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Autism spectrum disorder (ASD) is a complex neurodevelopmental condition 
characterized by diverse clinical features. EEG biomarkers such as spectral power 
and functional connectivity have emerged as potential tools for enhancing early 
diagnosis and understanding of the neural processes underlying ASD. However, 
existing studies yield conflicting results, necessitating a comprehensive, data-
driven analysis. We conducted a retrospective cross-sectional study involving 
246 children with ASD and 42 control children. EEG was collected, and diverse 
EEG features, including spectral power and spectral coherence were extracted. 
Statistical inference methods, coupled with machine learning models, were 
employed to identify differences in EEG features between ASD and control 
groups and develop classification models for diagnostic purposes. Our analysis 
revealed statistically significant differences in spectral coherence, particularly 
in gamma and beta frequency bands, indicating elevated long range functional 
connectivity between frontal and parietal regions in the ASD group. Machine 
learning models achieved modest classification performance of ROC-AUC 
at 0.65. While machine learning approaches offer some discriminative power 
classifying individuals with ASD from controls, they also indicate the need for 
further refinement.

KEYWORDS

autism spectrum disorder, electroencephalography, machine learning, spectral power, 
functional connectivity, coherence

OPEN ACCESS

EDITED BY

Zonglei Zhen,  
Beijing Normal University, China

REVIEWED BY

Jing Li,  
Tianjin University of Technology, China
Yanli Zhang-James,  
Upstate Medical University, United States

*CORRESPONDENCE

Xue-jun Kong  
 xkong1@mgh.harvard.edu 

Haiqing Xu  
 xuhaiqing9@126.com

†These authors share first authorship

‡These authors share senior authorship

RECEIVED 31 October 2023
ACCEPTED 09 January 2024
PUBLISHED 25 January 2024

CITATION

Ke SY, Wu H, Sun H, Zhou A, Liu J, Zheng X, 
Liu K, Westover MB, Xu H and Kong X-j (2024) 
Classification of autism spectrum disorder 
using electroencephalography in Chinese 
children: a cross-sectional retrospective 
study.
Front. Neurosci. 18:1330556.
doi: 10.3389/fnins.2024.1330556

COPYRIGHT

© 2024 Ke, Wu, Sun, Zhou, Liu, Zheng, Liu, 
Westover, Xu and Kong. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 25 January 2024
DOI 10.3389/fnins.2024.1330556

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1330556&domain=pdf&date_stamp=2024-01-25
https://www.frontiersin.org/articles/10.3389/fnins.2024.1330556/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1330556/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1330556/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1330556/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1330556/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1330556/full
mailto:xkong1@mgh.harvard.edu
mailto:xuhaiqing9@126.com
https://doi.org/10.3389/fnins.2024.1330556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1330556


Ke et al. 10.3389/fnins.2024.1330556

Frontiers in Neuroscience 02 frontiersin.org

1 Introduction

Autism spectrum disorder (ASD) is characterized by a range of 
neurodevelopmental disabilities affecting an individual’s social 
interactions, communication, behavior, learning, and overall 
functioning [National Institute of Mental Health (NIMH), 2022]. The 
diagnosis of ASD currently relies primarily on developmental and 
behavior screenings, as there are no definitive medical tests available 
[Centers for Disease Control and Prevention (CDC), 2022]. 
Researchers have recently turned their attention to the potential of 
utilizing neuroimaging modalities, such as electroencephalography 
(EEG) biomarkers to enhance ASD diagnosis. These EEG biomarkers 
hold promise as objective tools for early screening and intervention, 
shedding light on the underlying neural processes associated with 
ASD (Gurau et  al., 2017). Several studies have explored EEG 
characteristics, such as spectral power and functional connectivity 
across various frequency bands, in children with ASD (Brihadiswaran 
et al., 2019; Das et al., 2023). Although certain studies consistently 
demonstrate notable distinctions in spectral power and functional 
connectivity between autistic and typically developing children, 
conflicting results have also been reported (Garcés et al., 2022). These 
inconsistencies can be  seen even in the well supported U-shaped 
profile of electrophysiological power changes noted in children with 
ASD as compared to controls (Wang et al., 2013). As described by 
Wang and colleagues, the U-shaped profile of EEG power encompasses 
increased spectral power at high frequency (beta, gamma) and low 
frequency (delta, theta) bands, with reduced power noted in the alpha 
band. However, several studies have revealed inconsistencies in this 
U-shape pattern of EEG spectral power, with reduced power in ASD 
individuals and enhanced (Zhao et  al., 2023) or unaffected alpha 
power (Liao et al., 2022) in most brain regions. In addition, EEG 
coherence studies with ASD individuals demonstrate similar 
inconsistencies across various frequency bands, with alterations 
in local and long-distance coherence within and between different 
brain regions and hemispheres (Milovanovic and Grujicic, 2021). 
Thus, overall, no consensus has been achieved within the ASD 
research community. This underscores the importance of conducting 
a data-driven analysis on a sizable sample of young children with ASD 
aiming to identify the EEG functional connectivity/coherence specific 
features and their relationship with ASD core symptoms, the 
neurobiology basis behind, and the potential value for ASD early 
diagnosis and subtyping.

In this study, we analyzed resting-state EEG from a total of 288 
children, comprising 246 with ASD and 42 controls. Our approach 
extracted diverse EEG features related to spectral power, functional 
connectivity, complexity, and time domain statistics. Our primary 
objective was to identify differences in these EEG features between the 
ASD and control groups, employing statistical inference and machine 
learning methods.

2 Methods

2.1 Cohort and study design

The study was a retrospective cross-sectional study conducted 
over a period of 3 years and 1 month, from October 2013 to November 
2016, at the Hubei Provincial Women and Children’s Hospital in 

Wuhan, China. The study initially included a total of 362 participants 
with clinically diagnosed ASD and 57 health control participants. ASD 
participants were recruited from children that were visiting the 
neurology department for ASD and other neurological disorders. On 
the other hand, control participants were recruited from children that 
came to the hospital for routine physicals (i.e., well-child visits). ASD 
diagnoses were made from a team of two clinicians based upon The 
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 
(APA, 2013) and Childhood Autism Rating Scale second edition 
(Schopler, 2010). Participants with neurological organic lesions, 
genetic metabolic diseases, hearing impairment, and psychiatric 
disorders were excluded from the study. 121 participants who had 
their eyes closed were excluded from the study due to the heterogenous 
electrophysiology between individuals with eyes open and those with 
eyes closed. Moreover, the substantially higher number of participants 
with eyes open, in contrast to those with eyes closed, contributed to 
this decision. Table 1 provides information on the final cohort of 288 
participants included in the analysis.

2.2 Institutional review board approvals

All participants included in the study were given informed 
consent by their parents and guardians subject to oversight and 
approval by the ethics committee at Hubei Women and Children’s 
Hospital. The research protocol for data analysis in this study was 
submitted to the Massachusetts General Hospital Institutional Review 
Board (IRB) on 18 August 2022. The protocol received approval under 
the IRB Number: 2022P002152.

2.3 EEG data acquisition

The EEG data acquisition process utilized BrainMaster 
Discovery 24 system, designed to capture EEG signals spanning 
from DC 0 Hz to 80 Hz, boasting 24-bit precision. Application of up 
to 24 scalp electrodes was meticulously performed using collodion 
and adhering to precise measurement protocols. The sampling 
frequency was 256 Hz. The participants were required to sit in a 
comfortable chair in a quiet room for about 5 min. EEG recordings 
were conducted during resting but wakeful state and no visual cues 
were presented to the participants. Participants were instructed to 
close their eyes during the recording; however, due to the young age 
of the participants, most were unable to follow the instructions and 
keep their eyes closed for the entire duration of the EEG 
measurement. The subsequent analytical focus was centered on 19 
channels available for all participants with channel placement 
following the international 10–20 system. This set of channels 
encompassed Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, 
Pz, P4, T6, O1, and O2 with A1 being the reference channel at 
left mastoid.

2.4 Data preprocessing

The EEG preprocessing process was primarily carried out using 
the MNE-python package version 1.3.1 (Larson et al., 2022). First, a 
notch filter was employed to eliminate the 50 Hz line noise caused by 

https://doi.org/10.3389/fnins.2024.1330556
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ke et al. 10.3389/fnins.2024.1330556

Frontiers in Neuroscience 03 frontiersin.org

powerline interference. Following this step, a bandpass filter ranging 
from 0.5 Hz to 42 Hz was applied. Next, average referencing was 
applied as the re-referencing method.

To address problematic channels, EEGLAB tool (Delorme and 
Makeig, 2004) was employed. Channels were designated as “bad” and 
consequently removed under specific criteria: channels with flat 
activity for over 5 s, those exhibiting a high-frequency noise standard 
deviation lower than 4.5 μV, and channels displaying a correlation 
lower than 0.7 with neighboring channels (SCCN, 2023). Subsequently, 
EEG waveforms were plotted in the time domain and subjected to 
visual inspection. As a result of the visual inspection, 6 participants 
characterized by extreme EEG artifacts were excluded from 
subsequent analyses.

The EEG waveforms were then divided into 10-s epochs, each 
with a 2-s overlap. Any epochs deemed “bad” were excluded from 
further analysis if their maximum peak-to-peak signal amplitude 
exceeded 10,000 μV or their minimum peak-to-peak signal 
amplitude fell below 0.1 μV. Finally, 4 participants with total length 
less than 1 min after removal of bad epochs were excluded from 
subsequent analyses. The final number of EEG samples that 
went  into the analysis was 246 samples for ASD and 42 samples 
for control.

2.5 Feature extraction

Since our approach is a data-driven approach, we included a 
variety of EEG features. Five frequency bands were defined as delta 
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (30–42 Hz). EEG features were extracted from each epoch 
and averaged across all epochs and 1,046 features were extracted in 
total from the EEG of each participant. Spectral power for all five 
bands and each channel combination was first obtained using 
multi-taper spectral estimation (Slepian, 1978), where we used 7 
tapers and therefore having a frequency resolution of 0.4 Hz. 
Subsequently, relative spectral power was calculated by normalizing 
the spectral power over the total power (0.5-42 Hz), yielding values 
between 0 and 1. A total of 95 relative spectral power features 
were computed.

Channel-to-channel spectral coherence was calculated for each 
of the 5 bands. 171 channel-to-channel spectral coherence features 
were computed for each band and a total of 855 spectral coherence 
features were computed for all 5 bands in total. The computation of 
spectral coherence features was done using the spectral_
connectivity_epochs() function from the mne_connectivity package 
(MNE-Connectivity, 2023).

TABLE 1 Participant characteristics.

ASD (N  =  246) NO ASD (N  =  42) Overall (N  =  288)

Sex

  Female 32 (13.0%) 12 (28.6%) 44 (15.3%)

  Male 214 (87.0%) 30 (71.4%) 244 (84.7%)

Age months

  Mean (SD) 36.4 (14.0) 38.7 (13.9) 36.8 (13.9)

  Median [Min, Max] 34.0 [12.0,150] 36.0 [22.0,81.0] 34.0 [12.0,150]

Height (cm)

  Mean (SD) 97.4 (8.25) 99.8 (8.21) 97.8 (8.27)

  Median [Min, Max] 96.4 [80.3, 124] 97.9 [80.0, 117] 96.7 [80.0, 124]

  Missing 86 (35.0%) 9 (21.4%) 95 (33.0%)

Weight (cm)

  Mean (SD) 15.5 (4.21) 15.7 (1.95) 15.5 (3.91)

  Median [Min, Max] 14.7 [10.0, 48.9] 16.1 [10.1, 19.5] 15.0 [10.0, 48.9]

  Missing 86 (35.0%) 9 (21.4%) 95 (33.0%)

BMI (kg/m2)

  Mean (SD) 16.2 (2.97) 15.8 (1.48) 16.1 (2.78)

  Median [Min, Max] 15.9 [12.9, 47.0] 15.9 [13.0, 18.9] 15.9 [12.9, 47.0]

  Missing 86 (35.0%) 9 (21.4%) 95 (33.0%)

Childhood Autism Rating Scale

  Mean (SD) 32.8 (6.12) 25.1(4.09) 31.7 (6.46)

  Median [Min, Max] 32.0 [12.0, 97.5] 26.0 [13.0, 29.0] 30.0 [12.0, 97.5]

  Missing 15 (6.1%) 3 (7.1%) 18 (6.3%)

Intelligence Quotient (IQ)

  Mean (SD) 61.2 (8.20) 65.1 (10.8) 61.8 (8.79)

  Median [Min, Max] 57.0 [50.0,83.0] 62.5 [50.0, 86.0] 57.0 [50.0, 86.0]

  Missing 101 (41.1%) 12 (28.6%) 113 (39.2%)
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Several common statistical features in time-domain—sample 
entropy, skew, kurtosis, standard deviation, and mean—were all 
calculated for each of the 19 channels using respective functions from 
the mne-features package (Schiratti et al., 2018). This yielded a total 
of 95 common time-domain statistical features. Lastly, a binary feature 
was computed to check whether a participant’s EEG has alpha band 
using a method (Corcoran et  al., 2018) and associated software 
(Corcoran et al., 2019) that quantifies individual alpha frequency.

2.6 Statistical inference

Here, the EEG feature served as the outcome variable, reflecting 
the dependent variable within the regression model. On the other 
hand, ASD/non-ASD represented the exposure variable, serving as the 
independent variable in the regression analysis. Additionally, 
demographic variables were integrated as covariates in the model to 
reduce the effects of confounding.

To further mitigate potential confounding effects stemming from 
the demographic variables, a propensity model based on logistic 
regression was executed. This facilitated an optimal full match (Hansen 
and Klopfer, 2006) procedure through the utilization of the MatchIt 
package (Ho et al., 2011) in R. The resultant matching weights obtained 
from the optimal full match were then incorporated as propensity score 
weights (Greifer, 2023) within the regression models using the Survey 
package (Lumley, 2023) in R. The entire process encompassed the 

execution of a total of 1,046 regression models, each corresponding to a 
distinct EEG feature that had been extracted. For a detailed explanation 
of the optimal full match and the utilization of matching weights in the 
regression models, please refer to Supplementary Data File 1.

Within this framework, logarithmic transformations were applied 
to EEG feature variables with strictly positive values, while EEG 
feature variables ranging between 0 and 1 underwent logit 
transformations. The coefficients linked to the exposure variable 
(ASD/non-ASD) were computed for every regression model, 
accompanied by their respective value of ps. Specifically, EEG features 
with Bonferroni-adjusted value of p for exposure variable coefficients 
lower than 0.1 were designated as statistically significant. Figure 1 
depicts the entire inference workflow.

2.7 Machine learning classification

After the statistical inference, a leave-one-out-cross-validation 
(LOOCV) was performed where the entire inference step was 
nested within each split. That is during each split, the inference step 
is applied to each training set to select the top K features based on 
ranked Bonferroni adjusted p-values. Here we choose K = 15 based 
on a trade-off between (1) including as few features as possible to 
maintain a reasonable ratio between sample size and feature size to 
avoid overfitting; and (2) including as many features as possible to 
allow for the following nested forward feature selection.

FIGURE 1

Statistical inference workflow. ASD represents the binary variable for ASD/control. Transformation applied to EEG feature is dependent on feature type.
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The nested forward feature selection involved ridge logistic 
regression using the Scikit-learn package (Pedregosa et al., 2012). It 
was performed on each LOOCV training split using the top 15 features 
selected from the nested inference step. Notably, each ridge logistic 
regression was, in fact, a nested grid search to find the optimal alpha 
(i.e., regularization strength) that maximizes ROC-AUC. Moreover, to 
address the high-class imbalance, the minority class was upweighted 
in the loss function of the ridge logistic regression model. The features 
that achieved best nested cross validation performance were then used 
to fit another ridge logistic regression model, employing grid search 
on the training split to determine the optimal alpha. Subsequently, this 
model was used for inference on the single sample left out. We have 
included code to perform the aforementioned LOOCV procedure in 
Supplementary Data File 2.

2.8 Univariate classification of ASD using 
individual EEG features

In addition, each of the statistically significant features from the 
statistical inference step were used to classify ASD/non-ASD as 
standalone features for male and female participants separately, and 
an optimal threshold was chosen on the receiver operator 
characteristic curve (ROC) using the point closest to the top-left point 
of the ROC plot with perfect sensitivity and specificity.

3 Results

3.1 Comparison of EEG features in ASD vs. 
control

The covariates were balanced after optimal full matching 
(Supplementary Table  1), which reduced confounding bias in the 
covariates. Out of the 1,046 regression models analyzed in the matched 
cohort, only 10 exhibited a Bonferroni-adjusted value of p of less than 
0.1 for the coefficient related to the binary ASD/non-ASD variable 
(Table 2). To facilitate a better understanding of the 0.1 significance level, 
we present histograms illustrating the distribution of raw p-values and 
their corresponding adjustments in Supplementary Figure 1. The 10 
statistically significant EEG features exclusively consisted of spectral 
coherence features, all revealing elevated channel-to-channel spectral 

coherence within the ASD group. Notably, most instances of channel-to-
channel spectral coherence were concentrated in the gamma and beta 
bands, as depicted in Figure  2. Within the gamma band, enhanced 
spectral coherence becomes evident among pairs like P4 and C3, P4 and 
Fz, P4 and F4, Pz and Fz, as well as Pz and Fz. Similarly, in the beta band, 
augmented spectral coherence was observable between P4 and C3, P4 
and Fz, and Pz and Fz. Moreover, the alpha and delta bands showed 
statistically significant spectral coherence between Pz and T5. No 
statistically significant spectral coherence was observed in the theta band.

3.2 Machine learning classification of ASD 
using EEG features

The area under the receiver operating characteristic curve (ROC-
AUC) from the LOOCV are 0.6 (95% confidence interval 0.50–0.69), 
0.64 (0.54–0.73), and 0.65 (0.54–0.74) respectively for the baseline 
model that only included age and sex as features, the model that used 
inverse propensity score weighting (IPW) in the nested inference step 
for feature selection, and the model that used optimal full match in 
the nested inference step for feature selection (Figure  3A). The 
precision-recall curve AUC (PRC-AUC) from LOOCV for the three 
models are 0.89 (0.83–0.93), 0.91 (0.86–0.95), and 0.90 (0.84–0.94), 
respectively, for the three models (Figure 3B). The high PRC-AUCs 
are due to a 6 to 1 class imbalance of ASD participants (class 1) to 
control participants (class 0). Our models with EEG features only 
resulted in, at best, a 0.05 increase in ROC-AUC and a 0.02 increase 
in PRC-AUC. Moreover, the positive predictive value is calculated to 
be  (0.89, 0.90, 0.91) and negative predictive value is calculated to 
be  (0.24, 0.24, 0.29) for the baseline model, the model that used 
optimal full match in the nested inference step for feature selection, 
and the model that used IPW in the nested inference step for feature 
selection. Figure 4 depicts the confusion matrices from the LOOCV 
for the three models.3.3 Univariate Classification of ASD using 
Individual EEG Features.

Since machine learning classification using EEG features as 
predictive features only moderately enhanced model performance, 
we performed univariate analysis of the top 10 statistically significant 
EEG features to classify ASD/non-ASD for male and female 
participants separately. Supplementary Figure 2 depicts statistically 
significant spectral coherence feature plotted against CARS numeric 
total score for male and female separately, with the vertical line 

TABLE 2 Statistically significant EEG features.

EEG feature Coefficient Std error N (ASD) N (control) Adjusted p-value

Gamma band spectral coherence between P4 and C3 0.81 0.16 224 38 0.00047

Gamma band spectral coherence between P4 and Fz 0.81 0.18 215 36 0.0065

Beta band spectral coherence between P4 and C3 0.63 0.14 224 38 0.0078

Beta band spectral coherence between P4 and Fz 0.73 0.16 215 36 0.0098

Alpha band spectral coherence between Pz and T5 0.63 0.14 199 33 0.013

Gamma band spectral coherence between Pz and Fz 0.91 0.21 194 35 0.017

Delta band spectral coherence between Pz and T5 0.69 0.16 199 33 0.022

Beta band spectral coherence between Pz and Fz 0.75 0.18 194 35 0.036

Gamma band spectral coherence between P4 and F4 0.67 0.17 205 37 0.088

Gamma band spectral coherence between P4 and F3 0.68 0.17 209 37 0.091
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indicating the optimal cutoff. Although there is no statistically 
significant correlation between the 10 spectral coherence features with 
CARS numeric total score after Bonferroni correction, several spectral 
coherence features did exhibit relatively good discriminative 
performance for specific sex. For example, gamma band spectral 
coherence between Pz and Fz achieved sensitivity of 0.7 and specificity 
of 0.64 for male participants (Supplementary Figure 2J), and delta band 
spectral coherence between Pz and T5 achieved sensitivity of 0.75 and 
specificity of 0.78 for female participants (Supplementary Figure 2E).

4 Discussion

We extracted 1,046 features from the EEG of 246 children with 
ASD and 42 control children in a relaxed eye-opened condition. 

Statistical inference revealed only increased functional connectivity 
which was concentrated mostly in the gamma and beta frequency 
bands, but also in delta and alpha bands. Machine learning 
classification using a LOOCV framework showed that the statistically 
significant EEG features only moderately enhanced classification 
performance (0.05 increase in AUC).

Among the 10 statistically significant channel-to-channel 
spectral coherence features we measured, five of them pertain to the 
gamma band. This aligns with multiple studies that have previously 
reported gamma band abnormalities in individuals with ASD 
(Sheikhani et  al., 2012; Rojas and Wilson, 2014). We  observed 
increased long-range gamma coherence between frontal and parietal 
lobe channels for the ASD participants in both the statistical 
inference approach and the univariate approach. Although most 
previous studies have primarily reported reduced long-range spectral 

FIGURE 2

Statistically significant channel-to-channel spectral coherence features plotted on standard 10–20 montage. All connection lines indicate 
hyperconnectivity.

FIGURE 3

ROC curves and PRC curves resulting from machine learning LOOCV. (A) ROC curves (B) PRC curves. Baseline model represents a model that only 
uses age and sex as features. IPW and full match (i.e., optimal full match) represent different methods used in the nested inference step for feature 
selection. No skill model in panel (B) represents a model that classifies every participant as ASD. Bootstrapped confidence intervals for AUC curves are 
depicted by the shaded colors.
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coherence in ASD (Perez Velazquez et al., 2009; Khan et al., 2013), a 
few studies have also reported solely increased coherence both short 
range and long range (Sheikhani et  al., 2012; Wang et  al., 2020). 
Long-range connectivity is a higher-level brain function that allows 
different brain regions to quickly coordinate and integrate 
information, enabling coherent behavioral and cognitive responses 
(Wang et  al., 2020). The increased coherence observed in ASD 
participants may indicate a failure of developmentally appropriate 
pruning or die-back and may interfere with normal cortical 
processing. Alternatively, the increased coherence may represent a 
compensatory attempt of the autistic brain which leads to the 
formation of atypical, spatially disparate, cortical networks in an 
attempt to replace function normally subserved by assumed-to-be 
deficient more localized networks (Duffy and Als, 2012). Moreover, 
weak central coherence (WCC) is a special feature and in-built 
cognitive style of ASD (Happé and Frith, 2006; Bojda et al., 2021) 
presenting difficulty to form meaningful links from similar parts 
such as generalizing forest from individual trees. In other words, 
ASD patients stay super focused on certain details such as an 
individual tree which reflects on the hyperconnectivity or increased 
coherence between certain brain regions to specific stimuli. This 
could be  the roof of restricted interests and repetitive behaviors 
(RRB) which is one of the two core symptoms of ASD. RRB is critical 
for ASD diagnosis (Hyman et  al., 2020) and its early restrictive 
interest in some non-social objects contributed to the ASD’s another 
core symptom social communication deficit (Sasson and Touchstone, 
2014). Two previous studies indicated that increased α connectivity 
at 14 months was associated with later ASD diagnosis and RRB 
severity (Orekhova et al., 2014; Haartsen et al., 2019). A recent study 
displayed a strong association between EEG functional connectivity 
and RRBs and suggests its potential utilization as a biomarker to 
differentiate individuals with and without ASD (Sun et al., 2023). The 
natural links of certain obsessive attentions and their corresponding 
hyperconnectivity pathways in different brain regions provide reliable 
early diagnosis and subtyping guidance.

There are other studies that used machine learning to classify ASD 
vs. control group using resting state EEG recordings. One study used 
features derived from recurrence quantification analysis (Heunis et al., 
2018) methods to classify ASD vs. controls and achieved high (0.97) 

accuracy in an approximately 1:1 ASD to control sample size (Bosl 
et al., 2017). Another study combined spectral power and eye tracking 
features for classification and achieved a good (0.93) AUC (Kang et al., 
2020). However, a similar study also used power spectrum and 
functional connectivity features for classification also achieved poor 
results (accuracy 47%–57%; Garcés et al., 2022). These disparities in 
classification performances could be attributed to reasons such as 
differences EEG instruments, processing pipeline, feature extraction 
procedures, sample sizes, participant demographics, and machine 
learning methodologies etc. One methodology used in our study 
worth noting is combining optimal full matching and outcome 
regression analysis in the statistical inference. Matching is a 
non-parametric way of ensuring that the treated and control groups 
are similar in terms of subpopulation demographics which reduces 
confounding bias during group comparison of EEG features. After 
matching, the use of outcome regression increases precision in the 
effect estimates. Moreover, nesting the inference step inside LOOCV 
as the feature selection method facilitates a feature selection that is 
based on statistical significance without leaking information into the 
test splits.

In the future, we plan to use novel machine learning methods such 
as creating pre-trained deep learning foundation model on publicly 
available large EEG datasets and then fine-tune for ASD classification 
on this dataset.

4.1 Limitations

Several limitations exist in the study. First, the female sample is 
drastically smaller than the male sample size (44 vs. 244). There is also 
a big relative imbalance in sex where 87% of the participants with ASD 
are male and only 13% of ASD participants are female. Although 
propensity score matching was used to balance the subpopulation and 
demographic covariates were adjusted for in the outcome regression 
models, potential bias could still exist. Moreover, the choice of 
excluding eyes-closed participants significantly reduced our 
participant sample size for data analysis. In addition, the study follows 
a cross-sectional study design which has inherent weaknesses such as 
being prone to sampling bias and potential confounders (Wang and 

FIGURE 4

Confusion matrices resulting from machine learning LOOCV. (A) Confusion matrix for baseline model. (B) Confusion matrix for the model that uses 
IPW in the nested inference step for feature selection. (C) Confusion matrix for the model that uses full match in the nested inference step for feature 
selection.
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Cheng, 2020). Furthermore, the recruitment strategy resulted in a 
substantial disparity between ASD and control participants, with a 
disproportionate representation of ASD participants due to challenges 
in obtaining consent from parents of children in the control group. 
The reluctance of parents with healthy children to participate led to a 
significantly lower number of control participants, introducing a 
substantial 6 to 1 class imbalance. The class imbalance could have 
significant impact on both the machine learning model performance 
and the regression coefficient estimates during statistical inference, 
due to the potential of the models biasing the majority class (Luque 
et al., 2019).

Another major limitation of the paper is not having a held-out test 
set (external validation) that was never used in any model training, 
tuning, and feature selection. We  used nested LOOCV during 
machine learning classification of ASD due to the small sample size; 
however, it poses risks for potential leakage, overfitting, and inflated 
estimation of model performance. The risk of overfitting and inflated 
performance from cross validation has been reported in multiple 
systematic reviews of machine learning classification in neurological 
and developmental disorders (Pulini et al., 2019; Vabalas et al., 2019). 
Even though we  nested feature selection in the training splits of 
LOOCV, our approach could still be considered a form of circular 
analysis or “peeking” (Pulini et al., 2019). This is because statistical 
analysis was performed on the entire dataset prior to performing 
machine learning classification and statistical analysis helped to 
inform the rough number (i.e., threshold) of features to pass to the 
nested forward selection step during LOOCV. Thus, the reported 
machine learning classification performance in this paper could 
be inflated.

Lastly, CARS does not have sub-scores of social deficits and RRB 
as Autism Diagnostic Observation Schedule (ADOS) does, so that 
we were unable to make direct correlation between our increased 
coherence and RRB which we  believe they could be  very 
likely correlated.
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