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The brain topology highly reflects the complex cognitive functions of the

biological brain after million-years of evolution. Learning from these biological

topologies is a smarter and easier way to achieve brain-like intelligence with

features of e�ciency, robustness, and flexibility. Here we proposed a brain

topology-improved spiking neural network (BT-SNN) for e�cient reinforcement

learning. First, hundreds of biological topologies are generated and selected

as subsets of the Allen mouse brain topology with the help of the Tanimoto

hierarchical clustering algorithm, which has been widely used in analyzing key

features of the brain connectome. Second, a few biological constraints are

used to filter out three key topology candidates, including but not limited

to the proportion of node functions (e.g., sensation, memory, and motor

types) and network sparsity. Third, the network topology is integrated with the

hybrid numerical solver-improved leaky-integrated and fire neurons. Fourth,

the algorithm is then tuned with an evolutionary algorithm named adaptive

random search instead of backpropagation to guide synaptic modifications

without a�ecting raw key features of the topology. Fifth, under the test of

four animal-survival-like RL tasks (i.e., dynamic controlling in Mujoco), the BT-

SNN can achieve higher scores than not only counterpart SNN using random

topology but also some classical ANNs (i.e., long-short-termmemory andmulti-

layer perception). This result indicates that the research e�ort of incorporating

biological topology and evolutionary learning rules has much in store for

the future.

KEYWORDS

spiking neural network, brain topology, hierarchical clustering, reinforcement learning,

neuromorphic computing

1 Introduction

The mammalian brains, ranging from the simpler mouse brain to the more complex

monkey and human brains, share some key functional circuits or brain regions to

support different cognitive functions, including but not limited to sensation, memory, and

decision-making. The brain network has been widely discussed in recent decades for its

complexity (Luo, 2021). For example, the mouse brain network connectome at various

scales has been largely examined, including the neuron-scale imaging of a cubic millimeter
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of mouse cortex (Yin et al., 2020), the mesoscale connectome

of the entire mouse brain (Oh et al., 2014), and the macroscale

network-motif topology analysis (Zhang et al., 2017). Many key

topologies related to cognitive functions have been identified with

the help of new optical or even electron microscopy, along with the

well-designed experimental paradigms (Luo, 2021).

The mouse brain contains at least 213 brain regions, and the

sparseness of the entire brain is <36% (Oh et al., 2014), which

makes it a good network reference to guide the design of spiking

neural networks (SNNs) in especially neuromorphic computing

manners (Maass, 1997). Until now, many key biological features

have been incorporated into SNNs, including but not limited to

neuronal heterogeneity, feed-forward or recurrent connections,

and multiscale plasticity (Izhikevich, 2004; Zenke and Gerstner,

2017).

Different from artificial neural networks (ANNs), whereby

single artificial backpropagation (BP) is used for network learning

(Lillicrap et al., 2020), the learning algorithms in SNNs are

various, such as plasticity-based algorithms [e.g., the spike-timing-

dependent plasticity (Dan and Poo, 2004), short-term plasticity

(Zhang et al., 2018), self-backpropagation (Zhang et al., 2021a)],

gradient-based algorithms [e.g., reward propagation (Zhang et al.,

2021b), surrogate gradient (Cramer et al., 2022)], and the

evolutionary algorithms (Bäck and Schwefel, 1993).

However, there is a serious conflict between biological topology

and corresponding learning rules since a predefined topology

will usually be revised or destroyed by gradient or plasticity-

based algorithms (Bellec et al., 2020). Here we run further by

considering some evolutionary algorithms, which have also been

verified efficient in tuning SNNs for their simplicity and efficiency,

and what’s most important, resolving this conflict problem by

selectively pruning some trivial branches in network topology

during learning.

In this paper, the main goal is to incorporate some subsets

of brain topology (BT) into SNNs, and then train them using

an evolutionary algorithm during reinforcement learning (RL)

tasks. The detailed process and contribution of this paper can be

concluded in the following parts:

• Some important subsets of network topology are filtered out

from the source brain topology by considering some biological

constraints. As a result, three key BTs have been generated

from the mesoscale connectome of Allen mouse brain atlas

(Oh et al., 2014) by the Tanimoto hierarchical clustering

algorithm. Different types of BTs are further analyzed by the

distribution of the three-node network motif to answer why

the topology might work from the perspective of intuitive

biological analysis.

• The BT-improved SNNs (BT-SNNs) are designed by

incorporating different types of BTs and SNNs using

numerical solver-improved leaky integrate-and-fire neurons,

whereby an evolutionary-type learning algorithm is used to

efficiently guide the synaptic modification without affecting

key network topology.

• Four benchmark RL tasks in OpenAI Mujoco environment

(Brockman et al., 2016), also with some key features of

animal survival, are used to test the performance of the

proposed algorithm, including MountainCar-v2 (a car learns

to stop at a mountain), Half-Cheetah-v2 (a dog that learns

to run), Humanoid-v2 (a human that learns to run), and

HumanoidStandup-v2 (a human that learns to stand up).

The BT-SNNs have reached a higher average reward than

their counterpart algorithms, including SNNs using random

topologies and classical ANNs, such as long-short-term

memory (LSTM) and multi-layer perception (MLP).

2 Related works

Borrowing key topology knowledge from different animal

brains is challenging, caused by raw data analysis and topology-

informed computation. For the network topology, a copy-and-

paste approach, i.e., copying the structural synaptic connectivity

map of a mammalian brain and pasting it to a three-dimensional

network in solid-state memories of neuromorphic engineering, has

been proposed with the spirit of reverse-engineering the brain

(Ham et al., 2021). Some distilling algorithms try to make an

abstraction of a teacher network to amuch smaller student network,

but with less computational cost and comparable performance

(Han et al., 2015; Hinton et al., 2015). The biological topology-

focused algorithm by using a sub-graph sparse network to replace

a previous global dense one, named as lottery ticket hypothesis, has

been proposed to achieve comparable or even higher performance

(Frankle and Carbin, 2018). Some researchers believe that the

network topology and synaptic weights are two independent

dimensions. Hence, they focus more on learning synaptic weights

and leave the topology fixed with feed-forward, recurrent, or some

scale of sparseness topology. A new study focuses on these two

aspects both by learning weights and topology simultaneously

toward a much more efficient algorithm (Han et al., 2015). Similar

to it, a biological network using C. elegans topology has also been

proposed to achieve higher scores in RL paradigms than those using

random topology, which to some extent, indicates the efficiency of

the biological topology in network learning (Hasani et al., 2020).

SNNs frequently underperform relative to ANNs in handling

complex tasks (Deng et al., 2020). There are studies that apply deep

learning, gradient descent, and backpropagation to biologically

reasonable SNNs (Eshraghian et al., 2023). There are also studies

using neural pruning methods to implement adaptive sparse

learning SNN (Li et al., 2024). Some studies using knowledge

distillation and connection pruning methods to dynamically

optimize synaptic connections in SNN (Xu et al., 2023).

Some studies have instantiated Biological Neuronal Networks

(BNNs) into Recurrent Neural Networks (RNNs) for network

structure exploration (Goulas et al., 2021). Some people also

combine the feature learning ability of CNN with the cognitive

ability of SNN to improve the robustness of SNN (Xu et al.,

2018), and some other works have emulated the brain’s synaptic

connections and dynamic behaviors through Nanowire Networks

(NWNs) to facilitate learning andmemory functions (Loeffler et al.,

2023).

For the learning algorithms under RL tasks, a multiscale

dynamic coding algorithm has been proposed to improve an
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FIGURE 1

The mesoscale connectome of the Allen mouse brain atlas in 213

brain regions. Each dot represents the connectivity strength, with a

color bar aside from the figure to represent the strong (red) or weak

(blue) strength, from each source (y-axis) to target (x-axis) brain

regions in the whole mouse brain (Oh et al., 2014).

SNN on OpenAI Mujoco tasks (Zhang et al., 2022). Besides,

a traditional continuous-time differential learning algorithm has

been proposed for RL tasks containing continuous dynamics

(Doya, 2000). A hybrid learning framework, incorporating SNNs

for energy-efficient mapless navigation, has been proposed and

applied on the neuromorphic hardware (Tang et al., 2020).

However, most of these proposed algorithms overlook the

importance of network topology in learning, especially the

exploration of inter-cluster topological relationships within brain

regions, and neglect some key features by following gradient-

based or plasticity-based algorithms. The further incorporation of

network topology, especially those related to cognitive functions

of sensation, motor, and reward learning, can exhibit more power

on animal-survival-like RL tasks. It is becoming an important

consensus that the topology is at least as important as synaptic

weights to the network performance. Here we employ a hierarchical

clustering algorithm to generate some network topology from the

Allen mouse brain atlas first and then incorporate a standard

evolutionary algorithm to guide the synaptic modification without

using traditional gradient and plasticity-based rules.

3 Methods

3.1 The raw brain topology in Allen mouse
brain atlas

Analyzing a set of biological topologies is usually the first step

to support the following network-topology simulation in neural

networks. Here we select the mesoscale Allen mouse brain atlas

provided by the Allen Institute for Brain Science (Oh et al.,

2014). It contains publicly available resources on brain region

morphology (e.g., the common coordinate framework, CCF) and

mesoscale network topology at sub-brain region scale which covers

bidirectional topology in 213 brain regions.

A 3D model containing at least 213 brain regions is first

constructed based on the mouse brain CCF for visualization,

analysis, and functional simulation (see Section 4 for more

details). The 213 brain regions are separated into three subgroups:

the sensation group, including but not limited to the primary

somatosensory area, primary visual area, primary auditory area,

and accessory olfactory bulb; the motor group, including but not

limited to the primary motor area, dentate nucleus, and motor

nucleus of trigeminal; the left brain regions except the previously

mentioned two groups but related to some key cognitive functions,

including but not limited to the hippocampus for memory, basal

ganglia for reward learning.

The bidirectional connectivity of the whole Allen mouse brain

is shown in Figure 1, containing the mapping connectivity from a

source brain region to a target region in the total 213 brain regions

(Oh et al., 2014). It is easier to find that the connectivity matrix

is much sparser, which is considered the key feature of biological

structures compared to those in recurrent neural networks.

3.2 The Tanimoto hierarchical clustering

The connectivity matrix of the mouse brain atlas (213 × 213

size) is clustered into sub-clusters for an easier simulation. The

Tanimoto clustering algorithm is selected as the main method to

group all connections (Ahn et al., 2010; Kalinka and Tomancak,

2011), which could be concluded as the following Equation 1, where

S(ei,k, ej,k) represents the similarity between links ei,k and ej,k that

share a node k:

S(ei,k, ej,k) =
ai · aj

| ai |2 + | aj |2 −ai · aj
, (1)

where the vector ai = (Ãi1, ..., ÃiN) describes the connectivity

strength between the node i and its first-order neighborhoods, and

the Ãi,j is set as the following Equation 2:

Ãi,j =
1

ki

∑

i′∈n(i)

wi,i′δi,j + wi,j, (2)

where wi,j is the connectivity strength for edge ei,j, n(i) is a

neighborhood set defined as {j|wi,j > 0}, ki = |n(i)|, and δi,j = 1

when i = j or else δi,j = 0. Then the dendrogram can be cut at

a large partition density height to get link and node clusters. The

detailed Tanimoto hierarchical clustering algorithm can be found

at Algorithm 1.

After the Tanimoto clustering, a community of sub-

connectivity matrices in 213 brain regions can be hierarchically

separated at a desired partition density. The partition density D

can be calculated as the following Equation 3.

D =
2

M

∑

i

mi + 1− ni

(ni − 2)(ni − 1)
, (3)
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Input: All connections and Tanimoto coefficient S;

Assign each connection to its own cluster;

Sort S from large to small as S(L1 ,L1′ ), ..., S(LN ,LN′ );

i = the number of clusters, j = 1;

for i > 1 and j < N+1 do

Merge the clusters which contain connection Lj and

Lj′;

Encode S(Lj ,Lj′ ) as the height;

Store the process in the dendrogram;

j = j + 1, i = the number of clusters;

end for

Output: The dendrogram.

Algorithm 1. Tanimoto hierarchical clustering.

where mi is defined as the number of connections giving a

specific cluster i; ni is defined as the number of nodes in the

same cluster i, and M is the number of connections for the

whole network which contains all clusters. The D indicates the

density of connections, with its value adjusted relative to the

theoretical maximum and minimum connection scenarios within

the network. This adjustment allows for a standardized comparison

of connection densities across different network configurations.

The community connectedness of cluster i, as defined by

Equation 4, quantifies the degree of connection between cluster i

and other clusters, reflecting a comparison of external connections

to other clusters relative to internal connections within the cluster

itself. For clusters containing a large number of brain regions, this

value tends to be lower (e.g., 10–20), indicating a higher proportion

of internal connections. If the value is too low (<10), there may be

artifacts that interfere with the value of statistical research.

Ci =
ni(ni − 1)eb(i)

2ew(i)nid̂
, (4)

where ni is defined as the number of nodes within the cluster i;

eb(i) is defined as the number of connections between cluster i

and its neighborhood clusters; ew(i) is defined as the number of

connections within the cluster i. d̂ is defined as the whole-network

average degree.

3.3 The brain topology

The brain-region clusters are generated from the 213 brain

regions of the Allen mouse brain atlas by the Tanimoto clustering

algorithms first, and then biological experts make a selection by

considering some biological constraints. The 71 sub-clusters after

clustering are concentrated in three intervals, <10 nodes, 30 to

60 nodes, and greater than 100 nodes. Taking into account the

clustering principle and the artifacts present in the experiment, the

interval of 30 to 60 nodes is the most preferred for brain topology

experiments. Considering the subsequent tasks such as Mujoco,

the key clusters we study need to have sensory, memory and

motor functions. The detailed procedure of brain-region clustering

contains five steps:

• The Tanimoto clustering algorithm is used to make a

hierarchical clustering of these 213 brain regions. Different

brain regions can be generated at different clustering height

levels, as shown in Figure 2A.

• The selection of clustering height is inducted by biological

experts. A smaller or bigger clustering height will cause the

partition density to be too small or too big, representing

allocating all brain regions into the same cluster or an

independently different one, respectively. Then the clustering

height (sparseness) is set as 0.8 and get 71 clusters, as shown in

Figure 2B and Equation 3.

• The proper density is verified by visualizing the participation

of each brain region in each cluster generated in the previous

step, as shown in Figure 2C.

• As can be seen from Figure 2C, according to the sparsity

designed in Figure 2B, the design of our 71 cluster factor

Tanimoto clustering method shows connectivity at different

scales. There are two conditions for sub-clusters to be

selected for further processing: first, the connectivity is in the

appropriate range, that is, the community connectedness is

10–40 in Figure 2D; second, it is biologically reasonable, that

is, the cluster includes brain areas with sensory, memory, and

motor functions.

• Some key clusters (i.e., three ones after analysis) with a

different number of brain regions (i.e., the cluster with the

index of 31, 46, and 49) are generated and named the NET-31,

NET-46, and NET-49.

During these five steps, the brain-region clusters can be

automatically generated as candidate clusters, which are efficient

without a time-consuming manual summary, which is important

for the efficient network topology generation at the whole mouse-

brain scale.

3.4 The biologically-plausible SNNs

Both the leaky-integration neuron (LI) (Hasani et al., 2020) and

leaky integrate-and-fire (LIF) neuron (Liu and Wang, 2001) with

excitatory and inhibitory types are used as the basic neuron model

for the next-step simulation of SNNs at the network scale. The

design of the LI model is represented as the following Equation 5.





V̇i,t =
[
IL +

∑
ÎC,t +

∑
IC,t

]
/Cm

IL,t = ωL

(
EL − Vpost,t

)

IC,t = ωC

(
EC − Vpost,t

)
gt

gt = 1/[1+ exp(−σ (Vpre,t − µ))]

, (5)

where Cm is the membrane capacitance of the neuron, IC,t and

IL,t are the input currents of the chemical and leakage channels,

respectively. EC and EL are the corresponding reversal potentials.

Vpost,t and Vpre,t are the membrane potentials of post-synapses and

pre-synapses, respectively. gt is the dynamic conductance of the

membrane, defining whether a synapse is excitatory or inhibitory

by EC . ωC and ωL are the conductance in chemical and leakage

channels, respectively.

The LI neuron can realize the adaptive calculation of the

ordinary differential equation (ODE) and has a strong ability to
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FIGURE 2

The sub-clusters from 213 brain regions after hierarchically Tanimoto clustering and sparseness constrain. (A) The 71 clusters are generated by the

hierarchical Tanimoto clustering algorithm from 213 brain regions and 10,287 connections. (B) The relationship between clustering height and

partition density, as those described in the Equation 3. Here we set the clustering height as 0.8 after considering both the sparseness and size of each

sub-cluster and then we get 71 sub-clusters accordingly. (C) In 71 sub-clusters, 213 brain regions (color squares) sparsely participate in each

topology indexed from 1 to 71. (D) The relationship between sub-clusters and community sparseness. Three selected sub-clusters with the indices

of 71, 61, and 65 (labeled as the start point) with the number of brain regions of 31, 46, and 49, respectively, respectively. These three types of

networks are named as BTs for next-step learning.

model the time series reaching a goal at any time step. Besides

LI neurons which play key roles in the inner dynamics in the

hidden layers of networks, we also introduce the sensory andmotor

neurons in the input and output layers, respectively, during the

interaction with the environment.
{
V̇i,t =

(
IL +

∑
ÎC,t +

∑
IC,t

) (
1− Si,t

)
/Cm

Si,t = Vi,t > Vth
. (6)

A hybrid numerical solver (Press et al., 2007) is used and

combines with explicit Euler’s discretization (Lechner et al., 2019),

similar to that in Hasani et al. (2020), where a fixed-step solver is

used to calculate ODE, and at each time step 1t , our approach

complexity is around O(|Nn|+|Ns|), where Nn is the number of

neurons, and the Ns is the number of synapses, as shown in

Equation 6.

After the membrane potential Vi,t reaches the firing threshold

Vth, the spiking flag Si,t is set as true, which will reset the update of

the membrane potential Vi,t by multiplying 1 − Si,t , with the spirit

of biological leaky integrate-and-fire.

3.5 BT improved SNN

Biological experts group the 213 brain regions in the Allen

mouse brain atlas into three subgroups. The first group is the

input layer containing the sensation-related brain regions, e.g.,

the primary somatosensory and visual areas. The second group is

the hidden layer containing the cognitive-function-related brain

regions, e.g., the hippocampus and basal ganglia. The third group is

the output layer containing the motor-related brain regions, e.g.,

the primary motor area and trigeminal motor nucleus. We also

annotate the biological functions of the brain regions at each level

of the clusters of interest (see Section 4 for more details), which

directly link the biological regions to network layers.

Besides the topology with 213 brain regions (which can be

considered the whole brain region, NET-213), different types of

network topology with different numbers of brain regions are

selected by biological experts for the next-step simulation. Using

the configuration of the 0.8 sparseness during the hierarchical

clustering level (Figure 2B), we select brain regions with the index

of NET-31, NET-46, and NET-49 in all 71 sub-clusters (Figure 2C),

where each number represents the number of brain regions in

the selected topology. These clusters all cover sensation, cognitive

function, andmotor brain regions without omitting the key transfer

region in a network (Figure 2D). The detailed brain regions in

NET-46 will be further introduced in Section 4.

3.6 The evolutionary-based learning
algorithm

The SNN with biological topology (i.e., connected to each

node with the biological network NET-213, NET-31, NET-46, and
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NET-49) can be tuned by many learning algorithms. Here we

select the evolutionary-based algorithms for their topology-friendly

advantages, i.e., the adaptive random search algorithm (ARS)

(Hasani et al., 2020). We find it can also get around some serious

problems in recurrent neural networks during reinforcement

learning, including but not limited to gradient scaling problems and

long-term dependence problems (Mania et al., 2018).

In this paper, we optimize the ARS algorithm and use it in RL

tasks, whereby the agent learns to make decisions after observing

the current state in an environment and then receives a timely or

delayed reward. The fitness function is designed to collect these

rewards and guide the direction of the random search. At the

beginning of network learning, the agent makes random decisions

for exploration, and a good decision for a lower fitness function will

be kept by saving the current parameters and focusing more on the

exploitation. The search-based algorithm ARS can train a network

by repeating two training strategies until convergence. First,

expected values are obtained by perturbation network parameters.

Then the adaptive search algorithm calculates the distance between

expected values and fitness function and uses it further to guide the

search space for a smaller distance. Objectively, the ARS algorithm

requires a certain amount of effort to identify and select potentially

useful network structures, and the network learning convergence

using ARS is slower than the standard gradient-based algorithms,

where the desired gradient is calculated by re-sampling the dataset

in a memory buffer. However, the memory buffer makes at least

two serious problems: (1) the extremely high storage space; (2) the

re-sampling of samples collected from the exploration is inefficient.

Hence, the ARS can save computational costs without considering

the storage space and re-sampling than the standard gradient-

based algorithms, which indicates it is more suitable for online and

neuromorphic computation.

3.7 The analysis of BTs using network motif

The NET-31, NET-46, and NET-49 contain many brain regions

(with input, hidden, and output areas) and sparse connections.

Here we use 2D and 3D visualizationmethods to highlight themain

difference between these three network topologies.

For the 2D visualization, as shown in Figure 3A, the NET-

31 contains six input regions, 23 hidden regions, and two motor

regions. A total of 450 connections are plotted, containing 361

excitability and 89 inhibitory connections. As shown in Figure 3B,

the NET-46 contains eight input regions, 36 hidden regions,

and two motor regions. A total of 802 connections are plotted,

containing 575 excitability and 227 inhibitory connections. As

shown in Figure 3C, the NET-49 contains ten input regions, 37

hidden regions, and two motor regions. A total of 904 connections

are plotted, containing 713 excitability connections and 191

inhibitory connections. The definition of the ratio of excitatory

neurons is 70%, the same as that found in the brain cortex

(Wildenberg et al., 2021).

For the 3D visualization of three networks (i.e., NET-31, NET-

46, and NET-49), the connections of different brain regions from

input, hidden, and motor areas are given under a background of

the mouse-brain CCF.With the help of biological experts, the input

regions belong to the occipital lobe, the output regions belong to the

parietal lobe, and the hidden regions are everywhere in the brain for

the complex information processing, consistent with the biological

functions, as shown in Figures 3D–F. For ease of visualization, the

connections with connectivity strength lower than 0.05 in three

networks are omitted. For example, only 207 excitatory and 60

inhibitory connections are visualized in NET-31.

The 3-node network motif (Milo et al., 2010) has been widely

used to analyze the dynamic properties (Prill et al., 2005) and

biological network features (Sporns and Kotter, 2004). Here we

also use the 3-node network motif to analyze the connection

distribution feature of the NET-31, NET-46, and NET-49. As shown

in Figure 3, we use the “credible frequency” (the product of the

occurrence frequency and 1 − P) instead of the pure frequency

to avoid the influence of some random features. Here P is the P-

value of each motif in the selected network compared to the 1,000

randomly generated networks of the same size. Each generated

network is sampled from a uniformly random distribution. The

smaller P-value, the less likely a random network will have the same

network features as a biological one.

In all calculated network motifs, we want to highlight the

motif-5 distribution (a type of cross-layer connection). The motif

distributions for the three topologies share some common features,

such as the motif-1, 2, 6, 7, 10, 11, and 13 are relatively higher than

other motifs. The motif-5 and motif-9 are the main two differences

that might be the main differences of functional circuits in these

three topologies. Further analysis will be given in the performance

comparison of these three networks.

4 Experiments

4.1 Introduction of tasks and implement
details

Four OpenAI gym games (Mujoco) were used to test the

algorithms’ performance, as shown in Figure 4. We select these

Mujoco tasks instead of Atair 2000 games for their more dynamic

features, especially animal-survival-like RL (Figures 4B–D).

In order to ensure the reproducibility of the proposed

algorithms, we repeated each RL experiment ten times with

different network initializations given different random seeds. Each

RL task took 300 k (1k = 1,000) steps for learning and was

evaluated every 10k step. At each evaluation time, we reported the

average reward of over 10 episodes without giving any exploration

noise, and each episode lasted for a maximum of 1 k execution

steps. The MountainCar-v2, Half-Cheetah-v2, Humanoid-v2, and

HumanoidStandup-v2 tasks are with state-action dimensions of [2,

1], [17, 6], [376, 17], and [376, 17], respectively. All these RL-related

configurations are similar to those in the paper (Hasani et al., 2020),

where a simpler network architecture borrowed from C. elegans

is used.

We compared our algorithms to the benchmark LSTM

and MLP networks. The experiments were built upon the

open-source codebase from OpenAI Spinning Up.1 The

related algorithms, including NET-31, NET-46, NET-49, and

1 https://github.com/openai/spinningup
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FIGURE 3

Schematic diagrams of BTs with visualization. (A–C) The 2D visualization describes the input (red inverted triangles), hidden (blue circles), and output

(regular yellow triangles) brain regions in NET-31, NET-46, and NET-49, respectively. The blue and red lines represent excitatory and inhibitory

connections between regions, respectively. (D–F) Same as those in (A–C) but with 3D visualization in a mouse brain, whereby sensory regions (red

sphere), memory regions (and other cognitive function regions, blue sphere), and motor regions (yellow sphere) with sparse connections are

visualized. (G–I) Motif distribution of NET-31, NET-46, and NET-49, respectively. The horizontal axis represents 13 di�erent types of motifs, and the

vertical axis represents the credible frequency, defined as the frequency of the motif multiplying the confidence value (with 1 deleting P-value).

FIGURE 4

Schematic diagram depicts four OpenAI Mujoco tasks for continuous controlling. (A) The MountainCar-v2 task drives to the top mountain as fast as

possible. (B) The Half-Cheetah-v2 task makes a 2D cheetah robot run as fast as possible. (C) The Humanoid-v2 task makes a three-dimensional

bipedal robot walk forward as fast as possible without falling over. (D) The HumanoidStandup-v2 task makes a three-dimensional bipedal robot stand

up as fast as possible.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2024.1325062
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2024.1325062

FIGURE 5

Performance comparisons of SNNs employing NET-31, NET-46, and NET-49 across four continuous control RL tasks: (A) MountainCar-v2, (B)

Half-Cheetah-v2, (C) Humanoid-v2, and (D) HumanoidStandup-v2. The x-axis measures training steps (x10k), and the y-axis displays average

rewards. Shaded regions indicate standard deviation. In task A, achieving the mountain top is marked by a score of 100.

FIGURE 6

Comparative analysis of SNNs using NET-46 and baseline NET-Rand on the four continuous control RL tasks: (A) MountainCar-v2, (B)

Half-Cheetah-v2, (C) Humanoid-v2, and (D) HumanoidStandup-v2. NET-46 outperforms NET-Rand, as shown by the higher average rewards. The

horizontal axis indicates training steps (x10k), and the vertical axis represents average rewards.

FIGURE 7

Performance comparison of the SNN with NET-46 against the ANNs using LSTM and MLP in four RL tasks: (A) MountainCar-v2, (B) Half-Cheetah-v2,

(C) Humanoid-v2, and (D) HumanoidStandup-v2. NET-46 demonstrates superiority over MLP and LSTM. Training steps and average rewards are

depicted on the x and y axes, respectively.

Net-Rand, were all trained under the same standard ARS

algorithm. We evaluated these algorithms on the four continuous

control tasks under the same experimental configurations

and compared their performance for further analysis. Unless

for special statements, most algorithms use the same set

of parameters.

4.2 Performance comparison of SNNs
using di�erent BTs

The performance of SNNs using three types of topology on

four reinforcement learning tasks is shown in Figure 5. From the

statistical results, the performance of SNNs using NET-46 is better

than those using NET-31 and NET-49, representing NET-46 could

be the main best-topology candidate in the next experiments for

comparing its performance with random networks and other state-

of-the-art algorithms.

For the different distribution of network motifs in three BTs,

it is obvious that motif-5 occupied a higher proportion in NET-

46 than NET-31 and NET-49 (see Figures 3G–I for more details).

It is impressive that the motif-5 contains a more cross-layer

connection, making us speculate that the proper proportion of

cross-layer connections plays a significant role in RL tasks. The

motif-9 is another main difference between these three topologies.

However, the influence of motif-9 is opposite to motif-5, where

networks using more motif-9 exhibited poorer performance than

other control algorithms.
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TABLE 1 The performance comparisons in Mujoco RL.

Tasks Architectures Rules RL Scores Network sparsity

MountainCar-v2 LSTMa BPTT 98.98± 0.59 0%

MLPb PPO 95.5± 1.5 0%

Random Search 49.59± 49.59 61%

NET-46 (Ours) Search 99.14 ± 0.12 61%

HalfCheetah-v2 LSTMa BPTT 1009.51± 641.95 0%

MLPb PPO 1,601.05± 506.50 0%

Random Search 1,917.40± 819.39 61%

NET-46 (Ours) Search 2,468.18 ± 962.36 61%

Humanoid-v2 LSTMa BPTT 537.19± 33.54 0%

MLPb PPO 537.36± 39.73 0%

Random Search 545.65± 32.79 61%

NET-46 (Ours) Search 564.13 ± 37.65 61%

HumanoidStandup-v2 LSTMa BPTT 142255± 7502 0%

MLPb PPO 140,780± 9,676 0%

Random Search 139,863± 24,538 61%

NET-46 (Ours) Search 147,697 ± 11,931 61%

aCitation for LSTM (Hochreiter and Schmidhuber, 1997). bCitation for MLP (Schulman et al., 2017). The metrics in bold are the corresponding metrics for our model, just for highlighting.

4.3 SNNs using NET-46 V.S. SNNs using
random topology

The SNN using NET-46 exhibit a superior performance than

SNNs using NET-31 and NET-49. However, we cannot claim the

NET-46 is the best BT candidate without comparing it to an

objective benchmark as the baseline. Hence, we select two types of

benchmarks for verification: (1) the bottom baseline is defined by

the SNN using a random network, given the name of NET-Rand;

(2) ANNs define the top baseline using MLP or LSTM, which will

be introduced extensively in the next section.

For the bottom baseline, we conducted a topology with the

same number of brain regions and connections to the NET-46. The

ratio of excitatory to inhibitory connections was 0.7 to 0.3. The

SNN using NET-Rand was trained on the four RL tasks, and the

inference performance comparison of it and NET-46 was shown

in Figure 6 and Table 1. The experimental results showed that the

performance of SNNs using the NET-rand was much lower than

those using NET-46, which to some extent, indicated that the NET-

46 contains some key topology advantage for the efficient RL. The

performance on the MountainCar-V2 task was higher than other

tasks, which the less complexity might cause.

Furthermore, the enhanced performance of NET-46 over NET-

Rand in our experiments can be attributed to its biologically-

informed structural properties, such as optimized connectivity

patterns and modularity, which are absent in randomly generated

networks. The SNN using NET-Rand could also be convergence but

only with lower average rewards. Hence, now we can answer the

hypothesis from the computation perspective that the evolutionary

neural networks have stored some key prior knowledge in brain

topology, which further contributes to the next-step network

learning. The top baseline is then tested and showed in the

following section.

4.4 SNN using NET-46 V.S. classical ANNs

We selected the MLP and LTSM and tested their performance

on the four Mujoco continuous control RL tasks. The experimental

results are shown in Figure 7. For the MountainCar-v2 task,

our algorithm (i.e., SNN using NET-46) reached a comparable

performance (99.14 ± 0.12) to the other two benchmark

algorithms, including LSTM (98.98 ± 0.59, n = 10, P = 0.94) and

MLP (95.5 ± 1.5, n = 10, P < 0.01). For the other three relatively

more complex tasks, our algorithm performed much better and

reached a higher performance than LSTM with [P value = 0.01,

P = 0.12, and P = 0.04] and MLP with [P = 0.01, P = 0.19, and P =

0.15] for Half-cheetah-v2, Humanoid-v2, and HumanoidStandup-

v2 RL tasks, respectively. See Table 1 for more details. It should be

noted that although the brain-like topology algorithm represented

by NET-46 in this article has better computational performance

than MLP and LTSM algorithms, the SNN still has some room for

further improvement in terms of computational cost.

5 Conclusion

Incorporating biological topology into SNNs can provide

insights into the structural organization of neural networks. This

study utilized the mesoscale connectome data from the Allen

mouse brain atlas, involving 213 mouse brain regions, to explore

how specific topological clusters (i.e., NET-31, NET-46, and NET-

49) can be clustered, analyzed, filtered, and incorporated into

SNNs. The focus was on examining the structural compatibility of

these clusters with SNN architectures, aiming to understand their

potential influence on network performance.

These three clusters’ excitatory-inhibitory connection

types and sparseness are consistent with the biological ones,
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including sensory, hidden (for memory), and motor brain

regions. The three BTs exhibited different performances

during RL, and the NET-46 outperformed NET-31, NET-49,

and the random network (NET-Rand). The detailed brain

regions in NET-46 contain more auditory brain regions,

more hidden brain regions for memory and multi-sensory

integration, and more global neuromodulatory pathways,

such as 5-HT projections from the CLI region to the nucleus

and thalamus.

The experimental results showed that the mouse brain-like

topology could improve SNNs from the perspective of accumulated

rewards and network sparsity more than some ANNs, including

the LSTM and MLP. We think more biological network-scale

principles can further be incorporated into SNNs, and this

integration of neuroscience and artificial intelligence has much in

store for the future.
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