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of large vessel occlusion in acute 
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Purpose: To develop deep learning models based on four-dimensional 
computed tomography angiography (4D-CTA) images for automatic detection 
of large vessel occlusion (LVO) in the anterior circulation that cause acute 
ischemic stroke.

Methods: This retrospective study included 104 LVO patients and 105 non-LVO 
patients for deep learning models development. Another 30 LVO patients and 
31 non-LVO patients formed the time-independent validation set. Four phases 
of 4D-CTA (arterial phase P1, arterial–venous phase P2, venous phase P3 and 
late venous phase P4) were arranged and combined and two input methods 
was used: combined input and superimposed input. Totally 26 models were 
constructed using a modified HRNet network. Assessment metrics included 
the areas under the curve (AUC), accuracy, sensitivity, specificity and F1 score. 
Kappa analysis was performed to assess inter-rater agreement between the best 
model and radiologists of different seniority.

Results: The P1  +  P2 model (combined input) had the best diagnostic 
performance. In the internal validation set, the AUC was 0.975 (95%CI: 0.878–
0.999), accuracy was 0.911, sensitivity was 0.889, specificity was 0.944, and 
the F1 score was 0.909. In the time-independent validation set, the model 
demonstrated consistently high performance with an AUC of 0.942 (95%CI: 
0.851–0.986), accuracy of 0.902, sensitivity of 0.867, specificity of 0.935, and 
an F1 score of 0.901. The best model showed strong consistency with the 
diagnostic efficacy of three radiologists of different seniority (k  =  0.84, 0.80, 
0.70, respectively).

Conclusion: The deep learning model, using combined arterial and arterial–
venous phase, was highly effective in detecting LVO, alerting radiologists to 
speed up the diagnosis.
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Introduction

Large vessel occlusion (LVO) resulting in acute ischemic stroke 
(AIS) is the leading cause of severe death and disability (Malhotra 
et al., 2017). Timely treatment can rescue salvageable brain tissue, 
prevent increased neurological loss and improve the long-term 
prognosis of AIS patients. Endovascular therapy has been proven 
effective in AIS patients with LVO (Campbell et al., 2015; Goyal et al., 
2016), but its effectiveness is highly time-dependent (Meretoja et al., 
2017). Therefore, it is essential to accurately and quickly identify LVO.

CT angiography (CTA) is commonly used for detecting LVO 
(Almekhlafi et  al., 2019; Mayer et  al., 2020). Currently, four-
dimensional computed tomography angiography (4D-CTA) is an 
emerging technique that combines the non-invasive feature of CTA 
with the dynamic acquisition of DSA (Kortman et  al., 2015), 
producing a time-resolved cerebral vascular diagram of the brain 
vessels from the base of the skull to the vertex (Menon et al., 2013). It 
displays dynamic changes of blood flow in intracranial vessels and 
helps detect LVO more sensitively and accurately (Wagemans et al., 
2017). With optimized stroke management, the number of CTA 
examinations for suspected AIS is increasing, as is the workload of 
radiologists, which may result in a delayed diagnosis of LVO. Thus, 
rapidly and accurately detecting LVO on numerous CTAs suspected 
of having cerebrovascular problems is an urgent task.

Deep learning (DL) is a subset of machine learning which is a 
category of methods of artificial intelligence. By iteratively adjusting the 
weight layers in a deep neural network structure to transform input 
information into multiple levels of abstraction, DL automatically learns 
discriminative features and representations from data (Shen et al., 2017; 
Chan et al., 2020). DL has proven to be particularly useful for medical 
image segmentation and reconstruction, as well as for disease diagnosis 
and prediction. Several studies have shown that DL models have 
comparable or better diagnostic capabilities than human radiologists 
(Choi et al., 2021; Fujima et al., 2021), particularly in neuroradiology 
(Zaharchuk et al., 2018; Dai et al., 2020; Narayana et al., 2020).

We hypothesized that DL algorithms can effectively learn the 
information provided by dynamic CTA to detect LVO, thereby 
accelerating LVO diagnosis and ensuring timely treatment for patients. 
The purpose of this study was to develop and validate DL algorithm 
for LVO detection based on 4D-CTA, and to compare its diagnostic 
performance with that of radiologists of varying levels of seniority.

Materials and methods

Study participants

This retrospective study was approved by the institutional review 
board and ethics committee of the First Affiliated Hospital of 

Chongqing Medical University. Patients newly diagnosed with LVO 
from July 2020 to November 2021 in the Department of Neurology of 
our hospital were recruited. The inclusion criteria were: (1) 
age ≥ 18 years old, (2) diagnosis of anterior circulation LVO, (3) the 
“one-stop-shop” 4D-CTA + CTP examination. Patients with 
incomplete clinical data and poor-quality CTA scans were excluded. 
We  also collected age-sex-matched non-LVO patients with AIS 
symptoms who underwent AIS protocol imaging but were negative 
for vessel occlusion as a control group during the same period.

A total of 134 LVO patients and 136 non-LVO patients were 
enrolled. Among these, 104 LVO patients and 105 non-LVO patients 
(July 2020 to August 2021) were included to construct the training set 
for DL model training, testing and internal validation at a ratio of 
6:2:2. To validate the generalizability of the DL model, 30 LVO patients 
and 31 non-LVO patients (September 2021 to November 2021) 
formed the time-independent validation set.

Imaging protocols

4D-CTA images were obtained from a 320-row detector CT 
scanner (Aquilion ONE, Canon Medical Systems Corporation, 
Otawara, Japan). The scanning parameters were: 80 kV, 150–310 mA, 
coverage of 140–160 mm, 512 × 512 matrix, reconstruction with 
adaptive iterative dose reduction, 1.0 mm slice thickness, and 1.0 mm 
interval. The scanner provides whole-brain perfusion and dynamic 
vasculature information in one single examination with a single 
rotation of the gantry. The 4D-CTA acquisition protocol performs 19 
volumetric scans by using a whole brain dynamic volume intermittent 
mode in a total of 60s. It used a tube current boost in the arterial 
enhancement peak sequence. The first volume, acquired at 310 mA, 
served as a mask. Subsequently, Three-volume scans at 150 mA, 
six-volume scans at 300 mA, and four-volume scans at 150 mA were 
performed sequentially per 2 s, constituting the arterial phase (11–36 s). 
The last five-volume scans were collected every 5 s at 150 mA for the 
venous phase (40–60 s). Iodine 400 (Iopamidol 400, Bracco Sine, Italy) 
was injected intravenously with the high-pressure syringe. The P3T 
technique of high-pressure syringe system (MEDRAD Stellant CT 
Injection System, Bayer Medical Care, Pittsburgh, United  States) 
automatically calculate the amount and rate of contrast agents based 
on the patient’s gender, weight, height, and contrast agent 
concentration, providing a personalized contrast injection regimen.

All 19 volumetric scans were imported into a post-processing 
workstation (Vitrea, fX,1.0, Canon Medical Systems Corporation, 
Japan) and time-density curve (TDC) was generated by automatically 
labeling the inflow artery and outflow vein. According to the TDC, the 
point at which the arterial curve peaked was defined as the arterial 
phase (P1). The time point when the arterial curve and the venous 
curve intersected was defined as the arterial–venous phase (P2), the 
time of the venous curve to peak as the venous phase (P3), and the 
first time point when the venous curve entered a plateau was defined 
as the late venous phase (P4; Wang et al., 2022).

Definition of LVO

LVO was defined as the presence of a contrast filling defect in 
specific segments, including the intracranial internal carotid artery 

Abbreviations: AIS, Acute ischemic stroke; LVO, Large vessel occlusion; CTA, 

Computed tomography angiography; 4D-CTA, Four-dimensional computed 

tomography angiography; DL, Deep learning; ICA, Internal carotid artery; MCA, 

Middle cerebral artery; MIP, Maximum intensity projection; AUC, Areas under the 

curve; ROC, Receiver operating characteristic curve; PPV, Positive predictive value; 

NPV, Negative predictive value; NIHSS, National institutes of health stroke scale 

baseline score.
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(ICA) from the clinoid segment to its terminus, M1/M2 segments of 
the middle cerebral artery (MCA; Luijten et al., 2022). Occlusions in 
isolated extracranial ICA, A1/A2, M3/M4 and posterior circulation 
were not included. The ground truth of LVO was established by a 
senior neuroradiologist (Y.M.L. with 26 years of experience), 
considering the patient’s history and all available imaging data.

Image preprocessing and augmentation

The dataset construction process was shown in Figure 1. Bone 
removal data for the four phases (P1, P2, P3, and P4) were obtained 
by subtracting the images of the four defined phases from the mask 
images. Intracranial vascular MIP map for each phase was then 
obtained using the maximum intensity projection (MIP) 
reconstruction. The MIP algorithm was implemented by Python 
(3.8.0), mainly using Opencv library (4.5.3) and PIL library (8.0.1).

A total of 26 DL models were developed. Initially, four models 
were created separately for each phase (P1, P2, P3, and P4). Then, 11 
combinations were formed based on the different combinations of 
four time phases. And each was trained separately using two different 
input methods. Input method 1—combination of different phase MIP 
maps, including P1 + P2, P1 + P3, P1 + P4, P2 + P3, P2 + P4, P3 + P4, 
P1 + P2 + P3, P1 + P2 + P4, P1 + P3 + P4, P2 + P3 + P4, and 
P1 + P2 + P3 + P4. Input method 2—superimposition of different phase 
MIP maps (i.e., re-projection of MIP maps from multiple phases into 
one using MIP reconstruction), including MIP (P1, P2), MIP (P1, P3), 
MIP (P1, P4), MIP (P2, P3), MIP (P2, P4), MIP (P3, P4), MIP (P1, P2, 
P3), MIP (P1, P2, P4), MIP (P1, P3, P4), MIP (P2, P3, P4), MIP (P1, 
P2, P3, P4). Refer to Figure 2 for details.

Conventional data enhancement techniques such as online 
rotation, flipping, cropping, and luminance changes were applied to 
enhance the learning representation of the model. These operations 
were implemented in Python (version 3.8.0).

DL model development

We used the HRNet network to build DL model for LVO 
detection due to its superiority in image classification and 
segmentation (Jansen et al., 2018; Smith et al., 2018). To improve its 
performance, we made three modifications to the original HRNet 
network (Figure  1), It was mainly reflected in: (1) reduced the 
network structure from 4 to 3 stages (each yellow area represents one 
stage), (2) improved the successive convolution operations in each 
stage (modified to Modified Unit), (3) introduced channel and spatial 
attention mechanisms to the Modified Unit to enhance the network’s 
learning ability. In short, the network workflow involved feeding 
MIP-reconstructed images into the modified HRNet network to 
extract image features, then passed the feature maps through the 
global average pooling layer and fully connected layer, and finally 
generated the predicted probability of each category as output 
using softmax.

All models were implemented on the PyTorch library with 
NVIDIA GPU (GeForce GTX 2070 SUPER). The input image size was 
set to 256 × 256, and the batch size was set as 16. ADAM optimizer was 
used with an initial learning rate of 0.0001. The momentum and 
training epoch was set to 0.9 and 200, respectively. The warm-up 
strategy was applied in the first five epochs, and the learning rate was 
decayed at the 80th and 150th epochs with a decay ratio of 0.1.

FIGURE 1

Data preprocessing pipeline (top), overall architecture of proposed model (left), and CBAM Attention architecture (right). Data preprocessing pipeline: 
The intracranial vascular MIP maps were obtained based on the four phases selected by 4D-CTA. The input format was divided into single-phase input 
and multi-phase input (where multi-phase input has two input methods: combination or superimposition). Overall architecture: the images obtained 
from MIP reconstruction were fed into the modified HRNet network to extract image features, then the extracted feature maps passed through the 
global average pooling layer and the fully connected layer. Finally, softmax was used to generate the predicted probability of each category as output. 
CBAM Attention improves the classification performance of the network by weighting the extracted features in space and channels.
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Radiologist performance

To evaluate the proposed DL model’s clinical applicability, 
we compared the diagnostic performance of the best model with that 
of radiologists with varying expertise. Three radiologists, Reader 1 (J.L 
with 8 years of experience), Reader 2 (L.Q.D with 5 years of 
experience), and Reader 3, a trainee radiologist (S.R.G, a trainee 
radiologist with 1 year of experience), identified LVO or non-LVO 
from 4D-CTA images of the temporal validation set. They were 
blinded to clinical information, radiologic reports, and other 
examination findings.

Statistical analysis

The normality of data distribution was tested, with continuous 
variables reported as mean ± standard deviations (SD) or medians and 
interquartile ranges (IQRs), and categorical variables reported as 
proportions. Continuous variables were analyzed using Student’s t-test 
or Mann–Whitney U-test. The performance of the proposed DL 
models was evaluated by calculating the areas under the curve (AUC) 
using receiver operating characteristic curve (ROC) analysis for the 
training and temporal validation sets. We also compared performance 
using accuracy, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and F1 score. Differences in ROC 
among the DL models were evaluated using the Delong test. Inter-
rater agreement between the best model and each reader was assessed 

using the kappa analysis. Statistical significance was considered at 
p < 0.05. Statistical analysis was performed using SPSS (version 26.0, 
IBM, New York) and MedCalc software (version 20.115, https://www.
medcalc.org/).

Results

Patient demographic data, clinical 
characteristics

Table  1 summarized the demographic characteristics of 270 
subjects, including 134 LVO patients (83 males and 51 females) and 
136 non-LVO patients (83 males and 53 females). The training set 
comprised 104 LVO patients (mean age, 65.88 ± 12.82 years; 67 men) 
and 105 non-LVO patients (mean age, 62.85 ± 10.77 years; 64 men). Of 
these, the LVO subgroup contained 63 M1 (60.58%), 19 M2 (18.27%), 
14 ICA (13.46%), and 8 tandem (7.69%). The temporal validation set 
consisted of 30 LVO patients (mean age, 69.50 ± 9.89 years; 16 men) and 
31 non-LVO patients (mean age, 65.51 ± 12.57 years; 19 men), with 19 
M1 (63.33%), 6 M2 (20%), 2 ICA (6.67%), and 3 tandem (10%) in the 
LVO subgroup. Both sets showed that LVO patients had higher NIHSS 
median scores than non-LVO patients [9 (2–15) vs. 2 (1–4), p < 0.001; 
11 (2–18) vs. 0 (0–1), p < 0.001]. In the overall cohort, a NIHSS score 
cut-off of 6.5 was identified as the optimal threshold for detecting LVO, 
yielding an AUC of 0.853 (95% CI 0.804–0.903). This NIHSS cut-off 
demonstrated a sensitivity of 69% and specificity of 96%.

FIGURE 2

Three types of input to the model. Single phase (top): Each phase was input to the network model individually and the classification results were 
obtained. Multi-phase Way 1 (middle): Combination of multiple phase images for input. The output predicted probabilities were averaged to obtain the 
final model results. Multi-phase Way 2 (bottom): Superimposition of multiple phase images for input. The MIP images from multiple phases were again 
subjected to MIP processing to obtain a single superimposed image, which was input to obtain the final model classification results.
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Performance of the DL models

The DL models developed in four separate phases had AUCs 
above 0.700 (Table 2). Of these, model P1 and P2 showed superior 
performance with AUCs above 0.800. The DL model trained on P1 
alone achieved an AUC of 0.844 (95%CI: 0.704–0.935), with accuracy 
of 0.867, sensitivity of 0.963, specificity of 0.722 and F1 score of 0.855. 
The DL model trained on P2 alone achieved an AUC of 0.897 (95%CI: 
0.770–0.968), slightly higher than P1, with accuracy of 0.844, 
sensitivity of 0.889, specificity of 0.778 and F1 score of 0.836.

The results of DL models using combinations of MIP maps from 
different phases as input way were shown in Table 3. All models had 
AUCs above 0.800 for the Internal validation set. Among them, the 
P1 + P2 model had superior diagnostic performance with an increased 
AUC of 0.975 (95%CI: 0.878–0.999) compared to model P1, and 
achieved an accuracy of 0.911, sensitivity of 0.889, specificity of 0.944, 
and an F1 score of 0.909. Consistently high diagnostic efficacy for the 
P1 + P2 model was observed in the temporal validation set, with an 
AUC of 0.942 (95% CI: 0.851–0.986), accuracy of 0.902, sensitivity of 
0.867 and specificity of 0.935, and F1 score of 0.901. This was followed 
by the P1 + P2 + P3 model with an AUC of 0.916 (95%CI: 0.794–
0.978), accuracy of 0.867, sensitivity of 0.852, specificity of 0.889, and 
F1 score of 0.863. However, the Delong test showed that the 
improvement was not statistically significant (Supplementary Table S1).

Table 4 showed results of DL models using superimposition of 
MIP maps from different phases as the input method. The average 
AUC was 0.798, significantly lower than the mean AUC of 0.863 for 
the combination input models. The DL models trained on MIP (P1, 

P2, P3) and MIP (P1, P2) showed relatively good efficacy in identifying 
LVO, with AUC of 0.879 (95%CI: 0.747–0.957) and 0.860 (95%CI: 
0.724–0.945), respectively. However, both models were less effective 
than the best model P1 + P2. ROC results for the top two high-
performing DL models with different input methods were shown in 
Figure  3. Overall, we  constructed 26 models, and the DL model 
trained on P1 + P2 using the combined input approach had the highest 
diagnostic efficacy, surpassing the models composed by the mono-
phase and superimposed input approaches.

Discrimination performance of the best 
model and radiologists with different levels 
of expertise

Based on the time-independent validation set, we compared the 
diagnostic efficacy of the best DL model with that of radiologists with 
different levels of experiences (Figure 4; Supplementary Table S2). The 
best DL model outperformed Reader 3 for accuracy (0.902, 0.885, 
respectively), sensitivity (0.867, 0.833, respectively), specificity (0.935, 
0.935, respectively), PPV (0.929, 0.926, respectively), NPV (0.879, 
0.853, respectively), and F1 score (0.901, 0.885, respectively). 
Moreover, the performance of the best DL model was almost identical 
to Reader 1 (k = 0.84) and had strong inter-rater agreement with 
Reader 2 and Reader 3 (k = 0.80, 0.70, respectively).

We evaluated the diagnostic accuracy of the top-performing DL 
model and radiologists with varying levels of experience (Figure 4; 
Supplementary Table S2) using a time-independent validation set. 

TABLE 1 Demographics in the training and temporal validation cohort.

Characteristic Training set (n =  209) Temporal validation set (n  =  61)

LVO (n  =  104) Non-LVO 
(n  =  105)

p LVO (n  =  30) Non-LVO 
(n  =  31)

p

Age, mean (SD), years 65.88 ± 12.82 62.85 ± 10.77 0.066 69.50 ± 9.89 65.51 ± 12.57 0.175

Male, no. (%) 67 (64.42%) 64 (60.95%) 0.600 16 19 0.530

NIHSS score, median (IQR) 9 (2–15) 2 (1–4) <0.001 11 (2–18) 0 (0–1) <0.001

Target occlusion location, no. (%)

ICA 14 (13.46%) - - 2 (6.67%) - -

M1 MCA 63 (60.58%) - - 19 (63.33%) - -

M2 MCA 19 (18.27%) - - 6 (20%) - -

ICA and MCA 8 (7.69%) - - 3 (10%) - -

The bold values represents significant differences in intergroup comparisons, with p < 0.05.

TABLE 2 The performance of the DL model based on four separate phases.

Single phase AUC (95%CI) Accuracy Sensitive Specificity PPV NPV F1-score

P1 Internal validation set 0.844 (0.704–0.935) 0.867 0.963 0.722 0.929 0.839 0.855

Temporal validation set 0.843 (0.727–0.924) 0.803 0.767 0.839 0.788 0.821 0.803

P2 Internal validation set 0.897 (0.770–0.968) 0.844 0.889 0.778 0.824 0.857 0.836

Temporal validation set 0.838 (0.721–0.920) 0.803 0.967 0.645 0.952 0.725 0.799

P3 Internal validation set 0.770 (0.620–0.882) 0.756 0.778 0.722 0.684 0.808 0.748

Temporal validation set 0.703 (0.573–0.813) 0.689 0.667 0.710 0.688 0.690 0.688

P4 Internal validation set 0.790 (0.643–0.897) 0.778 0.704 0.889 0.667 0.905 0.777

Temporal validation set 0.555 (0.422–0.682) 0.590 0.900 0.290 0.750 0.551 0.551
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Compared to Reader 3, the DL model demonstrated superior 
performance across all measures, including accuracy (0.902 vs. 0.885), 
sensitivity (0.867 vs. 0.833), specificity (0.935 vs. 0.935), PPV (0.929 
vs. 0.926), NPV (0.879 vs. 0.853), and F1 score (0.901 vs. 0.885). The 
DL model also showed strong agreement with Reader 1 (k = 0.84) and 
had high inter-rater agreement with Reader 2 and Reader 3 (k = 0.80 
and 0.70, respectively).

Discussion

In this study, we developed DL models based on dynamic 4D-CTA 
to detect LVO and investigated the efficacy of two different input 
methods, namely combining and superimposing multi-phase MIP 
images. Our results showed that the DL algorithm had high efficacy 
in LVO detection, with the P1 + P2 model in the combination input 
approach having the highest detection efficacy. The combination of 
arterial and arterial–venous phase images provided richer temporal 
information, enabling more accurate and timely detection of LVO.

The importance of timely treatment in managing AIS is 
underscored by the concept of “time is brain,” emphasizing the critical 
role of rapid reperfusion therapy in salvaging at-risk brain tissue and 
improving patient outcomes (Goyal et al., 2016; Jansen et al., 2018). 
Society of Neurointerventional Surgery suggest an ideal time for CTA 
interpretation < 10 min (Smith et al., 2018). However, challenges in 
the emergency setting, such as the large number of patients and the 

shortage of neuroradiologists, may hinder meeting this time target, 
resulting in delays in evaluation for LVO patients. DL-based 
algorithms provide a solution to simplify the diagnostic process by 
automatically identifying LVO, thereby ensuring timely access to 
diagnostic imaging and intervention. Based on the strong performance 
of HRNet in image classification and segmentation (Ding et al., 2021; 
Li et  al., 2021), we  improved the original HRNet network for 
constructing our LVO DL-model The improved HRNet network 
excels at extracting richer semantic features, resulting in improved 
performance and increased utility for real-world applications.

DL has shown promise in developing models and software for 
diagnosing LVO (Rava et al., 2021; Yahav-Dovrat et al., 2021; Cimflova 
et al., 2022; Czap et al., 2022; Seker et al., 2022), mostly based on 
monophasic CTA. However, 4D-CTA provides dynamic multi-phase 
scanning, offering temporal resolution for a comprehensive assessment 
of hemodynamic changes in AIS patients (Frölich et  al., 2014; 
Kortman et al., 2015). Currently, only a few DL studies have been 
based on 4D CTA for LVO detection. Meijs et al. (2020) used nTTS 
(time to signal) maps for LVO detection, while Bathla et al. (2022) 
employed 5 time series data for LVO detection and localization. The 
results of these studies demonstrated the feasibility of DL models 
based on 4D CTA for LVO detection, yet they did not investigate the 
impact of different phases.

Without increasing the radiation dose, we obtained four-phase 
images of arterial, arterial–venous, venous, and late venous using 
TDC, ensuring scientific accuracy and precision. Our results found 

TABLE 3 The performance metrics for DL models with combinations of MIP maps at different stages as input way.

Combination of 
different phase

AUC (95%CI) Accuracy Sensitive Specificity PPV NPV F1-score

P1 + P2 Internal validation set 0.975 (0.878–0.999) 0.911 0.889 0.944 0.850 0.960 0.909

Temporal validation set 0.942 (0.851–0.986) 0.902 0.867 0.935 0.879 0.929 0.901

P1 + P3 Internal validation set 0.842 (0.702–0.933) 0.822 0.852 0.778 0.778 0.852 0.815

Temporal validation set 0.794 (0.671–0.887) 0.754 0.867 0.645 0.833 0.703 0.752

P1 + P4 Internal validation set 0.877 (0.744–0.956) 0.800 0.778 0.833 0.714 0.875 0.796

Temporal validation set 0.905 (0.803–0.965) 0.770 0.900 0.645 0.870 0.711 0.767

P2 + P3 Internal validation set 0.823 (0.680–0.921) 0.778 0.815 0.722 0.722 0.815 0.769

Temporal validation set 0.755 (0.628–0.856) 0.738 0.767 0.710 0.759 0.719 0.738

P2 + P4 Internal validation set 0.881 (0.749–9.058) 0.800 0.889 0.667 0.800 0.800 0.785

Temporal validation set 0.787 (0.663–0.882) 0.705 0.800 0.613 0.760 0.667 0.703

P3 + P4 Internal validation set 0.809 (0.664–0.910) 0.733 0.704 0.778 0.636 0.826 0.730

Temporal validation set 0.753 (0.626–0.854) 0.672 0.833 0.516 0.762 0.625 0.665

P1 + P2 + P3 Internal validation set 0.916 (0.794–0.978) 0.867 0.852 0.889 0.800 0.920 0.863

Temporal validation set 0.926 (0.829–0.977) 0.820 0.867 0.774 0.857 0.788 0.819

P1 + P2 + P4 Internal validation set 0.856 (0.719–0.943) 0.822 0.963 0.611 0.917 0.788 0.800

Temporal validation set 0.812 (0.691–0.900) 0.738 0.967 0.516 0.941 0.659 0.725

P1 + P3 + P4 Internal validation set 0.805 (0.659–0.907) 0.733 0.741 0.722 0.650 0.800 0.727

Temporal validation set 0.827 (0.708–0.912) 0.672 0.833 0.516 0.762 0.625 0.665

P2 + P3 + P4 Internal validation set 0.819 (0.676–0.918) 0.800 0.778 0.833 0.714 0.875 0.796

Temporal validation set 0.823 (0.704–0.909) 0.705 0.967 0.452 0.933 0.630 0.686

P1 + P2 + P3 + P4 Internal validation set 0.897 (0.770–0.968) 0.756 0.815 0.667 0.706 0.786 0.743

Temporal validation set 0.705 (0.575–0.815) 0.656 0.867 0.452 0.778 0.605 0.642
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that arterial–venous phase was comparable to arterial phase for LVO 
assessment, and the combination of arterial–venous and arterial phase 
improved performance to a greater extent, compared to the arterial 
phase alone. Additionally, combining the late venous phase with the 

arterial phase also improved LVO detection effectiveness to some 
extent, consistent with the results of Stib et al. (2020), who reported 
that the delayed phase improved the diagnostic performance of DL 
models. These findings suggested that vascular flow changes and 

TABLE 4 The performance of DL models using superimposition of MIP maps from different phases as input way.

Superimposition of 
different phases

AUC (95%CI) Accuracy Sensitive Specificity PPV NPV F1-
score

MIP (P1, P2) Internal validation set 0.860 (0.724–0.945) 0.917 0.815 0.889 0.762 0.844 0.863

Temporal validation set 0.839 (0.722–0.920) 0.781 0.833 0.774 0.828 0.803 0.806

MIP (P1, P3) Internal validation set 0.815 (0.671–0.925) 0.793 0.852 0.667 0.750 0.778 0.821

Temporal validation set 0.694 (0.562–0.805) 0.704 0.633 0.742 0.676 0.689 0.667

MIP (P1, P4) Internal validation set 0.815 (0.671–0.925) 0.750 1.000 0.500 1.000 0.800 0.857

Temporal validation set 0.709 (0.578–0.818) 0.714 0.500 0.806 0.625 0.656 0.588

MIP (P2, P3) Internal validation set 0.842 (0.702–0.933) 0.875 0.778 0.833 0.714 0.800 0.824

Temporal validation set 0.762 (0.636–0.862) 0.842 0.533 0.903 0.667 0.721 0.653

MIP (P2, P4) Internal validation set 0.691 (0.536–0.820) 0.741 0.741 0.611 0.611 0.689 0.741

Temporal validation set 0.629 (0.496–0.749) 0.520 0.867 0.226 0.636 0.541 0.650

MIP (P3, P4) Internal validation set 0.753 (0.602–0.869) 0.933 0.519 0.944 0.567 0.689 0.667

Temporal validation set 0.644 (0.511–0.763) 0.595 0.833 0.452 0.737 0.639 0.694

MIP (P1, P2, P3) Internal validation set 0.879 (0.747–0.957) 0.880 0.815 0.833 0.750 0.822 0.846

Temporal validation set 0.716 (0.586–0.824) 0.650 0.867 0.548 0.810 0.705 0.743

MIP (P1, P2, P4) Internal validation set 0.805 (0.659–0.907) 0.905 0.704 0.889 0.667 0.778 0.792

Temporal validation set 0.782 (0.657–0.877) 0.692 0.900 0.613 0.864 0.754 0.783

MIP (P1, P3, P4) Internal validation set 0.720 (0.566–0.844) 0.778 0.778 0.667 0.667 0.733 0.778

Temporal validation set 0.781 (0.656–0.876) 0.714 0.833 0.677 0.808 0.754 0.769

MIP (P2, P3, P4) Internal validation set 0.784 (0.636–0.893) 0.870 0.741 0.833 0.682 0.778 0.800

Temporal validation set 0.755 (0.628–0.856) 0.683 0.933 0.581 0.900 0.754 0.789

MIP (P1, P2, P3, P4) Internal validation set 0.813 (0.669–0.913) 0.875 0.778 0.833 0.714 0.800 0.824

Temporal validation set 0.675 (0.543–0.790) 0.634 0.867 0.516 0.800 0.689 0.732

FIGURE 3

The receiver operating characteristic curves results (ROC) for the top two high-performing DL models which were, respectively, built by single-phase 
input, multi-phases combined input and multi-phases superimposed input way. (A) Results of ROC analysis on the internal validation cohort. 
(B) Results of ROC analysis on the temporal validation cohort.
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pathophysiological alterations in various periods aid in LVO diagnosis, 
including the disappearance or invisibility of early occluded arteries, 
delayed enhancement of occluded arteries and collateral vessel filling 
(Frölich et al., 2012). However, there was no statistically significant 
difference in the improvement of the AUC of the multiphase joint 
model in our study, showing only a trend, which may be related to the 
relatively limited sample size.

Moreover, we  investigated two input methods for DL model 
development: combining and superimposing MIP maps of different 
phases. Our results showed that the combined input method 
outperformed the superimposed input method, which may 
be attributed to the MIP technique. 4D-CTA highlights blood flow in 
different vessels at different phases (reflected as different brightness of 
the image), while MIP projects the maximum value in the same 
location and sequence onto the final image. With the combined input 
method, by combining and stitching separate MIP images from each 
period, vascular changes can be observed more clearly. Conversely, the 
superimposed input method projects highlighted areas from each 
stage onto the final image, leading to reduced image quality and 
negatively impacting the final performance of the DL model. It 

underscoring the importance of selecting appropriate input methods 
in DL model development.

Currently, although all CTAs are reviewed by radiologists, there is 
no guarantee that LVO will be prioritized among the many suspected 
AIS cases. The comparative analysis between the best DL model and 
radiologists with varying levels of expertise revealed good consistency. 
The best DL model demonstrated a relatively higher accuracy and 
sensitivity, comparable specificity to less experienced trainee 
radiologist. These findings further emphasize the potential of DL 
models as valuable diagnostic support tools in prioritizing LVO 
detection and facilitating timely treatment decisions. It can flag the 
presence of LVO in unreviewed reports, alerting radiologists for 
prioritized review and preventing delayed diagnosis or omission.

Additionally, NIHSS scores showed a significant difference 
between the LVO and non-LVO groups, highlighting its role as a 
major clinical predictor of LVO (Fischer et al., 2005; Heldner et al., 
2013) and its current utility in prehospital EVT decision-making 
(Václavík et al., 2018; Cabal et al., 2021). However, NIHSS assessments 
are relatively time-consuming and dependent on experienced 
neurologists. In contrast, the best DL model outperformed the NIHSS 

FIGURE 4

The confusion matrix of the best DL model (A) and the radiologists with different experiences (B–D) in the temporal validation cohort.
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by visually detecting occluded vessels using comprehensive 
information from CTA images, offering more effective guidance for 
treatment decisions.

Our study had several limitations. Firstly, this was a single-center 
study with a relatively small sample size and CTA images obtained from 
the same scanner with consistent acquisition protocols, leading to 
potential sample selection bias. Future studies should consider multicenter 
studies with larger sample sizes and images from different acquisition 
parameters. Secondly, the proposed DL algorithm was not externally 
validated using a validation set from another institution, but a temporal 
validation set was used to assess its performance over time. The 
generalization capability of the algorithm needs to be further evaluated 
on multicenter external data. Thirdly, the algorithm only identifies LVO 
of the ICA, M1, and M2, excluding posterior circulation LVO, and does 
not provide information about a specific occluded segment. Therefore, 
we will collect more LVO cases in the anterior and posterior circulation 
and enhance the algorithm to better aid radiologists in detecting LVO.

Conclusion

In conclusion, our study highlights the potential of the DL model 
in detecting LVO in AIS patients using 4D-CTA. Through the 
utilization of advanced image processing techniques and 
comprehensive temporal information, DL models can accurately and 
rapidly identify LVO, especially when using the combination of 
arteriovenous phase images and arterial phase images, which 
demonstrated the highest detection efficacy. This helps to accelerate 
the screening and diagnosis of LVO in urgent clinical settings, 
ultimately improving patient prognosis.
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