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Myoelectric prostheses have recently shown significant promise for restoring

hand function in individuals with upper limb loss or deficiencies, driven by

advances in machine learning and increasingly accessible bioelectrical signal

acquisition devices. Here, we first introduce and validate a novel experimental

paradigm using a virtual reality headset equipped with hand-tracking capabilities

to facilitate the recordings of synchronized EMG signals and hand pose

estimation. Using both the phasic and tonic EMG components of data acquired

through the proposed paradigm, we compare hand gesture classification

pipelines based on standard signal processing features, convolutional neural

networks, and covariance matrices with Riemannian geometry computed from

raw or xDAWN-filtered EMG signals. We demonstrate the performance of

the latter for gesture classification using EMG signals. We further hypothesize

that introducing physiological knowledge in machine learning models will

enhance their performances, leading to better myoelectric prosthesis control.

We demonstrate the potential of this approach by using the neurophysiological

integration of the “move command" to better separate the phasic and tonic

components of the EMG signals, significantly improving the performance

of sustained posture recognition. These results pave the way for the

development of new cutting-edge machine learning techniques, likely refined

by neurophysiology, that will further improve the decoding of real-time natural

gestures and, ultimately, the control of myoelectric prostheses.

KEYWORDS

EMG, classification, handgestures,machine learning, xDAWNfiltering, neural integrator,

data acquisition

1 Introduction

Myoelectric prostheses have emerged in recent years (Chen et al., 2023) as
an increasingly promising tool for enhancing natural hand function restoration
in individuals with upper limb loss or deficiencies. This has been made
possible by significant advances in machine learning and increased accessibility
of bioelectrical signal acquisition devices and miniaturized computing units.
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Myoelectric prostheses typically use surface electromyography
(sEMG), a non-invasive physiological measurement technique that
records the electrical activity produced by the activation of motor
units within muscle tissues during voluntary muscle contractions.
When a muscle is voluntarily contracted, motor neurons in the
spinal cord are progressively recruited, leading to the activation of
motor units and their innervated muscle fibers within the target
muscle (Godaux and Chéron, 1989). This electrical activity is
captured by specialized electrodes placed on the surface of the skin
and transmitted to the myoelectric prosthesis which decodes and
replicates the user’s intended movements (Nguyen et al., 2021).

The design, control, and functional capabilities of myoelectric
prostheses for upper limb amputees are influenced by the level of
amputation and the availability of residual muscles for recording
specific myographic activity. Transhumeral amputation, occurring
above the elbow and involving the loss of both the forearm and
hand, requires a prosthetic arm to enable elbow movement and
provide basic hand functions. In this situation, a myoelectric
prosthesis typically has fewer degrees of freedom (DOFs), focusing
on forearm rotation (pronation/supination) and hand grasping
and releasing. For transradial amputation, occurring below the
elbow joint, more residual muscles are typically available, allowing
myoelectric prostheses to additionally restore finer hand functions
such as pinching or single-finger control.

From the 1960th, neuroscience has been benefiting from
engineering science, especially in the field of motor control
(Stark, 1968). For instance, the incorporation of mathematical
integrators into the study of oculomotricity led to the recognition
of neural integrators within the brain (Robinson, 1968; Chéron
et al., 1986; Cannon and Robinson, 1987). This concept has
been widely accepted and is also considered valid in the broader
context of overall motor control. However, we propose that the
development of human assist devices today should be drawing
from the foundations of neuroscience inmotor control. Specifically,
machine learning models should leverage both theoretical and
practical neurophysiological advancements to further optimize the
extraction of discriminative characteristics from the biological
signals at the foundation of human movement (Thomas et al.,
2023).

When producing a movement and holding the resulting
posture, the EMG signal typically comprises a phasic and a tonic
component. The phasic component represents the dynamic bursts
of electrical activity produced by the rapid firing of motor units
within the muscle during contractions and movement execution
(Winges et al., 2013). In contrast, the tonic component represents
the relatively constant and lower-intensity electrical activity in the
muscle when sustaining the resulting posture. While some authors
proposed that EMG patterns offer an accurate reflection of the
motor program used by the central nervous system (CNS) for
movement control (Gottlieb, 1993), others argue that both EMG
and kinematic patterns emerge as non-programmable properties of
the system. According to this second perspective, control signals
inherently possess positional information of the limb rather than
muscle activation necessary to reach the target position (McIntyre
and Bizzi, 1993; Feldman et al., 1998; Gribble et al., 1998).
Although phasic and tonic components both represent observable
peripheral outcomes of CNS control signals, they exhibit distinct

physiological characteristics (Flanders and Soechting, 1990; Buneo
et al., 1997). Therefore, differentiating between inertial and postural
activities can enhance the ability of classification or regression
models to identify mapping relationships between EMG signals and
limb trajectories during complex movements (Draye et al., 2002;
Phataraphruk et al., 2022).

Recent literature extensively covers the use of EMG
classification pipelines to discriminate predefined discrete or
simultaneous movements (Young et al., 2014) for sign language
recognition (Savur and Sahin, 2015; Ben Haj Amor et al., 2023) or
hand gesture recognition for prosthesis control (Jaramillo-Yánez
et al., 2020). In these scenarios, the recorded EMG activity
is processed by a classification pipeline, which identifies the
corresponding predefined gesture and subsequently actuates the
prosthesis to replicate it. In the present study, we introduce a
novel experimental paradigm leveraging a consumer-grade virtual
reality (VR) headset equipped with hand-tracking capabilities. This
technology enables us to precisely impose visually-controlled and
reproducible hand positions and allows us to track and monitor the
representation of VRmovements. We recorded synchronized EMG
signals and full hand pose estimations from 14 healthy participants
using two distinct acquisition protocols in virtual reality. The first
protocol focused on the execution of predefined bimanual gestures,
while the second protocol recorded unconstrained bimanual
movements across various virtual scenarios. We expect the
recording of both EMG signals coupled with articular kinematics
of the hand in both protocols to enable the classification of specific
predefined gestures, as commonly explored in existing literature.
But more importantly, we aim at approaching more effective
real-time regression through the use of 51 degrees of freedom
corresponding to the articulation angles of the human hand. This
could lead to achieving significantly finer, more reactive, and more
natural control of future hand prostheses.

Here, we first validate this novel experimental paradigm
through a comprehensive analysis of the resulting EMG signals.
Next, we compare multiple classification pipelines based on
standard signal processing features, convolutional neural networks,
and covariance matrices with Riemannian geometry and for intra-
subjects, inter-sessions, and inter-subjects gesture classification.We
demonstrate the performance of the latter for gesture classification,
achieving 96.9%, 86.8%, and 73.9% accuracy using the phasic
component, and 98.3%, 82.3%, and 68.9% accuracy using the tonic
component in intra-subjects, inter-sessions, and inter-subjects
configurations, respectively. This study comprehensively assesses
the discriminative power of the phasic and tonic components
of movement in the context of classifying predefined gestures.
Interestingly, we show that the long-lasting tonic component of
an EMG signal during a sustained gesture contains at least as
much discriminative power as the dynamic bursts of the phasic
component during the execution of the movement. This result
demonstrates that robust continuous recognition of a desired
posture can rely on the long-lasting tonic component, without any
loss of discriminative power when compared to the short-lasting
phasic component. These results could prove useful for future
studies on prosthesis control. Finally, we show that integrating
physiological knowledge into signal-processing techniques
improved classification performance in specific scenarios.
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TABLE 1 Information on the participants.

Participant Age Leading hand Gender

1 55 Right M

2 34 Right M

3 29 Right F

4 22 Right M

5 31 Right M

6 26 Right M

7 22 Right M

8 34 Left M

9 29 Right M

10 22 Right M

11 34 Right M

12 20 Right F

13 20 Right F

14 66 Right F

This paves the way for broader applications of fundamental
neurophysiological methods to further enhance state-of-the-art
discrimination of EMG signals and human-machine interfaces.

2 Materials and methods

2.1 Participants

Data were collected from 14 healthy volunteers (31.7 ± 12.9
years old). 13 volunteers were right-handed and one volunteer was
left-handed [determined by the Handedness inventory (Oldfield,
1971)]. All participants presented no neurological condition, and
normal vision, including 3D vision. More information about the
participants is given in Table 1. All experimental protocols were
approved by the Ethics Committee of Université Libre de Bruxelles,
CHU Brugmann under the reference CE 2023/37 and conducted in
conformity with the European Union directive 2001/20/EC of the
European Parliament.

2.2 Experimental design

2.2.1 EMG data collection
EMG signals from the left and right forearms were collected

using 16 wireless picoEMG sensors manufactured by Cometa, with
a sampling frequency of 2,000 Hz. These sensors are wireless and
lightweight, can be worn comfortably and only require the adhesive
attachment of two pre-gelled electrodes before use. Synchronized
EMG data were recorded through a dedicated computer linked to
the 16 sensors via the Cometa wifi router. The placement of the 16
EMG sensors followed a symmetrical pattern on both forearms, as
illustrated in Figure 1. Sensor locations were determined by trained
neurophysiologists using palpation (Hioki andKawasaki, 2009) and

electrical stimulation capable of eliciting flexion or extension of
the fingers.

2.2.2 Motion capture data collection
Traditional motion capture techniques are often costly and

complex. The widely used 3Dmotion camera tracking systems with
markers require a high level of expertise to be set up for precise
tracking of hand movements. To collect kinematic data from both
hands, we used an Oculus Quest virtual reality headset1 as a cost-
effective alternative with reliable hand-tracking capabilities. This
device is equipped with four infrared cameras and uses computer
vision to estimate hand and finger movements in real-time. We
developed a dedicated software using the Unity framework2 and
the OVR library3 to record hand gestures at a sampling frequency
of 50 Hz. We synchronized the Oculus Quest hand motion capture
alongside physiological data. The application of an Oculus Quest
for hand motion capture alongside physiological data is a novel
approach which will be validated in this study. This approach
enables the complete immersion of the participant within a fully
monitored and controllable virtual reality environment. In this
setting, participants were instructed to either execute predefined
hand gestures or to engage in natural interactions with objects in
the virtual surroundings.

Figure 4B illustrates the virtual hand mechanical model. For
each joint, the OVR library computes a 3D articular rotation,
relative to the parent joint. The rotation values of the 17 joints are
used to automatically recognize several predefined postures. We
use the recognized posture as a label when creating the samples
for our classification pipelines. During guided gesture exercises, we
also labeled the samples with the posture that the subject was asked
to perform.

For each session of each participant, we observed that the
Oculus Quest consistently recognized all the predefined gestures
introduced in Section 2.2.4.1. The alignment of the kinematics
with the prime mover EMG spike was also verified independently.
Additionally, since the Oculus Quest captures the hand gestures
at a frequency of 50 Hz, we can theoretically expect a maximum
variability of 20 ms.

2.2.3 Experimental setup
The experimental setup is composed of the Oculus Quest, for

motion capture, the EMG sensors, and a 64-channel ANTneuro
EEGO sport EEG cap (not used in the present analysis). The
acquisition setup includes three specialized computers thatmonitor
the entire process. Figure 2 illustrates how these components are
connected.With themain computer as the central hub, it is possible
to send precise trigger signals for initiating the EMG recording
and adding annotations to the EEG recording. A wire connection
between the main computer and the Oculus Quest enables the
display of the different exercises and the start of the motion
capture recordings. By initially aligning the UTC timestamps from

1 https://www.meta.com/quest/

2 https://unity.com/

3 https://docs.unity3d.com/Manual/VROverview.html
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FIGURE 1

Illustrations of the EMG electrodes placement on a right arm. (A) Anatomical illustration of the electrodes locations. (B) Electrodes placement on a

participant’s arm.

the main computer and the Oculus Quest, data synchronization
was established. Verification of every recording was subsequently
thoroughly performed through manual visual inspection.

2.2.4 Data acquisition protocol
Participants were asked to come to the laboratory for four

consecutive hours. After being sat comfortably in a chair, the
purpose of the experiment was explained and the participant was
equipped. In order to facilitate the comparison between different
muscle activity across different participants, a normalization was
realized by taking into account the absolute value of the EMG
amplitude recorded during Maximum Voluntary Contractions
(MVC) (Lehman and McGill, 1999). MVC was performed
using three three-second isometric exercises using both hands
simultaneously: finger flexion, finger extension, and clenching of
the fists against a resisting force (Dahlqvist et al., 2018). Afterward,
the participants were asked to execute two types of exercises: guided
gestures and free gestures. Each participant performs 11 sessions,
each session taking about 5 min. The recording starts with a
free gesture session, and alternates between guided gestures and
free gestures. At the end, a total of five guided exercises and six
free exercise sessions are completed by the participant. Then, the
equipment was removed and the participant was debriefed. In the
present study, we analyzed only the guided gestures.

2.2.4.1 Guided exercises

The recording of guided gestures involves participants
alternating between a resting pose (an open hand) and four
different finger postures, all while keeping both hands in front
of them. Each of those postures (shown in Figure 3C) consisted
in the extension of the thumb, index, middle, and pinky fingers.
The user interface of the Oculus Quest is used to display the
target posture to the participant, as shown in Figure 3B. When
the picture of the target posture changes, a red frame is displayed,
indicating the update of the target posture. When the Oculus Quest

recognizes that the target posture has been successfully performed,
this frame becomes green and the participant is asked to hold the
pose for two seconds. This real-time recognition is automatically
performed by the Oculus Quest, which continuously maps hand
motion capture to predefined patterns integrated into the Oculus
Quest. The diagram in Figure 3A shows the interface evolution
during the execution of one guided gesture with the two hands.
Each posture is performed six times during the exercise in a random
order established at the beginning of every session. At the end
of the recordings, a participant performed 30 times each gesture
with both hands. An illustration of the EMG signals recorded
on the right forearm is shown in Figure 4A, aligned with three
representative signals of articular angles during this exercise. The
recording protocol for the free gestures sessions is not described
here as the data acquired during this exercise is not analyzed in the
present paper.

2.3 EMG and hand motion capture data
treatment

After removing data segments recorded before the first
rectangular pulse of the synchronization signal, the raw EMG and
hand motion capture data recordings were resampled at 2,048
Hz and encapsulated into a common data structure using the
MNE-Python library (Gramfort et al., 2013; Larson et al., 2023).
Subsequently, EMG signals were processed by applying a notch
filter with a central frequency of 50Hz and a bandwidth of 5Hz
to eliminate power line interference and using a zero-phase IIR
bandpass filter with cutoff frequencies set at 30 and 500 Hz to
mitigate lower-frequency baseline drift and higher-frequency noise.
Finally, for each participant, the quality of EMG signals and their
synchronization with hand motion capture data were validated
through careful visual inspection.
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FIGURE 2

(A) Diagram and picture of the experimental setup. The diagram features the monitoring computers in red, the acquisition devices in green, and the

connection components in blue. (B) Picture of a participant during a recording session of guided gestures.

Subsequently, the EMG signals from each subject were
normalized by dividing each electrode’s EMG signal by the
maximum absolute value recorded for that electrode during MVC
recordings. This method has been demonstrated to be effective for
achieving robust inter-subject normalization (Burden and Bartlett,
1999). Normalizing the EMG from MVC is expected to provide
better results than setting the maximum EMG amplitude to one
because MVC records are designed to contain the real maximum
amplitude of the signal. It also enables the normalization of the
samples in real time without having to wait for all the samples to
be collected.

For real-world applications, it is necessary to recognize the
hand gestures in real-time (i.e. making multiple posture estimation
per second). We make a first step in this direction by analyzing
small windows of EMG signal separately. Consequently, for a
single repetition of a gesture, we obtain several windows containing
different parts of the signal. During the motion of the limb, the
window contains phasic components, and during the hold of the
limb at the target posture, the window contains tonic components.
In this work, we separate the two kinds of epochs to assess their
respective predictive power.

We separate the phasic and tonic samples by building two
datasets from each participant’s guided session one using the phasic
component and another using the tonic component. For the dataset
using the phasic component of the EMG signals, we extracted
epochs of 500 ms before the signs were recognized by the VR
headset. As illustrated in Figures 4, 7, this timeframe effectively

encompasses the whole phasic component of the physiological
movement. For the dataset using the tonic component of the EMG
signals, we extracted overlapping epochs of 500 ms with a 256 ms
stride, starting at 500 ms and extending to 2,000 ms after the sign
was recognized by the VR headset.

Also, despite our best efforts, a visual inspection of the EMG
signal by experts showed that a limited number of the recorded
sessions had EMG signals contaminated by artifacts caused by low
electrode battery levels or poor skin contact with the participant.
Those artifacts are characterized by repeated sharp changes in the
amplitude of the EMG. In the dataset, we solely included sessions
with the best signal’s quality to compute pipelines performances.
We thus discarded eight sessions on 70 (11.4%) from the original
recordings, marked as containing low-quality signals from at least
one electrode. The phasic and tonic datasets contain 1,472 and
7,362 data points, respectively, each with a shape of 8× 512.

2.4 Classification pipelines

We here formally introduce four classifications pipelines
whose performances will be compared and discussed in
Sections 3.2, 4. The first pipeline is based on the extraction
of a collection of standard signal processing features commonly
described in the literature. This pipeline thus constitutes a
robust baseline for the comparison of other methods. The
second and third pipelines are based on the estimation of
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FIGURE 3

(A) Experimental protocol for predefined gestures. (B) View of the VR hands and user interface from inside the Oculus Quest. (C) Pictures of the five

guided gestures recorded during guided exercises, including the open hand as the resting pose.

FIGURE 4

(A) A section of the raw EMG signal (in black) and the evolution of three joint angles (in red) from one participant during a guided exercise. (B) The

mechanical model of the hand displayed in the Oculus Quest.

covariance matrices and Riemannian geometry, after the
application or not of a spatial filtering technique. This
approach already demonstrated strong performances in the

classification of EEG signals and is now introduced in the
context of EMG classification. The fourth pipeline is based on
deep learning, specifically convolutional neural networks, which
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FIGURE 5

Illustrative summary of the four classification pipelines. The first pipeline, shown in red, uses standard time domain features and a logistic regression.

The second pipeline, shown in blue, uses covariance matrices, projection in the tangent space, and a logistic regression. The third pipeline, shown in

purple, extends the second by introducing xDAWN spatial filtering. The fourth pipeline uses a convolutional neural network, acting as both a feature

extractor and classifier.

have already demonstrated state-of-the-art performances in a
wide range of domains. Those four pipelines are illustrated in
Figure 5.

2.4.1 Pipeline based on standard signal
processing features

As extensively documented in the existing literature (Nazmi
et al., 2016; Spiewak et al., 2018; Nguyen et al., 2021), the
state-of-the-art in classifying various types of gestures using
surface EMG signals has traditionally relied on features extracted
through standard signal processing techniques. In this classification
pipeline, we first compute the mean absolute value, root mean
square, maximum absolute amplitude, waveform length, zero-
crossings, slope sign changes, and maximum fractal length, as
these features were some of the most reported time domain
features in the literature (Oskoei and Hu, 2008; Tkach et al.,
2010; Ahsan et al., 2011; Phinyomark et al., 2012; Balbinot
and Favieiro, 2013; Daud et al., 2013; Al-Angari et al., 2016).
Additionally, we compute the Kurtosis (Nazarpour et al., 2013)
as a robust measure of signal non-Gaussianity, the Hurst
exponent (Marri and Swaminathan, 2015) as a measure of chaos,
or unpredictability, in the EMG signal, and Sample Entropy
(Zhang and Zhou, 2012; Gao et al., 2015) as a measure of the
complexity of a physiological time series (Richman and Moorman,
2000).

While it is worth noting that some of these features
do capture redundant or correlated physiological
characteristics, as analyzed in Phinyomark et al. (2012),
we did not perform further features selection algorithm
like Minimum Redundancy Maximum Relevance
(MRMR) (Peng et al., 2005) or dimensionality reduction
techniques like Principal Components Analysis (PCA) to
decorrelate the s.

With N the number of time samples in the signal, i ∈ {1, ...,N}
the index of a time sample, x ∈ R

1×N the EMG signal from one
electrode, xi ∈ R a time sample, let x̄ = 1

N

∑N
i=1 xi denote themean

value of x, xstd =
√

1
N

∑N
i=1(xi − x̄)2 denote the standard deviation

of x, and sgn denote the sign function defined in Equation (1):

sgn :R → [0, 1] : sgn(xi) : =















−1 if xi < 0

0 if xi = 0

1 if xi > 0

(1)

2.4.1.1 Implementation of the pipeline

First, the features illustrated in Table 2 were computed on each
electrode of the EMG signal from gesture x ∈ R

1×N and aggregated
in a one-dimensional feature vector �. With y ∈ [0, 1] the gesture
type of x, the final classifier of this pipeline is a logistic regression
(LR) estimating the probability that a feature vector � must be
labeled as 1 (P

[

y = 1|�
]

) by the function defined in Equation (2):

3 :� 7→ 3(�) = σ (ω0 + ω⊤�), (2)

for a linear classifier, where σ (x) = exp x
1+exp x is the logistic function.

Preliminary experiments showed that the result of the
logistic regression model was not statistically different than other
classification models such as SVM, random forest, and multi-
layer perceptrons. Thus, Logistic regression was chosen as the
final classifier for both the time domain features and Riemannian
geometry pipelines. Also, this choice was supported by the results
of previous studies (Hand, 2006; Thomas et al., 2023) which
showed that linear estimators can often exhibit unexpectedly strong
performance when applied to real-world data.

The parameters estimated during the training of the
classification pipelines are (i) the time domain features, (ii)
ω0,ω respectively the intercept and the normal vector of the
classification boundary hyperplane.

The features were computed using the Numpy (Harris et al.,
2020) and SciPy (Virtanen et al., 2020) Python libraries. The multi-
class logistic regression trained to classify the gesture type used the
one-vs-rest training scheme with L2 penalty and liblinear solver, as
implemented in Pedregosa et al. (2011).
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TABLE 2 Time domain features.

Mean absolute
value

MAV= 1
N

∑N
1 |xi|

Root mean square RMS=
√

1
N

∑N
1 x2i

Maximum absolute
amplitude

MAA= max{|x1|, ..., |xN |}

Waveform length WL=
∑N

i=2 |xi − xi−1|

Zero-crossings ZC=
∑N

i=2 sgn(−xi−1xi)

Slope sign changes SSC=
∑N

i=3 sgn(−(xi − xi−1)(xi−1 − xi−2))

Wilson amplitude WA=
∑N

i=2 sgn(|xi − xi−1| − xstd)

Maximum fractal
length

MFL= log

(

√

∑N
i=2(xi − xi−1)2

)

Kurtosis KRT= 1
N

∑N
i=1

(xi−x̄)4

x4std

Hurst exponent HUR Estimated by rescaled range procedure

following (Alvarez-Ramirez et al., 2008)

Sample entropy SEN Computed following (Gao et al., 2015) with
parameters:

m = 2, sample length = 3 and
tolerance = xstd/10

2.4.2 Pipelines based on covariance matrices and
Riemannian geometry

In recent years, classifiers based on covariance matrices and
Riemannian geometry have garnered increasing interest (Lotte
et al., 2018), most notably for their first-class performance
in international Brain-Computer Interface (BCI) competitions
(Congedo et al., 2017). Prior studies have already provided evidence
of the effectiveness of Riemannian geometry-based classification
pipelines in discriminating neural signals based on covariance
matrices in motor imagery (Guan et al., 2019; Majidov and
Whangbo, 2019), EEG respiratory states (Navarro-Sune et al.,
2017), visual evoked potential (Simar et al., 2022), andmental states
(Simar et al., 2020) discrimination. While Riemannian geometry-
based classification pipelines have primarily been developed and
applied to brain-derived signals, such as EEG (Wu et al., 2017) and
MEG (Ye et al., 2020), recent work has also used similar pipelines to
classifymotor control difficulty based on EMG signals (Manjunatha
et al., 2020, 2022). In this work, we further demonstrate their
effectiveness at discriminating EMG signals in the context of hand
gesture recognition.

2.4.2.1 XDAWN spatial filtering

The xDAWN algorithm, initially designed by Rivet et al.
(2009), estimates spatial filters optimized in a supervised manner
to enhance the signal-to-signal-plus-noise ratio (SSNR) of EEG
signals related to evoked brain potentials. The xDAWN algorithm
(i) first averages the EMG signals over trials per condition,
then (ii) computes the noise and covariance matrices of the
resulting average signals, and finally (iii) solves a generalized
eigenvalue problem to obtain spatial filters that maximize the
SSNR. Given that evoked brain potentials and gesture muscle
potentials both exhibit spatially localized, time-locked, variations
in signal amplitudes, we hypothesize that the xDAWN algorithm

will demonstrate comparable effectiveness when applied to EMG
signals by improving the SNR of the original EMG signal.

More formally, with N ∈ N the total number of trials, E ∈ N

the number of electrodes, K ∈ N the total number of gestures
to estimate, k ∈ {1, ...,K} the type of gesture, T the number of
time samples in a gesture epoch, let P(k) ∈ R

E×T denote the
prototyped response, i.e. the mean EMG signal computed from all
epochs of gesture type k, and λ ∈ R

E×NT be the matrix obtained by
concatenating all the epochs of EMG signals from the entire set of
gestures. Each spatial filter is optimized to enhance the SSNR of its
corresponding gesture type k and represented as a vector w ∈ R

E×1

defined by Equation (3):

w∗(k) = argmaxw
wTP(k)P(k)

T
w

wTλλTw
(3)

With F ∈ N the parameterizable number of xDAWN spatial
filters, letW(k) denote the F selected spatial filters for gesture type k,
andW =

[

W(1), ...,W(k)
]

∈ R
E×KF the aggregation of those spatial

filters. LetXi ∈ R
E×T a gesture epoch of index i, the spatially filtered

signal of Xi is defined by Zi ∈ R
KF×T as in Equation (4):

Zi = WTXi (4)

We define a new matrix Z̃i ∈ R
2KF×T by concatenating (i)

the filtered averaged trials P(k) for all gesture types k with (ii) the
spatially filtered EMG signal Zi as in Equation (5):

Z̃i =











W(1)TP(1)

...

W(k)TP(k)

Zi











(5)

2.4.2.2 Covariance matrices

In the context of EMG classification, covariance matrices
capture information about how muscle signals vary together
or independently. By identifying patterns and similarities in
muscle activity, they provide a discriminative and compressed
representation of EMG signals that have the potential to
significantly enhance the performance of classification models for
gesture recognition.

The set of symmetric n × n real matrices is a n(n +
1)/2-dimensional real vector space ∀n ∈ N, and therefore
has a canonical Riemannian manifold structure. Covariance
matrices belong to the set of symmetric positive definite matrices
which is a convex cone (Moakher, 2005; Sra and Hosseini,
2015). In such a space, the use of Euclidean distances is
unsuitable due to fundamental geometric differences. The inherent
curvature of Riemannian manifolds results in distances following
non-linear paths, which Euclidean distances cannot accurately
represent. Therefore specialized metrics or methods are needed to
discriminate covariance matrices of EMG signals.

2.4.2.3 Tangent space projection

In addressing this challenge, two approaches have emerged. The
first involves adapting the classification models (Barachant et al.,
2013; Huang and Gool, 2017), or their optimization algorithms
(Kochurov et al., 2020), to accommodate the specificities of
Riemannian manifolds. The second approach focuses on projecting
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covariance matrices from the Riemannian manifold into a specific
tangent space where, given an appropriate choice of the reference
point for tangent space computation, the Euclidean distance
represents a good approximation of the Riemannian distance
on the manifold itself (Congedo et al., 2013). The latter is
particularly interesting as it enables the direct application of
common classification algorithms to projected covariance matrices
without significant performance loss.

Let 6ref denote the reference point on the Riemannian
manifold M where the tangent plane is computed. As showed
in Tuzel et al. (2008), the Fréchet mean of the set of covariance
matrices is the 6ref where the projection onto the tangent space
provides the better local approximation of the manifold. On this
Riemannian manifold, every covariance matrices 6 ∈ M can be
projected onto the tangent space computed at the reference point
6ref (Pennec et al., 2006). With E the number of electrodes, 1E
the matrix of ones and IE the identity matrix, both of size E × E,
the projection operator T6ref is defined by Barachant et al. (2013)
as to map every matrix 6 to the vector representation of the upper
triangular submatrix of

√
2(1E1TE − IE)8(6). With log the matrix

logarithm, and log6ref
(6) the matrix logarithm of 6 with respect

to 6ref, 8(6) is defined in Equation (6).

8(6) = log6ref
(6) = 6

1/2
ref log

(

6
−1/2
ref 66

−1/2
ref

)

6
1/2
ref (6)

2.4.2.4 Implementation of the pipelines

In this work, we evaluate the performance of two classification
pipelines based on covariance matrices and Riemannian
geometry.

The first pipeline called Covariance estimates covariance
matrices 6i ∈ R

E×E from Xi ∈ R
E×T , with Xi the raw EMG signal

of the gesture epoch of index i with E[Xi] = 0 as in Equation (7).

6i =
1

N
XiX

T
i (7)

The second pipeline called xDAWN Covariance estimates the
covariance matrices 6i ∈ R

2KF×2KF from Z̃i ∈ R
2KF×T , with Zi the

xDAWN-filtered EMG signal of the gesture epoch of index i as in
Equation (8).

6i =
1

N
Z̃iZ̃

T
i (8)

Let �i = T6ref (6i), be the generic feature vector obtained after
projecting the covariance matrix 6i, estimated from either the raw
or xDAWN-filtered EMG signal, onto the tangent space. The final
classifier, common to both pipelines, is a logistic regression (LR) as
defined in Equation (2).

The parameters estimated during the training of the
classification pipelines are (i) the spatial filters W (only in
the xDAWN Covariance pipeline), (ii) the reference point 6ref

and (iii) ω0,ω respectively the intercept and the normal vector of
the hyperplane.

The covariance matrices were computed with the well-
conditioned estimator OAS (Chen et al., 2010). The estimation and
application of xDAWN spatial filters, as well as the computation
of 6ref, and the projection operator to the tangent space T6ref (6i)
were implemented in the pyRiemann (Barachant et al., 2023)
Python library. The multiclass logistic regression trained to classify

the gesture type used the one-vs-rest training scheme with L2

penalty and liblinear solver, as implemented in Pedregosa et al.
(2011).

2.4.3 Pipeline based on convolutional neural
networks
2.4.3.1 Network architecture

Building on the success of the perceptron (Rosenblatt, 1958)
and the multilayer perceptron (Amari, 1967) (MLP) to learn
complex high-dimensional patterns, new hierarchical network
architectures (Fukushima, 1980) were developed inspired by
previous work on the neural receptive fields of the cat visual
cortex (Hubel andWiesel, 1959). The convolutional neural network
(Lecun et al., 1998) (CNN) is a biologically-inspired variant of the
MLP which hierarchically extracts high-level spatial or temporal
patterns using convolution operators. As of today, CNN are
considered one of the state-of-the-art model for image classification
and segmentation due to their first-class performance coupled with
limited preprocessing requirements. These performances recently
led to a growing interest from the scientific community to use CNN
for the classification of physiological signals such as EEG (Dai et al.,
2019) or EMG (Hioki and Kawasaki, 2009; Karnam et al., 2022).

A CNN typically consists of twomain parts which play different
roles in the network’s architecture: the convolutional blocks and the
fully-connected layers.

The convolutional blocks are responsible for feature extraction
from the input data and are especially well-suited for tasks that
involve grid-like data, such as images, or spatiotemporal data
such as EMG. Multiple convolutional blocks are stacked to detect
hierarchical features, from simple features in the early layers to
more complex features in deeper layers. Each convolutional block
typically comprises at least the following layers:

• A convolutional layer composed of a set of learnable n-
dimensional kernels acting as pattern filters. Each kernel
is convolved across the whole input layer to produce an
activation map. Formally, in the context of a one-dimensional
convolution, let x ∈ R

N be a one-dimensional input, e.g.,
an EEG signal from a specific electrode, h ∈ R

M be a
one-dimensional kernel. The output of the one-dimensional
convolution of xn through hm is given by Equation (9).

(x ∗ h)n =
M−1
∑

m=0

hmxn−m ∀n = 0, ...,N − 1 (9)

• A pooling layer which downsamples feature maps and reduces
the spatial dimensions by locally applying the non-linear max

ormean function.
• A regularization layer, which enhances the model’s

generalization and training stability by using techniques
such as batch normalization or dropout. These techniques
help mitigate issues like overfitting and internal covariate shift
(in the case of batch normalization).

The fully-connected layers (also denoted hidden-layers)
extract global patterns by combining high-level activation maps
hierarchically produced by the convolutional blocks in order to
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make a final classification. The output of each neuron from a
fully-connected layer consists of a linear combination of its inputs
followed by an activation function σ . An activation function is a
differentiable, non-linear function applied to the output of each
neuron in order to create a non-linear decision boundary from
a linear combination of inputs and weights. The use of non-
linear activation functions between each hidden layer enables the
separation of input vectors that are not linearly separable (Cybenko,
1989). Formally, let ℓ ∈ N>0 denote the index of some hidden layer,
n(ℓ) ∈ N>0 be the number of neurons in hidden layer ℓ, z(ℓ)v ∈ R

∀v ∈ {1, ...n(ℓ)} be the output of the vth neuron of layer ℓ, w(ℓ)
kv

∈ R

be the weight of the edge connecting the kth neuron of layer ℓ−1 to
the vth neuron of layer ℓ, z(ℓ)0 ∈ R be the bias of layer ℓ and σ (ℓ) be
the non-linear activation function of layer ℓ, the output of the vth

neuron of layer ℓ is given in Equation (10).

z(ℓ)v = σ (ℓ)
( n(ℓ−1)

∑

k=1

w
(ℓ)
kv

z
(ℓ−1)
k

+ w
(ℓ)
0v z

(ℓ−1)
0

)

(10)

The final layer of the fully-connected layers is referred to as
the output layer. In a classification task, the output layer typically
contains one neuron per class, with the output values representing
the class probabilities computed using the Softmax activation
function (Bridle, 1990).

The choice of weights initialization and non-linear activation
function in convolution kernels and fully-connected layers is
paramount to avoid undesirable effects such as the vanishing or
exploding gradient problems (Bengio et al., 1994) when training
deep architectures. In this work, we used the rectified linear unit
(Nair and Hinton, 2010) activation function and weights were
initialized following the Glorot (Glorot and Bengio, 2010) uniform
distribution. Formally, let n(ℓ) ∈ N>0 be the number of neurons in
hidden layer ℓ, w(ℓ) ∈ R

n(ℓ−1)×n(ℓ) be the weights vector of layer ℓ,
the initialization of w(ℓ) following the Glorot uniform distribution
is defined by Equation (11).

w
(ℓ)
ij ∼ U

[

−
√
6

√

n(ℓ−1) + n(ℓ)
,

√
6

√

n(ℓ−1) + n(ℓ)

]

(11)

2.4.3.2 Proposed CNN architecture

After trying multiple network architectures, the following
architecture achieved the best cross-validated performance both for
phasic and tonic EMG:

• A linear temporal convolution with 128 filters of
shape (1× 16).

• A spatial convolution with 16 filters of shape (8× 1) followed
by a batch normalization layer, a ReLU non-linear activation
function, a mean pooling layer of shape (1 × 4) and a spatial
dropout layer.

• A temporal convolution with 128 filters of shape (1 × 16)
followed by a batch normalization layer, a ReLU non-linear
activation function, a mean pooling layer of shape (1× 4) and
a spatial dropout layer.

• Two fully-connected layers of 128 neurons each followed by a
ReLU non-linear activation function.

• A fully-connected layer of four neurons (corresponding to the
4 different gestures) followed by a softmax activation function.

2.4.3.3 Network training procedure

The training procedure of the CNN relies on the
backpropagation algorithm (Rumelhart et al., 1986), which
vanilla implementation is based on stochastic gradient descent.
The backpropagation algorithm iteratively updates the set of
trainable parameters of the CNN by using the chain rule to
compute the partial derivatives of the loss function with respect to
those parameters. With θt the parameters at time step t, α the fixed
learning rate, and ∇f (θt) the gradient of the loss function with
respect to θt . The updated parameters are defined by Equation (12).

θt+1 = θt − α∇f (θt) (12)

In this work, we use the Adam optimization algorithm (Kingma
and Ba, 2014) that enhances the traditional stochastic gradient
descent by accelerating its convergence using adaptive learning
rates for each parameter, incorporating momentum and adaptive
step sizes. The starting learning used in the proposed architecture
is 0.005.

2.5 Validation methodology

To validate the classification results, we evaluate the
generalization capabilities of the estimation pipelines in three
distinct configurations illustrated in Figure 6: the intra-subjects,
inter-sessions, and inter-subjects.

In the intra-subjects configuration, we assess the estimator’s
robustness by training it on 80% of the training set and evaluating
it on the remaining 20%, representing a “holdout" portion of
the data that the model has never seen. To prevent potential
bias due to specificities in portions of the training set or uneven
class representation in the validation set, we use a stratified five-
fold cross-validation and report the mean accuracy across all
folds. We repeat this procedure for each participant, and the
final estimator performance is computed as the mean accuracy
across all individual cross-validated estimators. The intra-subjects
configuration provides insights into an estimator’s capacity to
generalize to new, unseen data from the same participant. However,
it does not provide any information on the estimator’s ability to
generalize to data from different participants.

In the inter-sessions configuration, we assess the estimator’s
robustness by training it on four out of the five sessions of all
participants and evaluating it on the “holdout” sessions that the
model has never seen. To prevent bias due to potential sessions’
specificities, we use a Leave-One-Group-Out cross-validation, with
each “group” corresponding to a session. The final estimator
performance is computed as themean accuracy across all five cross-
validated estimators. The inter-sessions configuration provides
insights into an estimator’s capacity to generalize to unseen data
from new sessions of the same participants. However, similarly
to the intra-subjects configuration, it does not provide any
information on the estimator’s ability to generalize to data fromnew
unseen participants.

In the inter-subjects configuration, we assess the estimator’s
robustness by training it using data from all but one participants
and evaluating it on the “holdout" participant that the model
has never seen. To prevent bias due to potential participants’
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FIGURE 6

Illustration of the cross-validation methods used for intra-subjects, inter-sessions, and inter-subjects analyses of classification results.

specificities, we use a Leave-One-Subject-Out cross-validation. The
final estimator performance is computed as the mean accuracy
across all n cross-validated estimators, with n being the number
of participants. Contrary to intra-subjects and inter-sessions
configurations, the inter-subjects configuration provides insights
into an estimator’s capacity to generalize to unseen data from
new participants.

2.6 Physiological decomposition of the
EMG signal

As previously introduced, the EMG signal can be categorized
as phasic (during the production of movement) or tonic, during
steady postures. Defining the precise boundary between these
categories can be challenging. In this study, we decided to
distinguish between tonic and phasic activity by choosing a specific
time period after a careful visual inspection of the EMG signals.
Another interesting perspective is to consider EMG signals as a
combination of two commands: the “move command” that controls
the movement of the limb to the target posture and influences
primarily phasic activity, and the “hold command” that maintains
the limb at the target posture and influences tonic activity. The raw
EMG signal represents the sum of both commands.

How to decompose the signal into “move” and “hold”
commands is not completely understood yet. Albert et al. (2020)
have hypothesized that, for hand gestures, the instantaneous
amplitude of the “hold” command of a specific posture
is defined by the integral of the instantaneous amplitude
of the “move” command that led to this posture. The
instantaneous amplitude of the EMG signal (also referred to
as the “envelope” of the signal) represents the strength of the
muscle activation at any point in time, regardless of the phase of
the signal.

We compute the envelope of the EMG signal
by initially performing full-wave rectification on the
analytic signal derived from the application of the
Hilbert transform (Boashash, 1992; Myers et al., 2003).
Formally, for a given signal x(t), we have its instantaneous

amplitude a(t) = x2(t) + x2
h
(t), where xh(t), the Hilbert

transform of x(t), is computed using the formula in
Equation (13).

xh(t) = p.v.

∫ +∞

−∞

x(t − τ )

πτ
dτ (13)

where p.v. denotes the Cauchy principal value of the integral
(Boashash, 1992). Finally, we apply low-pass filtering with a 20 Hz
cutoff frequency to smooth the resulting envelope.

Let us note HT , the instantaneous amplitude of the hold
command at time T, and MT the instantaneous amplitude of
the move command at time T. The mathematical integration of
physiological signals described by Albert et al. (2020) is as follows
in Equation (14).

HT =
∫ T

0
Mt dt (14)

In the envelope of a discrete recorded EMG signal S, the value
at each time step T is equal to the sum of the two commands: ST =
MT + HT . To estimate the decomposition of the signal’s envelope
intoM and H, we use the iteration defined in Equation (15).

{

MT = ST − HT−1

HT = HT−1 + MT
f

(15)

In these formulas, f is the sampling frequency. Initially,
H0 and M0 are set to 0 and T = 0 should correspond
to the beginning of the move command. After decomposing
the signal, we obtain two separate envelopes, that can be
used as input of a machine learning model, similarly to the
raw signal.

We note that the mathematical integration method
is not the only hypothesis for decomposing the EMG
signal into its fundamental components. For example,
Flanders and Soechting (1990) described a more complex
analysis based on principal components scaled down with
movement time.
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3 Results

3.1 EMG visualization during guided
gestures

We aim to gain a comprehensive understanding of the EMG
behavior during guided gestures. To achieve this, we present an
analysis of the median and quartile values of the envelope of the
EMG signal (as presented in Section 2.6) during the execution of
the four distinct gestures. We also remove the baseline activity
associated with the resting pose, thereby allowing us to highlight
the dynamic aspects of muscle activity during the guided gestures.
As shown in Figure 7, the gestures involve three phases. First, when
the subject transitions from the resting pose to the target pose,
we observe a short and strong increase in muscle activity. After
that, a residual activity is observed during the hold of the posture,
indicating that the muscles are still more engaged than during the
resting posture. Finally, a second peak of activity appears when
going back to the resting pose. The plots of different EMG channels
in Figure 7 indicate a clear difference between the roles of each
muscle. Those more active during the first phase might correspond
to flexor muscles, while those more active during the last phase
should be extensor muscles.

Figure 7 suggests that discriminating between the recorded
gestures executed by a single participant’s hand should be a
manageable task, given the distinctive EMG patterns exhibited
by the different gestures. Especially, when looking at the EMG3
channel, we observe strong differences between gestures during
both the first gesture phasic and the tonic phase of the
target posture.

To better understand inter-subjects variability, we use a similar
figure that highlights the behavior of the EMG1 channel on the
two hands of different participants. We observe from Figure 8 that
the overall amplitude of the signal changes significantly across the
subjects even with normalization applied from MVC. Moreover,
regardless of the signal amplitude, the shape of the signal during
the different gestures is also subject-dependent, and often even
changes between the left and right hand of the same person. These
differences help to understand the lower efficiency of inter-subject
estimation models that are commonly obtained in the literature.

3.2 Classification of guided gestures

The main results of the classifications pipelines using both
the phasic and tonic components of EMG signals in intra-subject,
inter-sessions, and inter-subjects configurations were illustrated by
confusion matrices, receiver operating characteristic (ROC) curves
(with the corresponding AUC values), and average ranks of the
classification pipelines. For the clarity of illustration, we aggregated
the results from the four classification pipelines by computing the
average of their predictions and denoted this new model Voting
ensemble. The aggregated performances of the four classification
pipelines using the phasic and tonic components are illustrated
in Figures 9, 10 respectively. The individual performances of
each classification pipeline are illustrated in Figure 11. Statistical
differences between classification pipeline performances were

performed with a post-hoc Nemenyi test (Demšar, 2006) using the
Autorank Python library (Herbold, 2020).

Additionally, to assess the performances of the four
classification pipelines using high-quality EMG signals, we
excluded the sessions with low-quality EMG (as explained in
Section 2.3) from the dataset used to generate the results of the
present section.

3.2.1 Classification results using the phasic
component of the EMG signals

Figure 9 illustrates these performance metrics computed on the
Voting ensemble in intra-subject, inter-sessions, and inter-subjects
configurations using only the phasic component of the EMG
signals. The Voting ensemble model achieved an accuracy of 96.7%,
90.9%, and 73.9%, along with AUC values of 1.0, 0.98, and 0.92, in
the intra-subjects, inter-sessions, and inter-subjects configurations,
respectively. The confusion matrices in Figure 9A show a balanced
recognition accuracy in the intra-subjects configuration but not
in the inter-subjects configuration, where gestures involving the
index and pinky fingers were notably less well classified than
those involving the thumb and middle fingers. The average ranks
illustrated in Figure 9C show that the xDAWNCovariance pipeline
achieved the highest rank among the four classification pipelines
in the intra-subjects and inter-sessions configurations. However,
Figure 9C did not show a significant statistical difference between
the performances of xDAWN Covariance and the other best-
performing classification pipelines. Interestingly, while the CNN
pipeline exhibited significantly lower performance than the other
classification pipelines in intra-subjects (likely due to the limited
amount of data from the small number of gesture repetitions
per subject) and inter-sessions configurations, it ranked highest
in the inter-subjects configuration, slightly ahead of the xDAWN
Covariance pipeline.

3.2.2 Classification results using the tonic
component of the EMG signals

Figure 10 illustrates the same performance metrics as Figure 9
computed on the Voting ensemble in intra-subject, inter-sessions,
and inter-subjects configurations but using only the tonic
component of the EMG signals. The Voting ensemble model
achieved an accuracy of 99.3%, 91.1%, and 66.7%, along with AUC
values of 1.0, 0.99, and 0.88, in the intra-subjects, inter-sessions,
and inter-subjects configurations, respectively. Similarly to the
confusion matrices from the phasic component, the confusion
matrices from the tonic components in Figure 9A show a balanced
recognition accuracy in the intra-subjects configuration but not
in the inter-subjects configuration, where, gestures involving the
index and pinky fingers were notably less well classified than
those involving the thumb and middle fingers. The average
ranks illustrated in Figure 9C did not highlight a particular
significant statistical difference between the performances of the
four classification pipelines using the tonic component of the
EMG signals. Here, the CNN pipeline in the intra-subjects
configuration exhibits significantly better performance using the
tonic component.
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FIGURE 7

Envelope (median and quartiles) of the EMG signal during the realization of predefined gestures by one subject (right hand of the subject 4). The

signals are aligned at the prime mover event.

FIGURE 8

Envelope (median and quartiles) of the EMG signal of electrode 1 during the realization of predefined gestures by di�erent subjects. The signals are

aligned at the prime mover event and normalized using division by the maximum value of the signal during maximum voluntary contraction of the

muscles. The colors of the four gestures are similar to those in Figure 7.

3.2.3 Summary of the classification results
The individual performances of each classification

pipeline using both the phasic and tonic components of

EMG signals in intra-subject, inter-sessions, and inter-
subjects configurations are summarized and illustrated
in Figure 11.
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FIGURE 9

Results of the voting ensemble of the four classification pipelines using the phasic component of the EMG signals in intra-subject, inter-sessions, and

inter-subjects configurations. (A) Confusion matrices. (B) ROC curves. (C) Average rank of the corresponding classifiers (the lower, the better).

Classifiers that are not significantly di�erent are connected by a black line [at p = 0.05 found by a Nemenyi test (Demšar, 2006)]. The critical distance

(CD) indicates when classifiers are considered statistically di�erent.

Figure 11A (left, right) illustrate the individual performances
using respectively the phasic and the tonic components
of the EMG signals in intra-subject, inter-sessions, and
inter-subjects configurations.

In Figure 11A (left), in the intra-subjects, inter-sessions,
and inter-subjects configurations, respectively, the classification
pipeline based on standard signal processing features achieved
an accuracy of 94.1%, 84.6%, and 67.7%; the Covariance pipeline
achieved an accuracy of 93.5%, 78.7%, and 66.5%; the xDAWN
Covariance pipeline achieved an accuracy of 96.9%, 86.8%, and
73.9%; the CNN pipeline achieved an accuracy of 75.3%, 86.7%,
and 69.2%; and the Voting ensemble achieved an accuracy of 96.7%,
90.9%, and 73.9%.

In Figure 11A (right), in the intra-subjects, inter-sessions,
and inter-subjects configurations, respectively, the classification

pipeline based on standard signal processing features achieved
an accuracy of 98.7%, 81.1%, and 62.8%; the Covariance pipeline
achieved an accuracy of 96.6%, 78.0%, and 65.8%; the xDAWN
Covariance pipeline achieved an accuracy of 98.3%, 82.3%, and
68.9%; the CNN pipeline achieved an accuracy of 98.4%, 90.9% and
54.2%; and the Voting ensemble achieved an accuracy of 99.3%,
91.1%, and 66.7%.

With the average ranks computed for each pipeline based
on the aggregation of their respective predictions from the
intra-subjects and inter-sessions configurations, Figure 11B shows
that the xDAWN Covariance pipeline achieved the highest rank
among the four classification pipelines using either the phasic
or the tonic component. The xDAWN Covariance pipeline
achieved significantly higher performances than the CNN and
the Covariance pipeline using the phasic component, as well as
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FIGURE 10

Results of the voting ensemble of the four classification pipelines using the tonic component of the EMG signals in intra-subject, inter-sessions, and

inter-subjects configurations. (A) Confusion matrices. (B) ROC curves. (C) Average rank of the corresponding classifiers (the lower, the better).

Classifiers that are not significantly di�erent are connected by a black line [at p = 0.05 found by a Nemenyi test (Demšar, 2006)]. The critical distance

(CD) indicates when classifiers are considered statistically di�erent.

the Covariance pipeline using the tonic component. However,
Figure 11B did not show a significant statistical difference between
the performances of the xDAWN Covariance pipeline and the
pipeline based on standard signal processing.

3.3 Physiological decomposition of EMG
for classification

Decomposing the signal into its fundamental components
could potentially help to recognize the gesture by incorporating
physiological knowledge into the machine learning model.
Figure 12 illustrates the physiological decomposition of the EMG
signal into the “move" and “hold" commands, as described by
Albert et al. (2020). The signals obtained from the mathematical

integration have a physiologically plausible shape. The move
command contains short bursts of activity during the gestures
and is close to zero during the posture hold. The hold command
quickly increases during the gesture, then stays mostly flat during
the hold. As we continued to integrate the signal during the second
gesture, leading back to the resting pose, a second increase of the
signal was found in the extracted hold command. This part of the
integrated signal has no physiological interpretation from Albert
et al. (2020). However, we can see a higher difference between
the classes in the integrated signal than in the raw signal even
after the second gesture. Hence, we kept this part of the integrated
signal in the extracted hold command to assess the performance of
classification models.

We compare classificationmodels on different parts of the three
signals. For each window of 0.5 s between T = 0s and T = 4s, we
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FIGURE 11

(A) Boxplots illustrating the multiclass classification accuracy of the four classification pipelines and the Voting ensemble using the phasic or tonic

components of the EMG signals in intra-subject (light blue), inter-sessions (medium blue), and inter-subjects (dark blue) configurations. (B) Average

rank of the corresponding classifiers for the three configurations (the lower, the better). Classifiers that are not significantly di�erent are connected

by a black line [at p = 0.05 found by a Nemenyi test (Demšar, 2006)]. The critical distance (CD) indicates when classifiers are considered statistically

di�erent.

test a classification model to see the importance of each part of the
different components of the signal. We also assess the performance
of a model that takes the complete gesture (from T = 0s to T = 4s)
as input. We use two classification models. The first is a logistic
regression classifier trained using the signal envelope. The second
is an xDAWN Covariance classification pipeline, as it achieved the
best classification results in Section 3.2.

We expect that the first model is more sensitive to the
differences in the amplitude of the signal, whereas the second
model might be sensitive to both the signal’s amplitude, variance
and covariance. As the results in Section 3.2 showed that intra-
subject classification is already near-perfect when sessions with low
signal quality are removed, we performed this classification using
all sessions, regardless of signal quality, to highlight the value of
the present method. The results of those two models are shown in
Figures 12B, C.

Figure 12 shows that both the move and the hold commands
contain relevant information during the whole gesture for the

classification. With the xDAWN Covariance pipeline, it is even
possible to classify the held posture during the holding phase using
only themove command. The accuracy only drops when the subject
stops holding the specific posture and goes back to the resting
pose. Also, we see that with both kinds of features, extracting the
hold command enabled us to increase the best classification result
compared to the raw signal. In particular, when using the xDAWN
Covariance pipeline on the whole time range (from 0 to 4 s), the
accuracy with the raw signal is 94.7± 0.08% whereas, the accuracy
with the hold command is 97.7± 0.06%. As shown by the statistical
analysis in Figure 12D, this result is significantly better than the
results obtained by all the others models. Interestingly, when using
0.5 s windows of signal, the model with the best results uses
the xDAWN Covariance pipeline trained with the hold command
during the gestures (between 0 and 0.5 s). This window corresponds
to the rapid change in the amplitude of the signal at the beginning
of the hold command, where the variance of the hold command is
the highest.
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FIGURE 12

(A) Visualization of the EMG commands during four hand gestures on di�erent muscles from one subject with a decomposition of the recorded

signal into move and hold commands. The colors of the four gestures are similar to those in Figure 7. (B) Box plots of the intra-subject accuracy

obtained with a logistic regression model directly on the signal envelope in the di�erent components. (C) Box plots of the intra-subject accuracy

obtained with a logistic regression model on the xDAWN covariances matrices from the di�erent components. (D) Average rank of the

corresponding classifiers (the lower, the better). Classifiers that are not significantly di�erent are connected by a black line [at p = 0.05 found by a

Nemenyi test (Demšar, 2006)]. The critical distance (CD) indicates when classifiers are considered statistically di�erent.

To validate the mathematical integration hypothesis for
extracting move and hold commands, we compute the person
correlation coefficients and R2 scores between the amplitude of the
extracted hold command and the raw signal during the posture
hold. We computed these scores separately for each EMG channel

of each participant and obtained and obtained an average R2 of
0.697±0.348 and an average correlation coefficient of 0.937±0.066.
In Figure 13, we show a representation of this similarity to the ones
used by Albert et al. (2020) and report the R2 score for each channel
of the two hands from one subject. We find that for most of the
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channels, there is a high similarity between the amplitude of the
raw signal during the posture hold and the amplitude of the hold
command at the same time. For the channels where we obtain a low
or negative R2 score, we still observe a high correlation coefficient.
This occurs when the values obtained in the hold command are
different from those in the tonic raw signal by a constant factor.

4 Discussion

In recent years, there have been various initiatives to publish
datasets of EMG signals and pose estimations (Atzori et al.,
2014; Lobov et al., 2018; Jarque-Bou et al., 2019; Pradhan et al.,
2022) aiming to provide the essential data required for improving
machine learning models, myoelectric prostheses control, and,
ultimately, restoring natural hand function for people with upper-
limb disabilities. Typically, these datasets use either a clinical or
consumer-grade EMG signals acquisition system with 8–12 EMG
electrodes and a Cyberglove4 for hand motion capture.

In this work, we introduce a novel experimental paradigm
for acquiring EMG signals and hand motion capture data during
guided bimanual activities in virtual reality. This paradigm enables
the automated and precise recording of multiple repetitions of
various gestures using affordable and easy-to-use motion capture
equipment. We believe that the automated data recording method
proposed in this experimental paradigm is a critical factor for
increasing movement repetitions and accelerating post-processing
when compared to traditional approaches in the literature. Using
virtual reality, in contrast to the Cyberglove alternative, enables a
straightforward 3D visualization of motion capture data through
the Unity framework (Simar, 2023).

In neuroscience, and more broadly in electrophysiology, inter-
subjects variability has been a challenge for decades and remains
a salient research topic (Colot et al., 2023). In this study, this
challenge was highlighted by the significant variations in signal
amplitude among subjects, which persisted even after MVC
normalization. Moreover, the shape of the EMG signal during
the four gestures also exhibits inter-subjects variability due to
intrinsic variations in anatomical characteristics among subjects,
possibly combined with slight shifts in electrode placement. More
practically, the inter-subjects difficulty is also illustrated by a
significant drop of 22.8 and 32.6% in classification accuracy
between the intra-subjects and inter-subjects configurations, using
the phasic and tonic components of the EMG signals, respectively.
While myoelectric prostheses are expected to be tailored to
each patient to account for individual anatomical characteristics,
the development of new methods capable of mitigating inter-
subject variability could reduce the need for frequent recalibration
through numerous repetitions of specific gestures. This observation
highlights the significance of developing novel techniques and
models capable of generalizing to new data distributions, including
those from new subjects or existing subjects with variations in
electrode placement. Such capabilities are critical for myoelectric
prostheses to maintain accurate functionality across various
situations and environments.

4 http://www.cyberglovesystems.com

Deep learning models have demonstrated their performance
in various domains, including image recognition (Li, 2022),
bioinformatics (Zhang et al., 2020), natural language processing
(Hu, 2020), and ecology (Christin et al., 2019). Provided that
such deep architectures are trained with sufficient data, they often
reduce reliance on expert knowledge for data preprocessing and
enhance state-of-the-art results. Here, despite recording more or
a comparable number of gesture repetitions (30 repetitions of
each of the four postures) than other publicly available datasets,
Figure 11A shows that, in the intra-subject configuration, the
proposed convolutional neural networks failed to converge for each
participant, achieving only 75.3% accuracy using the 30 repetitions
of phasic components. This is significantly lower than the 98.4%
accuracy after training with the 150 windows of tonic components.
These results further emphasize the need for an experimental
paradigm which enables the recording of an increased number of
movement repetitions, particularly when considering the use of
deep learning architectures.

In contrast, Figure 11A shows the effectiveness of the
classification pipeline based on xDAWN spatial filtering and
covariance matrices with Riemannian geometry, even with a
limited number of gesture repetitions. As no single classification
pipeline outperformed the others consistently and significantly,
we hypothesize that combining them with a meta estimator
could lead to further improvements of classification performance.
Interestingly, recent approaches (Chen et al., 2022) have also
suggested combining the discriminative capabilities of covariance
matrices with convolutional neural networks (Huang and Gool,
2017) trained with Riemannian optimizers (Kochurov et al., 2020).

Another promising yet largely unexplored path for improving
performance involves integrating physiological knowledge into
either signal preprocessing or machine learning models. As
an example of the latter, Draye et al. (2002) demonstrated
that differentiating between inertial and postural activities
improved the ability of a neural network to identify mapping
relationships between EMG signals and limb trajectories during
complex movements.

David Robinson first introduced the idea of a neural integrator
in the field of eye movement control (Robinson, 1968). He
hypothesized that a group of neurons could perform mathematical
integration on phasic commands to generate accurate eye positions,
stabilizing retinal images during ocular movements (Chéron et al.,
1986; Cannon and Robinson, 1987). Building upon the idea from
Albert et al. (2020) that the neural integrator can extend to general
motor control (Klier et al., 2002; Cheron et al., 2023), we found
that the envelope of the rectified EMG signal during the hold
command not only corresponds to the mathematical integration
of the envelope during the move command but also contains
significant discriminative potential.

To explore this hypothesis further, we extracted the hold
command using the mathematical integration method proposed
in Albert et al. (2020), closely aligned with decades of research
on the neural integrator (Seung et al., 2000; Koulakov et al., 2002;
Gupta and Shaikh, 2020). We obtained high correlation coefficients
and R2 scores, showing the similarity in signal amplitude between
the tonic activity in the raw signal and the hold command during
the hand posture. Figure 12 indicates that the integral accurately
extracts the hold information contained in the signal amplitude.
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FIGURE 13

Changes in muscle activation between the hold periods of the resting pose and the target posture in the raw signal Vs in the hold command

extracted using the mathematical integration method. The two hands of one subject are reported as examples, and di�erent colors are used to

represent the EMG channels. The R2 scores are reported for each channel.

This observation is supported by the decrease in accuracy between
0.5 and 2.5 s when using the envelope of the move command
as input for the classification model (Figure 12B). Yet, during
the posture hold, the xDAWN Covariance pipeline continues to
achieve a high classification accuracy using the move command
as input (Figure 12C). This result notably demonstrates that the
information in the EMG signal related to holding a specific posture
is not only encoded in the amplitude of the signal but also in
its variance.

With this technique, combined with xDAWN spatial
filtering, we improved the intra-subjects accuracy of the xDAWN
Covariance pipeline on the complete gesture from 94.7 ± 0.08%
to 97.7 ± 0.06%. In the inter-subjects configuration, the xDAWN
Covariance pipeline also achieved improved classification accuracy
for both the phasic and tonic components of the EMG signals.
These results strongly support the hypothesis that incorporating
physiological knowledge into machine learning models or
signal preprocessing techniques (such as spatial filtering or
physiological integration) holds the potential to significantly
improve gesture recognition.

These findings could be leveraged in future research to enhance
machine learning models for prosthesis control, particularly for
sustained gesture recognition. To further extend the introduction
of neurophysiological knowledge to machine learning models,
future research might also consider the compatibility of the
neural integrator with different types of feedback. Particularly in
prosthesis control, we should consider the role of proprioceptive
and visual feedback, which could positively contribute to the
elaboration of the tonic signal (Seung et al., 2000).

4.1 Limitations toward myoelectric
prosthesis control

While the results presented in this study demonstrate that
machine learning models can almost perfectly decode simple hand

gestures from EMG signals in the intra-subject configuration,
caution should be exercised when translating these findings to
myoelectric prosthesis control.

This experimental paradigm using virtual reality does not
capture the execution of grasping tasks involving physical objects.
Consequently, machine learning models may not account for the
forces applied by users when manipulating physical objects. To
address this limitation, we suggest replacing the VR headset with
an augmented reality headset, which can simultaneously perform
hand tracking while users safely interact with physical objects.

Since our dataset does not include subjects with disabilities, this
study does not demonstrate the generalizability of its results to this
population. Nevertheless, the techniques presented in this work can
also be applied for gesture estimation in people without upper-limb
disabilities, such as in sign language recognition.

In out-of-the-lab environments, EMG signals will be
contaminated by non-physiological artifacts, which likely
reduces the decoding performance of myoelectric prostheses. In
addition, prostheses users perform unconstrained movements,
without predefined triggers to determined gesture timing.
Therefore, machine learning models must evolve to accurately
recognize intended gestures in real time. In this context, separating
EMG signals into “move" and “hold" commands can be more
challenging. To pave the way to a more natural control of
myoelectric prostheses, machine learning models should be able
to decode full hand poses during the execution of unconstrained
movements. While the novel experimental paradigm presented in
this study enables the recording of the full hand poses alongside
EMG signals, addressing this challenging task was beyond the
scope of the study.

5 Conclusion

In this work, we first presented a novel experimental paradigm
for the acquisition of EMG signals and hand motion capture
data during guided bimanual activities in virtual reality. Using
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the data recorded from 14 healthy participants, we compared
the performance of multiple state-of-the-art classification pipelines
for gesture recognition based on both the phasic and tonic
components of the EMG signals. We introduced and demonstrated
the performance of classification pipelines based on covariance
matrices with Riemannian geometry for EMG classification,
achieving 96.9%, 86.8%, and 73.9% accuracy using the phasic
component, and 98.3%, 82.3%, and 68.9% accuracy using the tonic
component in intra-subjects, inter-sessions, and inter-subjects
configurations, respectively. Using state-of-the-art classification
pipelines, we also showed that the tonic component contains
comparable discriminative power to the phasic component for
gesture recognition.

We showed that introducing physiologically informed feature
extraction to classification pipelines can further improve the
efficiency of hand gesture recognition. Specifically, the introduction
of the neurophysiological integration of the “move command”
improved the performances of the state-of-the-art classification
algorithm by 3% when predicting the “hold command.”

In the context of human assist devices, the various
contributions of this study notably imply that robust prosthesis
control should rely on both phasic and tonic components for
the continuous recognition of a desired posture and that their
decoding performance may be further enhanced by the integration
of fundamental neurophysiological methods.
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