest” variable motility presentations 
(e.g., thyroid ophthalmopathy (Salvi et al., 2015; Campi et al., 2021), 
myasthenia gravis (Cleary et al., 2008; Almog et al., 2016; de Meel 
et al., 2019), multiple sclerosis (Serra et al., 2018), and Miller-Fisher 
syndrome (Ryu et al., 2019)).

Objective motility measurements also have the potential to shed 
light on the natural history and etiology of non-paralytic strabismus. 
This is because the normal appearance of ductions in this patient 
population may have obscured subtle extraocular muscle 
asymmetries as causative factors. For example, it is not clear why 
current optometric measurements fail to predict which adults 
undergo heterophoric decompensation later in life (Jenkins et al., 
1989). Similarly, although the presence of congenital exotropia and 
esotropia has long been assumed to abnormal brain circuitry (Quoc 
and Milleret, 2014); it is possible that the biomechanical properties 
of the extraocular muscles are instead a causative factor in strabismic 
development in these two groups (Moon et al., 2021). Quantification 
of duction area and symmetry in both groups can “crack open” both 
lines of investigation. The most exciting potential application of our 
protocol is to detail the efficacy of pharmacological-, surgical-, or 
therapy-based interventions via motility patterns in both paralytic 
and non-paralytic strabismus populations (Ciuffreda, 2002; Kapoor 
and Ciuffreda, 2002; Salvi et al., 2015; Özkan, 2016). This is critical 
to establish whether observation, surgery, vision therapy, or a 
combination of all three is optimal for recovery and maintenance of 
extraocular muscle function.

There are several minor shortcomings to address before our 
protocol is adopted. First, it is necessary to collect data in a larger 
segment of the non-strabismic population. The relatively small sample 
size used in the current investigation did not enable any of our indices 
to be stratified by demographics or biometrics. This is necessary to 
create a true normative database against which cross-sectional 
comparisons can be  made. Second, we  also plan on performing 
longitudinal data collection to determine if and how the indices of 
non-strabismic participants change over time. We  compared a 

FIGURE 6

Normative and minimal detectable change (MDC) values for duction area. Top panels show the average shape of each participant’s right- (A) and left-
eye (B) motor fields, motor discrepancies (C), and gaze discrepancies (D). The individual shapes are set to have a transparency of 1 / number of 
participants; therefore, the relative opacity of each shape shows regions common to a small (translucent) vs. large (opaque) number of participants. 
The bottom panels show the distribution of motor field (E,F), motor discrepancy (G), gaze discrepancy (H), and MDC values (I) for each index of area. 
The group mean value for each index is indicated with colored text in panels (E–G). The error bars in Panel (I) are confidence intervals representing the 
mean +/− 1.96 SEM MDC values derived from sequential resampling.
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participant’s ductions and indices collected within a single recording 
session; however, it is also critical to establish our protocol’s 
repeatability over longer time scales before investigations of motility 
disorders commence. This is important because the ocular range of 
motion becomes smaller with age (Shechtman et al., 2005; Lee et al., 
2019). Therefore, pathological changes in ductions, their area, or 
symmetry must first be  differentiated from normal age-expected 
changes (e.g., reduction in elevation and thus smaller motor fields and 
a shift in muscle biases) for accurate diagnosis. Last, because 
ophthalmic speculums are uncomfortable, it may be more practical to 
have clinicians hold the patient’s eyelids while imaging is performed. 
We chose to use a speculum so that the position of the bullseye sticker 
was not obscured or moved by the clinicians fingers; however, because 
the amount of bite-bar stabilized head movements were small, 
sacrificing post-hoc correction for patient comfort may be  a 
compromise worth making. Foregoing the semi-invasive nature of the 
bite bar may be a similar compromise worth making if clinicians deem 
a combined chinrest forehead rest capable of stabilizing the head.

The current experiment has laid a foundation for several future 
lines of research. We first plan on comparing the rotational estimates 
derived from our protocol to those derived from a video-based eye 
tracker to determine the relative accuracy and precision of our image 
processing pipeline. Similarly, comparing our protocol’s indices and 
MDC values to judgements issued by strabismologists can provide a 
complementary analysis which highlights the relative strengths of 
automated vs. subjective diagnoses. Placing our proposed image 
processing approach in line with either video-based trackers and/or 
expert clinicians necessitates including several minor but important 
modifications to our protocol in the future (e.g., stringent control of 
fixation using computerized displays, continued training to maximize 
segmentation accuracy, and quantitative comparison of optimization 
algorithms to minimize error). These modifications will reduce the 
measurement error and thus produce MDC values reflective of the 
true variability inherent to large ocular rotations. Second, we plan to 
continue creating and analyzing statistics which describe and capture 
changes in motility patterns. The indices laid out in this manuscript 

FIGURE 7

Normative and minimal detectable change (MDC) values for duction symmetry. The distributions of muscle bias, muscle difference, and gaze 
difference vectors are shown in panels (A–D), respectively. Filled vs. unfilled circles are data from individual participants’ pro- and anti-vectors, 
respectively. Confidence intervals (solid lines, +/− 1.96 SEM) are shown as either solid (pro) or translucent (anti) arcs and further differentiated by 
adjacent text containing labels and respective group mean values. The bottom row’s panels contain MDC values for each index’s magnitude (E) and 
direction (F); the error bars are confidence intervals representing the mean +/− 1.96 SEM MDC values derived from sequential resampling.
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are a starting point from which development of others can proceed. 
For example, the rigid assumption that primary gaze is the location 
from which all ductions emanate can be alleviated by instead finding 
the centroid of each participant’s motor field, a practice which may 
need to be utilized in paralytic strabismics unable to move their eyes 
into primary gaze. Similarly, in addition to using vector averages, 
computing the minimum and maximum movement vectors may 
be  more useful for capturing complex motility patterns. These 
computational explorations, in conjunction with accurate and precise 
measurement of strabismic eye movements, will identify the set of 
pattern descriptors and dynamic movement features most predictive 
of pathology and produce diagnostic criteria capable of sensing small 
deviations in ocular motility.

The “clinical eye” has long been used to ascertain a patient’s 
ocular-motor status. Recent and continuing calls to produce a valid 
and reliable estimate of ocular rotations have gradually shown that this 
tradition, while irreplaceable, cannot provide the accurate 
measurement, efficient documentation, and ease of communication 
imparted by standardized techniques (Lea and Gernardt, 1995; 
Dolman et al., 2012). Now, it is imperative to support the development 
of an image processing device incorporating our proposed techniques, 
in order to align the study of ocular motility with other advancements 
in eye care. As the integration of image processing and machine 
learning continue to shape clinical practice (Wang et al., 2023), it is 
important to embrace these technologies and use the information 
provided by them to determine if one’s eye movements differ from 
others or from their past selves.
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