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Structural and functional MRI (magnetic resonance imaging) based diagnostic

classification using machine learning has long held promise, but there are

many roadblocks to achieving their potential. While traditional machine learning

models su�ered from their inability to capture the complex non-linear mapping,

deep learning models tend to overfit the model. This is because there is data

scarcity and imbalanced classes in neuroimaging; it is expensive to acquire

data from human subjects and even more so in clinical populations. Due to

their ability to augment data by learning underlying distributions, generative

adversarial networks (GAN) provide a potential solution to this problem. Here,

we provide a methodological primer on GANs and review the applications of

GANs to classification of mental health disorders from neuroimaging data such

as functional MRI and showcase the progress made thus far. We also highlight

gaps in methodology as well as interpretability that are yet to be addressed.

This provides directions about how the field can move forward. We suggest that

since there are a range of methodological choices available to users, it is critical

for users to interact with method developers so that the latter can tailor their

development according to the users’ needs. The field can be enriched by such

synthesis between method developers and users in neuroimaging.

KEYWORDS

generative adversarial network (GAN), classification, fMRI, brain connectivity, deep

learning

1 Introduction

Structural and functional magnetic resonance imaging have held promise as a potential

biomarker for diagnosing patients with neurological and neuropsychiatric conditions.

Functional magnetic resonance imaging (fMRI), a technique that detects changes in blood

flow associated with increased neural activity, has been found informative in identifying

functional impairments in brain disorders. Resting-state fMRI (rs-fMRI), which examines

the spontaneous fluctuations of blood-oxygen levels in the absence of neuronal stimulation,

has been increasingly utilized as a biomarker for various brain disorders. This technique

explores the intrinsic functional characteristics of the brain network, revealing alterations
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in functional connectivity (FC) (can be expressed in terms of the

statistical relationship between two time series from different brain

regions) in patients with brain disorders compared to healthy

individuals. For instance, research on autism spectrum disorder

revealed a reduction in FC between the posterior superior temporal

sulcus and amygdala, linked to voice perception and language

development, as discovered by Alaerts et al. (2015). Additionally,

Gotts et al. (2012) showed decreases in limbic-related brain regions

associated with social behavior, language and communication. FC

abnormalities also have been reported in patients with Alzheimer’s

disease (AD) when compared to healthy controls, particularly

within the default mode network (DMN), a network that is involved

in memory tasks among other functions. These disruptions occur

between the precuneus and posterior cingulate cortex with the

anterior cingulate cortex and the medial prefrontal cortex, as

indicated by Brier et al. (2012) and Griffanti et al. (2015). Machine

learning (ML) or deep learning algorithms have been extensively

used to improve diagnostic results, leveraging the FC abnormalities

in patients as informative features. These algorithms have been

proven to significantly contribute to more accurate and early

detection of brain disorders (Deshpande et al., 2015; Rabeh et al.,

2016; Zou et al., 2017; Qureshi et al., 2019; Lanka et al., 2020; Ma

et al., 2021; Yan et al., 2021), providing a rapid and automated tool

for future diagnostic applications.

Beside fMRI, structural or anatomical MRI can also be useful

in ML applications by offering morphometric information about

the brain, such as volumes of white matter (WM) and gray

matter (GM), cortical thickness, etc. Measuring hippocampal

volume, a metric derived from structural MRI, has been shown to

discriminate not only between AD patients and healthy subjects,

but also among individuals with other dementia-related disorders

(Schuff et al., 2009; Vijayakumar and Vijayakumar, 2013). Diffusion

tensor imaging (DTI) is one of the modality that can reveal

structural information about brain connectivity by measuring

the direction and magnitude of water diffusion. DTI has the

capability to define structural connectivity (SC) based on the fibers

that link each pair of brain regions. Research has demonstrated

that analyzing connectivity patterns through DTI-based SC can

effectively distinguish individuals with brain disorders. This

approach offers valuable insights into the irregularities with neural

pathways, contributing to the identification and understanding

of various neurological conditions (Tae et al., 2018; Billeci et al.,

2020). Many studies have illustrated that enhancing diagnostic

accuracy is achievable by incorporating multimodal information

from both functional and structural connectivity data (Libero

et al., 2015; Pan and Wang, 2022; Cao et al., 2023). However,

the practical application of ML is still impeded by challenges

such as high-dimensional spaces and imbalanced datasets in real-

world scenarios. In addressing these obstacles, the implementation

of generative adversarial network has shown promise, offering

a potential solution to mitigate these issues and enhance the

effectiveness of ML approaches.

Generative adversarial network (GAN) was proposed by

Goodfellow et al. (2014). The concept is inspired by the zero-sum

game in game theory (where one agent’s gain is another agent’s loss).

GAN is a generative model that learns to produce synthetic images

from random noise z derived from the prior distribution p(z),

which is commonly Gaussian or uniform distribution. With the

impressive performance shown in image generation, its unique and

inspiring adversarial characteristic to discover data distributions is

also exploited in clinical applications wherein GAN is being used

for classification, detection, segmentation, registration, de-noising,

reconstruction and synthesis. Here, we provide a brief overview of

the vanilla GAN (the original GAN) and its extensions that have

been developed and commonly used in clinical applications to brain

disorders.

Data scarcity and imbalanced data (the number of healthy

individuals often exceeds the number of unhealthy ones) are

common challenging issues in classification task. Traditional data

augmentation methods such as flipping, rotation, cropping, scaling

and translation generate data sharing a similar distribution with

the original ones, leading to the performance of the model

does not improve. Since the topology of brain networks plays a

pivotal role in characterizing information flow and communication

between different brain regions, these methods, while effective

for regular image data, can inadvertently distort the connectivity

patterns encoded in FC brain network data. While certain

data augmentation techniques, such as Synthetic Minority Over-

Sampling (SMOTE) (Eslami and Saeed, 2019; Eslami et al., 2019)

or Adaptive synthetic sampling (ADASYN) (Koh et al., 2020;

Wang et al., 2020) has been proposed tackle the challenge of

data imbalance, they often rely on linear interpolation for data

sampling. This may introduce artifacts as well as data redundancies.

Consequently, these methods might not be optimally effective for

robust data augmentation. GAN can be used as an alternative data

augmentation technique and it have been proved to improve the

performance of the model. Zhou et al. (2021) proposed a GAN

model that can generates 3 T imaging data from 1.5 T data collected

from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset

and they used both the real 3 T and synthetic 3 T data to classify

healthy subjects with Alzheimer’s patients. However, to apply 2D

convolution of CNN in more appropriate way, Kang et al. (2021)

divided the 3D images into various 2D slices and applied ensemble

method to produce the best results.

However, those methods are still applied on 3D imaging data,

which cost a large amount of computational resources. To solve

this problem, a GAN framework (Yan et al., 2021) was proposed

with the generator that can take a random noise input and

produce synthesis functional connectivity (FC). Themodel used the

BrainNetCNN (Kawahara et al., 2017) as discriminator to extract

meaningful features and it can perform two tasks simultaneously:

testing the authenticity of the output data and classifying which

label the data belong to. Other approaches also generated FC

constructed from independent component analysis (Zhao et al.,

2020) or combined variational autoencoder (VAE) with GAN

(Geng et al., 2020) to give more control to the latent vectors.

There are also a number of obstacles occurring when we train a

GAN model. Mode collapse is one of the most difficult problem in

training GANmodel. This phenomenon occurs when the generator

continually produces a similar image and the discriminator fails to

distinguish the real and fake samples generated by the generator.

To solve this problem, we can incorporate the subject’s attribute

data to the latent noise input, as we have done in Yan et al. (2021).

By doing this, we add more information to the prior distribution,
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hence the improvement in the diversity of the generated samples.

The objection function has been proven as optimizing the Jensen-

Sharon (JS) divergence, which is a difficult point to achieve when

training a GAN model. We can mitigate this problem by using

Wasserstein loss function, which has proved to increase the stability

of GAN training (Arjovsky et al., 2017).

Heterogeneous domain adaptation task is a problem that

leverages the labeled data from the source domain to learn the

data from other domains (target domains). Deep neural networks

excel at learning from the data that they were trained on, but

perform poorly at generalizing learned knowledge to new datasets.

Cycle-consistent GAN (CycleGAN) (Zhu et al., 2017) can be used

to learn the mapping between the two domains and minimize

the distance between the source and target feature distributions.

Therefore, it can be a potential solution to transfer knowledge from

different open-source datasets, which contains data with different

acquisition protocols of the scanner (Wollmann et al., 2018) applied

CycleGAN to perform classification task and experimental results

shown that domain adaptation method produces better accuracy

than state-of-the-art data augmentation technique. This domain

adaptation method is still at its early stage and further research

is needed to explore CycleGAN for the classification of brain

disorders using data from different domains.

From the brief introduction above, it is clear that GANs

hold immense potential for application to neuroimaging-based

diagnosis of brain disorders wherein it can be deployed to solve

some problems unique to neuroimaging as well. Therefore, we

provide a review of the applications of GAN to neuroimaging-

based diagnosis and identify potential problems and future

directions. Before we do so, a brief methodological primer is

provided on GANs so that the readers can appreciate the range

of methodological choices available to end users that may be

more appropriate for their given applications. Next, we delve

into an extensive exploration of the applications of these models,

particularly in the context of brain disorder diagnostics using

functional/structural MRI data. The primary aim is to elucidate the

observable impact of GANs as a data augmentation method in this

critical diagnostic domain.

2 Methodological primer

2.1 Vanilla GAN

GAN consists of two models that are trained simultaneously in

an unsupervised way. The two models are called the discriminator

(D) and the generator (G). The goal of D is to test the authenticity

of the data (real or fake) while G’s objective is to confuse D as

much as possible. We can view that each time G make a poor

product, D will send a signal to inform G to improve the product.

When G improves its product’s quality, D will also try to better

penetrate it an this in turn causes G to improve its product to an

even higher level. Therefore, we can see this process as a min-max

operation.

Mathematically, assuming that D and G are neural networks

parameterized by θd, θg , G can be seen as a non-linear mapping

function that generates x̂ = G(z; θg) from random noise z drawn

from a prior distribution pz (z ∼ pz(z)) and x̂ is supposed to follow

the distribution pθ (x̂|z). On the other hand, the output of D is just

a label that indicates whether the input is a real or fake sample

y = D(x; θD) or in other words, D is a binary classifier. Given

real data following the distribution preal(x), the main purpose of

training the GANmodel is to form the distribution of the generated

sample to approximate the distribution of the real data: pθ (x̂|z) ≈

preal. In other words, D can no longer distinguish the fake product

generated by G. The loss functions to train those two models can be

calculated as Equation 1 and Equation 2:

LD = max
D

Ex∼preal(x)[logD(x)]

+ Ex̂∼pθ (x̂|z)[log(1− D(x̂))]
(1)

LG = min
G

Ex̂∼pθ (x̂|z)[log(1− D(x̂))] (2)

The training procedure has been proven to be equivalent

to minimizing the Jensen-Shannon divergence between the

distribution of real and synthetic data. The models also

employ back propagation to update their parameters. When

the discriminator is undergo training, the parameters of G are

fixed. The discriminator D receives both the real data x (positive

sample) and the generator’s fake data x̂ (negative sample) as

inputs and the error used for back propagation is calculated by

the output of D and the sampled data. Similarly, when training G,

the parameters of D are fixed. The sample data generated by G is

labeled as fake and fed into the discriminator. The output of the

discriminator D(G(z; θG)) and the labeled data from G are used to

calculate the error used for the back propagation algorithm. The

parameters of D and G are continuously updated by those steps

until we reach the equilibrium.

2.2 InfoGAN

In the original GAN, the generated images from the generator

are totally random and there is no control regarding the properties

of the images. InfoGAN (Chen et al., 2016) helps the generator

to have a better control of the generated output by involving its

mutual information (typically data attributes of the images) to the

latent vector. For example, to have a better quality of face images we

also need other factors such as the shape of the eyes, hair style and

hair color, etc. Figure 1 shows the general architecture of infoGAN.

In infoGAN, the problem is to maximize the data distribution of

generated output and the latent attribute vector. Therefore, the loss

function of the standard GAN will includes the information term

as regularization which can be seen in Equation 3:

min
G

max
D

LI(D,G) = L(D,G)− λI(c;G(z, c)) (3)

where λI(c;G(z, c)) is the mutual information term.

2.3 Conditional GAN

Figure 2 shows the general architecture of conditional GAN

(cGAN) (Mirza and Osindero, 2014). By adding the auxiliary
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FIGURE 1

InfoGAN architecture. The data attribute c is added to the input of the generator. The Q classifier uses the generated data from G as input and

produces the information distribution c′ that resembles c.

information c to the generator and discriminator such as class label,

the model can generate data that belongs to that specific label. The

conditioned information not only guides the generator to produce

high quality synthesis image but also helps to improve the stability

of the training process. The loss function will then include the

conditioned c as depicted in Equation 4 and Equation 5:

LD = max
D

Ex∼preal(x)[logD(x|c)]

+ Ex̂∼pθ (x̂|z)[log(1− D(G(z|c)))]
(4)

LG = min
G

Ex̂∼pθ (x̂|z)[log(1− D(G(z|c)))] (5)

2.4 AC-GAN

The auxiliary classifier GAN (AC-GAN) (Odena et al., 2017)

is an extension of the cGAN where the discriminator is slightly

modified so that it can also provide the prediction of the class

label along with the authenticity of the input. In particular,

similar to cGAN, the generator will also receive the class label

combined with the latent vector as input, while the discriminator

is provided with only the images, instead of both the images

and class label in cGAN. The discriminator will add one

more head that uses softmax activation function to provide the

probability for each class label, enabling GAN to performance

classification task.

2.5 Wasserstein GAN

Wasserstein GAN (WGAN) (Arjovsky et al., 2017) was

proposed to deal with the common issues that often occur when

training the GAN model, such as mode collapse or JS divergence.

The paper introduces the new distance metric—Earth Moving

distance or Wasserstein distance that can be formulated as in

Equation 6:

W(Pr ,Pθ ) = sup
‖f ‖L≤1

Ex∼Pr [f (x)]− Ex∼Pθ
[f (x)] (6)

where f is a 1-Lipschitz function. To solve this equation, we can

model f as a neural network and learn the parameters from it. The
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FIGURE 2

Conditional GAN architecture. The label c is added as input to the generator and discriminator so that the generator can generate synthetic data

belonging to that specific label.

FIGURE 3

CycleGAN architecture. Two generators and two discriminators are trained in the CycleGAN model. Each generator receives a set of data from the

other domain to produce synthetic data from its domain. Reprinted from: Kazeminia et al. (2020). Copyright (2020) with permission from Elsevier.

solution can be shortly summarized as in Equation 7:

max
w∈W

Ex∼Pr [fw(x)]− Ez∼pz [fw(gθ (z))] (7)

Initially, the model used weight clipping technique to satisfy

the Lipschitz constraint that may lead to vanishing gradient

problem. The paper later introduced a gradient penalty technique

to enforce Lipschitz constraint to improve the stability of the

training process.

2.6 CycleGAN

CycleGAN (Zhu et al., 2017) is one of the most commonly used

models in the generation of medical images due to its capability to

perform cross-modality transition, such as synthesizing brain CT

images fromMRI images. CycleGAN consists of two generators and

two discriminators where each generator will receive a set of data

from other modality and the data are not necessary to pair with

each other. Let us assume that we have data samples x ∈ X and

y ∈ Y where X,Y are training data for which we want to make

a transition and G, F are two generators or two translators that

make a mapping: ŷ = G(x) and x̂ = F(y). If we use the original

GAN’s loss function to update the model, the generator may be

able to generate data in each domain, but it is not sufficient to

generate translations of the input data. CycleGAN introduces an

additional concept called cycle consistency which states that the

transitions between the two translators are bijections, meaning that

F(G(x)) = x and G(F(y)) = y. The cycle consistent loss is added

to the original loss function as the regularization term as shown in
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Equation 8:

Lcyc(G, F) = Ex∼pdata(x)[‖F(G(x))x‖1]

+ Ey∼pdata(y)[‖G(F(y))− y‖1]
(8)

Figure 3 illustrated the overall architecture of CycleGAN.

3 Similarity metrics

The synthetic data must undergo validation against real data to

assess the model’s effectiveness. Numerous similarity metrics have

been developed to evaluate the features of real and synthesized

brain networks. This section provides a brief overview of these

techniques that have been used in previous literature.

Kullback-Leibler Divergence (KL Divergence) measures the

difference between two probability distributions p(x) and q(x)

[where p(x) and q(x) are the probability of the data x ∈ X occurring

in the real and fake data distribution, respectively]. The formula for

KL divergence can be expressed as Equation 9:

KL(p(x)||q(x)) =
∑

x∈X

ln p(x)
p(x)

q(x)
(9)

Maximum Mean Discrepancy (MMD) quantifies distribution

differences by measuring the distances between distributions

through their respective mean feature embeddings, which can be

expressed as Equation 10:

MMD(P,Q) = ||EX∼P[φ(x)]− EY∼Q[φ(Y)]||
2 (10)

where X and Y are the sample from real distribution P and fake

distribution Q, respectively. φ is a kernel function that maps X and

Y into a higher-dimensional space.

Graph-based global metrics: Transitivity, global efficiency,

modularity, density, betweenness centrality, and assortativity

(Beauchene et al., 2018) are prevalent metrics employed for

quantifying meaningful graph attributes and therefore serving as

tools to assess the quality of generated graphs.

4 Applications of GAN for brain
disorder classification

One of the most challenging problems in training a deep

learning model for brain disorder classification is the small amount

of data often causing the model to be overfitted. One possible

solution to this problem is using GAN for data augmentation due

to its capability to synthesize high-quality images that resemble

real MRI data. Many researches have shown that using generated

images from GAN can assist the training process and improve the

classification performance (Shin et al., 2018). In this work, we will

focus on the discussion of the GAN models that utilize synthetic

MRI images to assist the classification problem.

Zhou et al. (2021) used both GAN and fully convolutional

network (FCN) to generate 3 T MRI images from 1.5 T images in

the ADNI dataset to distinguish the brain images of AD patients

from those of the healthy group. The goal of the generator is to use

1.5 T data as the input to generate 3 T images (called 3 T∗) images

with better resolution to improve the classification performance.

This method is similar to residual learning, where the model tries to

figure out the missing features or the differences between two types

of images and the model will add those features to transform 1.5–

3T images. The main advantages of this method is that by learning

only the residual, we could save a large amount of computational

resources and the model could learn the important features more

easily.

Training GANmodel for the 3D images requires a large amount

of data to avoid over-fitting problem. Furthermore, it may not be

appropriate for the 2D CNN to be trained on 3D data. Therefore,

Kang et al. (2021) suggested to train on multiple 2D slices selected

from the coronal axis and then proposed a major voting scheme to

obtain best accuracy results. The model was first trained on all the

slices with deep convolutional GAN (DCGAN) method (Radford

et al., 2015). Then they used transfer learning that froze the few

first layers’ trainable weights and fine-tuned the weights of the

remaining layers on three models: the pretrained DCGAN, VGG16

(Simonyan and Zisserman, 2014) and ResNet50 (He et al., 2016)

to select the models that produce the best results. VGG16 and

ResNet50 were pretrained on the ImageNet dataset. The results

have shown that ensemble learning with three classifiers is more

stable and has the highest performance than when training with

only one classifier.

Most of the works focus on generating 3-D brain images

which demands huge computational resources as well as lacks

interpretability. A GAN model that can produce synthetic

functional connectivity can be more effective for tackling both

of these problems. Geng et al. (2020) proposed a brain

functional connectivity generative adversarial network (FC-GAN)

that combines variational autoencoder (VAE) and adversarial

strategy to generate FC data from the original dataset. The model

consists of three components: the encoder took the real data

as input to generate the mean and variance of the latent code

that follows the normal distribution and use it as a noise vector;

the decoder took the noise vector to generate fake data, which

is equivalent to the generator component in GAN; and finally

the discriminator was designed based on WGAN loss that used

Wesserstein distance to calculate the difference between fake and

real data. Those three components were jointly connected and

trained separately. The whole model was trained in two steps:

the first step was trained according to traditional GAN procedure

to receive augmented FC data. Then the augmented data was

combined with the experimental data and they were fed into the

deep neural network (DNN) containing multiple fully connected

layers to output the class for each subject. The experimental results

on ASD (256 HC and 198 patients with AD), ADHD (272 HC and

215 patients with ADHD), and ASD-ABIDE datasets (829 HC and

660 patients with AD) show the improvement in accuracy when

training with DNN alone (87.16, 87.27, and 70.22%, respectively,

compared to 85.35, 85.06, and 67.22%, respectively).

GAN with autoencoder was also applied in generating brain

connectivity for the classification of multiple sclerosis (MS) (Barile

et al., 2021) (Figure 4). However, the output of the encoder will try

to resemble the data drawn from the normal distribution instead

of the image data. The model demonstrated an improvement

of accuracy when training with the generated connectomes than

with the original ones, meaning that the model could generate
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meaningful connections that could help to identify the disease.

The model was tested on Multiple Sclerosis (MS) dataset, which

included 29 relapsing-remitting and 19 secondary-progressive MS

patients, achieving the highest F1-score of 81% compared to only

65.65% without using a data augmentation method. The model

also outperformed other data augmentation techniques by margins

exceeding over 10% (72.32% for SMOTE and 64.84% for the

Random Over Sampling (ROS) method).

Another FC-based method that also applied a GAN model for

the classification ofmajor depressive disorder (MDD) patients from

HC was proposed by Zhao et al. (2020). The model implemented

a feature mapping technique in GAN, which is a specific method

that can increase the efficiency of the training process of the GAN

model (Salimans et al., 2016). The featuremappingmethod changes

the way of training the generator where the discriminator will guide

the generator to match the features of the intermediate layer of the

discriminator. The new objective function for the generator can be

defined as Equation 11:

‖Ex∼pdata f (x)− EZ∼pZ(z)f (G(z))‖
2
2 (11)

If the model is trained by this method, the generator can

produce data that match the statistic of the real data, avoiding

model collapse during training. The author also proposed the leave-

one-FNC-out method to determine which components or brain

regions are important for predicting the disease. In particular, by

observing the drop in the model’s performance when removing a

component, the potential biomarkers can be identified. The model

underwent testing on two datasets: the MDD dataset, consisting of

269 MDD and 286 healthy controls (HC) and the Schizophrenia

dataset, comprising 558 schizoprenia patients and 542 HC. The

model achieved an accuracy of 70.1% for the MDD dataset and

80.7% for the Schizophrenia dataset, respectively. These results

were at least 6 and 3–6% higher, compared to the performance of 6

other traditional ML approaches.

Furthermore, for the purpose of enhancing the quality of

generated data, Cao et al. (2023) introduced a multiloop algorithm.

This algorithm enables the assessment and ranking of the sample

distribution in each iteration, allowing for the selection of solely

high quality samples for training. The paper additionally suggests

training the data using PatchGAN (Isola et al., 2017), a technique

extensively employed in computer vision to extract features from

small patches. This method offers the advantage of enabling the

model to focus more on local details, which in turn enhances the

similarly between real and synthetic data. The paper continued

the training of the model by employing Wasserstein loss with

gradient penalty method, which helped prevent the discriminator

and generator from diverging. The effectiveness of the proposed

model is evident in its evaluation on the AD dataset, which

comprises 42 HC and 42 patients with AD. The proposed model

displayed a higher accuracy (83.8%) compared to the models that

were either trained without augmented data and loops (81.4%), or

solely employed conditional GANs (81.6%).

Another model that was proposed to generate brain network

connectivity is called as BrainNetGAN (Li C. et al., 2021) that

includes three parts: a generator, a discriminator and a classifier.

The generator consists of multiple fully connected layers and a

reshape layer that converts the combined input of the random

noise vector and one-hot label vector to brain network matrix.

Both the discriminator and the classifier adopted the architecture

of BrainCNN model (Kawahara et al., 2017) that design layers

with specialized kernels, namely edge-to-edge layer, edge-to-node

layer and node-to-graph layer. The discriminator is responsible for

classifying real and fake matrices with the loss function adopted

from WGAN to increase the stability during training, while the

classifier used the binary cross entropy loss to classify whether the

subject is healthy or not. The model was evaluated for dementia

classification with AD dataset including 110 patients with AD

and 110 HC. When trained using a combination of real and

synthetic data, it attained an accuracy of 85.2%, outperforming the

baseline model’s accuracy of 81.9%. Furthermore, it demonstrated

superiority over data augmentation methods, including SMOTE

(82%) and ADASYN (77.8%). In terms of the quality of generated

data, BrainNetGAN also achieved the closest similarity between

real and fake data, with an average KL divergence score of 0.26 and a

MMD score of 0.017. In comparison, SMOTE and ADASYN scored

0.51 and 0.53, respectively for KL divergence, and 0.053 and 0.06 for

MMD.

The models mentioned above utilized inner production

between paired node features to construct graph brain networks,

potentially neglecting the intricate topological characteristics

of brain networks. Therefore, by taking into consideration

information from neighboring nodes, a Hemisphere-separated

Cross Connectome Aggregating Learning (HCAL) model was

designed (Zuo et al., 2023) to produce high-quality graphs. In

particular, a rough connectivity matrix A was first divided into

four sub-matrices: left hemisphere, right hemisphere and two

interhemisphere. These sub-matrices were subsequently processed

through a specially designed Cross-connectome Aggregating

(CCA) module, which can incorporate the impacts of nodes within

each network. Afterward, the four new matrices are combined to

form the connectivity matrix A2, which is then subjected to a

final CCA process aimed at extracting global topological features.

The effectiveness of the proposed model was assessed on ADNI

dataset, consisting of 135 HC and 135 patients with early mild

cognitive impairment (EMCI), using the distance distribution

metric to quantify disparities between raw and generated model,

achieving the smallest value of 0.24 in comparison with 1.1 from

BrainNetGAN and 0.4 from the adversarial regularized graph

autoencoder (ARAE) method. The results highlights its efficacy in

generating data that preserves similar characteristics with diverse

structural features, an aspect important for improving diagnostic

accuracy. The generated data was combined with the raw data

for AD classification, achieving an accuracy of 84.48%. This

outperformed the model’s performance without augmented data

(71.18%) and even surpassed other augmentation algorithms such

as SMOTE (75.62%) and BrainNetGAN (81.29%).

Numerous studies have identified spatial overlaps between

structural connectivity (SC) and functional connectivity in the

brains of patients with brain diseases, revealing pathological

features (Schultz et al., 2012; Rudie et al., 2013; Hua et al., 2020).

Hence, a fusion scheme among modalities can yield enhanced

feature representations for machine learning models. Pan and

Wang (2022) suggested a bi-attention mechanism originally used

in Transformer model for natural language processing (NLP) to

effectively extract structural-functional information. The described

approach can be summarized in Figure 5. Similar to the self-

attention approach used in Transformer model, a matrix input
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FIGURE 4

VAE + GAN end-to-end architecture. The model consists of three parts: (1) an encoder transforms the sampled adjacency matrix inputs to a latent

lower dimensional representation. (2) The decoder aims to reconstruct the original input from the latent representation z. (3) The discriminator takes

both the latent representation and random noise vector as inputs and tries to discriminate these distributions. Once the model is trained, the model

can generate synthetic graphs from a standard Gaussian distribution which then can be combined with experimental data for classification. Reprinted

from: Barile et al. (2021). Copyright (2021) with permission from Elsevier.

X ∈ Rn×dx (n is the number of ROI and dx is the number of features

for each ROI) is first transformed to a query, key and value Q,K,V

by linear projections as indicated in Equation 12:

Q = XWq K = XWk V = XWv (12)

where Wq ∈ Rdx×dq ,Wk ∈ Rdx×dk , (dq = dk), and Wv ∈ Rdx×dv

are the weight matrices. The attention output can then be calculated

as Equation 13:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (13)

then a fully connected layer was used to transform the output the

same space as the target matrix Y ∈ Rn×dy :

Xout = FullyConnected (Attention(Q,K,V))+ λY (14)

where λ is a hyperparameter between 0 and 1. X and Y can be

either functional or structural information Equation 14 depicts this

transform. Then after multiple transformers, the final mixed output

of FC and SC can be achieved as we can see in Figure 5.

The end-to-end framework was trained by incorporating the

pairwise reconstruction loss alongside the adversarial loss and

auxiliary classification loss to increase stability during training. The

proposed GAN model, featuring bi-attention mechanism, when

tested on the ADNI dataset, including 63 patients with AD, 41

patients with late mild cognitive impairment (LMCI), 80 EMCI

and 84 HC, demonstrated superior performance compared to the

the SVM model, the CNN model with transfer learning and the

GCN model in terms of accuracy, sensitivity and specificity scores.

In details, the proposed models achieved an accuracy of 94.44%,

surpassing SVM and GCN by 3–8% in AD and HC classification.

Additionally, for LMCI and HC classification as well as EMCI and

HC classification, the model has accuracies of 93.55 and 92.68%,

respectively, outperforming CNN with transfer learning, SVM and

GCN by margins ranging from 2 to 10%.

In order to provide readers with a comprehensive

understanding of existing publications focused on brain disorder

classification using GANs, we have assembled a summary of

publications including the publication year, employed imaging

modalities, types of datasets and a comparison of classification

results between using GAN models for data augmentation and the

results where GANs are not used. These details are presented in

Table 1. Furthermore, in Table 2, we present the evaluation metrics

used to access the quality of data generated by GANs, along with

the strengths and limitations of the published models.

5 Limitations of GAN

However, we must not disregard the pertinent concerns

associated with the utilization of a GAN model. Firstly, issues such

as mode collapse or failure of convergence persist during GAN

model training. Therefore, it is crucial to monitor intermediate

outputs generated throughout the training process or utilize

metrics such as Number of statistically-Different Bins (NDB)

approach proposed by Richardson and Weiss (2018) to detect

potential mode collapse and in turn promptly address the situation.

One of the contributing factors to training instability in GANs

is the occurrence of the catastrophic forgetting (CF) problem

within the discriminator (Thanh-Tung and Tran, 2020). This

problem arises when the parameters learned from previous tasks

are destroyed, resulting in disruptions in the training process.

Chen et al. (2018) suggested the incorporation of self-supervised

tasks as regularization during GAN training. This technique serves

to mitigate information forgetting by promoting the learning

of meaningful representation. Several regularization techniques,

including the weight penalty method (Kurach et al., 2019; Xu

et al., 2020), the gradient penalty method (Gulrajani et al., 2017;

Hoang et al., 2018), and modified loss function such as WGAN

(Arjovsky et al., 2017) or Loss-Sensitive GAN (Qi, 2020) have

been proposed to effectively mitigate mode collapse issues in

GANs.

Non-convergence and vanishing gradient problems remain as

significant challenges in training GAN models. The issues arise

when the discriminator performs too well, providing gradient loss

near 0 and in turn offering little feedback to the generator for
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FIGURE 5

Illustration of the fusion scheme between FC and SC using bi-attention mechanism proposed by Pan and Wang (2022). The resting-state fMRI’

feature sequences were extracted by the CNN model while the structural connective features were first extracted by the GCN model. Then multiple

transformers was used to map complementary information between functional and structural matrix, resulting a mixed functional-structural output.

Source: Pan and Wang (2022). Reproduced with permission.

TABLE 1 Articles and their notable results in brain disorder classification using GAN.

Publication Model Imaging modality Dataset/brain
disorder

Comparison results

Zhao et al. (2020) GAN with feature mapping fMRI/FC MDD and

Schizophrenia

70.1% accuracy, at least 6% higher than other 6

ML model on the classification of MDD patients

80.7% accuracy, 3–6% higher than other 6 ML

models on the classification of schizophrenia

patients

Geng et al. (2020) VAE + GAN fMRI/FC ASD, ADHD and

ABIDE

For ASD dataset, 87.16% accuracy with GAN

compared to 85.35% without

For ADHD dataset, 87.27% accuracy with GAN

compared to 85.06% without

For ASD-ABIDE dataset, 70.22% accuracy with

GAN compared to 67.55% without

Barile et al. (2021) VAE + GAN DTI/SC MS Achieving 81% F1-score with GAN, compared to

66% F1-score without

Li C. et al. (2021) BrainNetGAN DTI/SC ADNI Achieving 85.2% accuracy with GAN, compared

to 81.9% without

Cao et al. (2023) BNLoop-GAN DTI/SC and fMRI/FC ADNI Achieving 83.3% with GAN, compared to 81.4%

without

Zuo et al. (2023) HCAL VAE + GAN DTI/SC ADNI Training original data with GAN-generated data,

SVM classifier achieved 83.48% accuracy

compared to 69.63% without, while BrainnetCNN

classifier achieved 84.48% compared to 72.18%

without

Pan and Wang (2022) Cross-modal transformer GAN DTI/SC and fMRI/FC ADNI For the classification between AD and HC, LMCI

and HC, EMCI and HC, GAN achieved 94.44,

93.55, and 92.68% accuracy, respectively. There

were 3–8%, 3–10%, and 2–10% higher than other

deep learning approaches

effective learning. Many researchers have taken promising steps

to address these challenges. ProgressiveGAN (Karras et al., 2017)

has been proposed as a stable approach for training GAN models

wherein blocks of layers are added incrementally so that models

can learn lower-level features first and later learn ever finer details.

The approach has been demonstrated to achieve not only faster

converge speed but also to produce higher quality synthetic images

compared to GANs without progressive training. Other works

propose that GAN be incorporated with other frameworks to

increase the stability when training. By leveraging the learned latent

space representations of a VAE, GANs can address each other’s

weaknesses. The incorporation of VAE’s latent space information

enhances the GAN’s capability to generate samples that align

with the structured latent space learned by the VAE, achieving

more stable and effective training (Geng et al., 2020; Barile et al.,

2021).
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TABLE 2 Summary of evaluation metrics used for synthetic data and models’ strengths and limitations across articles.

Publication Evaluation
metrics

Strengths Limitation

Zhao et al. (2020) None New objective loss: feature matching and weight norm

regularization for training stability

Generalizability may not be guaranteed across

other datasets

Leave-one-FNC-out method for determining potential

biomarkers

No comparison with other deep learning methods

No evaluation metrics available for synthetic data

Geng et al. (2020) None Incorporating VAE for regularization in the latent space and

Wasserstein loss to prevent mode collapse and instability

during training

No evaluation metrics available for synthetic data

Barile et al. (2021) Graph metrics Incorporating VAE for regularization in the latent space and

consistency loss to prevent mode collapse and instability

during training

Using binary graph, not weight graph

Significant computation time required for

leave-one-out method

Limited dataset may impact generalizability to

other datasets

Li C. et al. (2021) KL divergenve and

MMD

Wasserstein loss with gradient penalty to ensure fast and

stable training

Limited dataset may impact generalizability to

other datasets

Cao et al. (2023) None Wasserstein loss with gradient penalty for stable training Limited dataset may impact generalizability to

other dataset

Process graph in patch to focus on smaller and more

manageable sections

Multi-loop algorithm: ranks and selects samples that are

easier to learn

No evaluation metrics available for synthetic data

Effectively integrate mutual information between FC and SC

Zuo et al. (2023) MMD Incorporating VAE for regularization in the latent space and

auxiliary classifier loss to prevent mode collapse and

instability during training

Limited dataset may impact generalizability to

other datasets

Ensuring both diversity and quality by using

cross-connectome aggregating method

Pan and Wang (2022) None Effective fusion scheme: self-attention mechanism to

combine both FC and SC information

Limited dataset may impact generalizability to

other datasets

Pair-wise connectivity reconstruction loss for more stable

training

No evaluation metrics available for synthetic data

Optimal hyper-parameters selection is a critical challenge in

training GANmodels, as different sets of values have been reported

to impact the model’s performance (Yang and Shami, 2020). For

example, varying learning rates can affect the training convergence

speed and may lead to divergence, resulting in training instability.

Also, a complex architecture might not be suitable for small

datasets, while a simpler architecture may not assure optimal

performance results for the model. These hyper-parameters include

the learning rate, batch size, optimizer for both the generator

and discriminator, the number of layers, activation function, loss

function and the dropout rate and batch normalization. Grid search

and random search are two fundamental hyper-parameter tuning

approaches. The former aims to test all combinations of hyper-

parameters, while the latter introduces a slight improvement by

randomly sampling sets of combinations. On the other hand,

Bayesian optimization outperforms those two approaches in terms

of computational resources and does not require assumptions

about the distribution of the parameters (Yu and Zhu, 2020).

One strategy for finding optimal values of hyper-parameters is

to use a genetic algorithm (Alarsan and Younes, 2021). Initially,

the population is randomly initialized with random parameters,

and various steps, such as crossover and mutation, are performed.

The process then moves to next population, where only the set

of parameters achieving the minimum loss function or maximum

accuracy is retained.

When employing GANs for data augmentation in medical

imaging, a notable challenge arises: the generated synthetic samples

may not faithfully represent real imaging data. Therefore, it is

crucial to employ effective evaluation metrics to ensure that the

generated samples are beneficial for training ML models. While

Barile et al. (2021) employed graph metrics to assess the quality of

synthetic graphs, recent studies exhibit a lack of standardization in

the evaluation metrics used to gauge the performance of synthetic

data generated by GANs for classification.

Furthermore, a significant challenge with deep learning models

is their performance variation, while a model may excel with one

dataset, it might not generalize as effectively to other datasets. This

issue is particularly prominent in the field of medical imaging,

where data is sourced from multiple sites featuring scanners

from different vendors and varying scan parameters. Strategies for

domain adaption have been devised to impart insights from the

labeled data domain to analogous but unlabeled domains. The
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primary aim of these methods is to enhance the performance of

models when they are trained across multiple datasets. Medical

imaging has seen the integration of GAN models, particularly

CycleGAN, to facilitate cross-domain adaption (Rahman et al.,

2021; Tomar et al., 2021; Wang et al., 2022). Despite this, the use of

this approach to enhance classification performance acrossmultiple

datasets, using FC or SC, remains relatively rare. This suggests a

novel trajectory that could be pursued in the future.

6 Future research

While various progressive solutions have been proposed to

mitigate challenges such as mode collapse, non-convergence and

instability during the training of GAN models, a trade-off between

diversity and quality persists. Balancing between generating diverse

outputs and maintaining high-quality results remains a complex

task in the ongoing refinement of GAN design and optimization

strategies. Future research should delve into more innovative

approaches, including new loss objective functions, regularization

techniques and hyper-parameters tuning methods to explore the

full potential of GANs.

Additionally, the absence of robust and consistentmetrics poses

imperative challenges in assessing the quality of generated graph

brain networks. Future research should prioritize the development

of standardized metrics to facilitate the comparison of models,

enabling a clear understanding of their performance and ensuring

the quality of augmented data generated by GANs, and in turn

improving the diagnostic accuracy.

The models listed above primarily test using balanced datasets

where the number of patients with disorders is equal to the

number of healthy subjects, thereby neglecting the imbalance

problem in real-world clinical scenarios. Therefore, future research

should place greater emphasis on testing these proposed models

on datasets with fewer instances from the patient class, allowing

for a better exploration of the potential of GANs. Numerous

proposed models continue to rely on CNN models for extracting

feature from brain networks, which may not be optimal for

capturing the intricate characteristics of graph features. In

recent times, the advancement of graph convolutional networks

(GCN) within the context of brain networks has showcased

their superior performance over conventional CNN designs.

Comparative classification performance shows that GCN models

excel in learning graph-structured data, surpassing the capabilities

of CNN models (Li X. et al., 2021; Deng et al., 2022; Yang et al.,

2022). Therefore, the integration of GCN with GANs holds the

potential to yield enhanced outcomes.

Furthermore, Transformer (Vaswani et al., 2017), which

implements a self-attention mechanism, has recently been

proposed as an effective method for learning correlated features

in different positions, addressing a limitation where CNN models

may fall short. The application of the self-attention mechanism in

GANs for data augmentation in the classification of brain disorders

using fMRI data has demonstrated improvement (Pan and Wang,

2022). However, the implementation of self-attention in GANs is

still in the early stages. Future research can focus on refining its

integration into GAN models to improve not only the quality but

also the diversity of synthetic data.

7 Conclusion

Compared to conventional approaches such as SMOTE or

ADASYN, GANs have exhibited a more effective augmentation

technique in generating brain networks, leading to a noticeable

enhancement in classification performance across multiple

articles. The approach has the potential to enhance classification

performance, even in situations with imbalanced data distributions

(Geng et al., 2020; Barile et al., 2021; Cao et al., 2023). The

incorporation of GAN with VAE offers an effective strategy for

improving training stability by introducing a posterior distribution.

Furthermore, by implementing a fusion scheme between functional

and structural networks, as evidenced in prior works by Pan and

Wang (2022) and Cao et al. (2023), we can optimize classification

performance even further. In addition, the utilization of self-

attention mechanisms offers an effective approach to learn key

features, contributing to improved model performance (Pan and

Wang, 2022).

The methodological primer we provided on GANs, as well as

the review of its applications to classification of brain disorders

from fMRI data showcases the progress that has happened in

the field. However, it also highlights gaps in methodology as well

as interpretability that are yet to be addressed. This provides

a fertile ground for future work in this area. It would be

particularly important for users to understand the range of available

methodological choices and the most appropriate workflow for

their application while the method developers must be tailor

their models to solve real world issues that may be unique to

neuroimaging data. Such a synthesis is likely to enrich the field in

the future.
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