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Neuromorphic processors promise low-latency and energy-e�cient processing

by adopting novel brain-inspired design methodologies. Yet, current

neuromorphic solutions still struggle to rival conventional deep learning

accelerators’ performance and area e�ciency in practical applications.

Event-driven data-flow processing and near/in-memory computing are the two

dominant design trends of neuromorphic processors. However, there remain

challenges in reducing the overhead of event-driven processing and increasing

the mapping e�ciency of near/in-memory computing, which directly impacts

the performance and area e�ciency. In this work, we discuss these challenges

and present our exploration of optimizing event-based neural network inference

on SENECA, a scalable and flexible neuromorphic architecture. To address the

overhead of event-driven processing, we perform comprehensive design

space exploration and propose spike-grouping to reduce the total energy and

latency. Furthermore, we introduce the event-driven depth-first convolution to

increase area e�ciency and latency in convolutional neural networks (CNNs)

on the neuromorphic processor. We benchmarked our optimized solution

on keyword spotting, sensor fusion, digit recognition and high resolution

object detection tasks. Compared with other state-of-the-art large-scale

neuromorphic processors, our proposed optimizations result in a 6× to 300×

improvement in energy e�ciency, a 3× to 15× improvement in latency, and a

3× to 100× improvement in area e�ciency. Our optimizations for event-based

neural networks can be potentially generalized to a wide range of event-based

neuromorphic processors.
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1 Introduction

Neuromorphic processing is an emerging field of computer

architecture that draws inspiration from biological brains. It

offers the potential for natural signal processing with low

latency and reduced power consumption. The current mainstream

neuromorphic processor architectures employ bio-inspired and

non-conventional techniques such as asynchronous (Lines et al.,

2018), analog (Rubino et al., 2023), in/near-memory (de los Ríos

et al., 2023), data flow (Moreira et al., 2020), and event-driven (Yang

et al., 2021) computing to achieve these goals. However, despite

their innovative approaches, the existing neuromorphic processors

are still unable to rival the area efficiency and performance

of conventional deep-learning accelerators in practical market-

dominated applications (Christensen et al., 2022). Neuromorphic

solutions suffer from large memory overheads for event-based

neural network processing. This overhead results from the

fragmentedmemory architecture used for near-memory processing

and the need to store the neuron states. For example, deploying

a neural network with approximately 126k parameters (which is

equivalent to 1 megabyte of storage when using 8-bit precision)

on a cutting-edge neuromorphic chip will require around 200

megabytes of memory (Ceolini et al., 2020). This is 100 times

more memory usage than a traditional deep-learning accelerator

assuming the worst-case scenario of 100% overhead memory

usage for other variables. As a result, this solution is quite

expensive and requires a large silicon area. Moreover, event-driven

processing in the neuromorphic chips results in a significant

overhead to process a single event, which reduces power efficiency,

especially for applications without excessively high activation

sparsity. Consequently, Achieving competitive performance and

area efficiency in neuromorphic systems remains challenging.

Event-driven data-flow computation, inspired by the sparse

spiking activities in cortical networks (Wolfe et al., 2010), is the

primary computing paradigm in the majority of neuromorphic

processors (Nilsson et al., 2023). It takes advantage of the

sparsity in neural activation (spikes) to skip redundant operations.

Additionally, the data-flow processing allows the data to move

directly to the location where it will be consumed instead of an

intermediate shared memory, reducing the data-movement cost

(Carkci, 2014). However, fine-grained event-driven processing per

single spike can introduce significant overheads if the activity of the

network is not sufficiently sparse, reducing the efficiency of neural

network computation. Recent neuromorphic solutions attempt to

reduce the overhead ratio by increasing the information encoded

in the events utilizing sparse temporal encoding (Kheradpisheh

and Masquelier, 2020; Guo et al., 2021) or graded spikes (Moreira

et al., 2020; Orchard et al., 2021; Yan et al., 2021). Nevertheless, the

overheads, partially introduced by encoding/decoding individual

events, memory accesses, address calculations, and computing

paradigm alterations (Hugues and Petiton, 2010), have yet to

be explored and studied in existing neuromorphic systems.

Therefore, there is a need for comprehensive design space

exploration in optimizing event-based neural network computation

on neuromorphic processors.

Near- or in-memory processing serves as another dominant

design principle of neuromorphic processors to enable low-latency

and energy-efficient computations. Near-memory processing

involves storing data near the processor to minimize the cost of

data movement, which is mostly practiced by using smaller and

distributed blocks of memory near the processing elements of the

chip (Akopyan et al., 2015; Lines et al., 2018; Frenkel et al., 2020;

Stuijt et al., 2021). However, using a fragmented set of memories

significantly reduces mapping efficiency (Jain et al., 2022). To

maximize the advantage of near-memory processing in event-

driven data-flow computation, most neuromorphic solutions map

the complete neural network with network parameters (weight,

bias, etc.) and all neural states on a multi-core system [also known

as spatial mapping (Xue et al., 2023)]. This demands large neural

state memory and a flexible parameter/state memory ratio. The

constraints imposed by the fragmented set of memories make it

difficult for the mapping algorithm to efficiently use the limited

(and expensive) on-chip memory, thus reducing the area efficiency

of the platform. To resolve this, recent neuromorphic architectures

use unified memory space within their neuro-synaptic cores to

leverage flexible mappings (Moreira et al., 2020; Orchard et al.,

2021; Yan et al., 2021), resulting in less fragmented memories.

Additionally, the use of lower precision data types for weights and

neuron states can further reduce memory usage. Yet, for the widely

used convolutional neural networks (CNNs), the neural state

memory cost increases quadratically with the spatial resolution of

the input tensor, resulting in low area efficiency for event-driven

convolutions.

This work presents our exploration on optimizing event-

based neural network processing for a neuromorphic architecture.

We seamlessly integrate optimization concepts of data reuse (Sze

et al., 2017) and process scheduling (Waeijen et al., 2021; Mei

et al., 2023) borrowed from deep-learning accelerator architectures

into the brain-inspired neuromorphic design principle. Thereby,

we propose the spike-grouping method to process spikes in

batches, which helped reduce the total energy consumption and

latency of event-based processing. Additionally, we present the

event-driven depth-first convolution, which significantly lowers

the total memory requirements and the processing latency of

CNN inference on a neuromorphic processor with event-driven

data-flow computation. To perform a comprehensive exploration,

we benefit from the flexibility of the SENECA neuromorphic

processor (Tang et al., 2023b) to conduct a series of targeted

experiments. These experiments provided valuable insights into

various optimization techniques and leveraged hardware-algorithm

co-optimizations. We then benchmarked and quantified the effects

of our optimizations in the event-driven neural network processing

pipeline of SENECA against other state-of-the-art neuromorphic

and conventional accelerator solutions (Esser et al., 2015; Lines

et al., 2018; Blouw et al., 2019; Yan et al., 2021); using accuracy,

energy, latency, and area efficiency as metrics. The proposed

optimizations result in a 6 to 300× improvement in energy, a 3

to 15× improvement in latency, and a 3–100× improvement in

area efficiency. These results provide new insights into optimizing

event-driven computation and pave the way for the evolution of

event-based neuromorphic processing.

In the rest of this paper, we first give an overview of the

SENECA architecture. Then, we provide a detailed explanation

of our proposed optimizations for event-based neural network
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FIGURE 1

Left: A core of SENECA and its internal pipeline. It contains a double controlling system (RISC-V and Loop Bu�er), 8 Neuron Processing Elements

(NPEs), an Event Generator, a Network on Chip (NoC), and a Share-Memory Prefetch Unit (to access the shared memory). The orange blocks are the

register-based memories, and the green blocks are the SRAM memories. Right: Four interconnected clusters, each containing 16 SENECA cores

(connected through the NoC) and one shared memory (MRAM or HBM).

processing. Following this, we present the results of our

experiments in three sections. The first result section focuses on the

insights developed from the hardware-algorithm co-optimization

exploration. The second result section reports the results with the

gesture recognition (Ceolini et al., 2020) and MNIST handwritten

digit recognition (Deng, 2012) tasks when comparing our event-

driven depth-first convolution approach with the current state-

of-the-art. Finally, the Prophesee 1M Pixel automotive detection

dataset (Gen4) (Perot et al., 2020) was used to conduct an in-depth

benchmarking analysis for object detection. In the end, we conclude

this work with discussions of the current limitations, future works,

and impact.

2 Methods

2.1 SENECA event-driven neuromorphic
architecture

SENECA is a programmable digital neuromorphic processor

that is capable of performing a wide range of tasks. The processor

is designed with a scalable number of cores, as depicted in Figure 1,

with each core consisting of a data memory, a flexible controller

(RISC-V), a dedicated controller (loop controller), an event capture

unit, a number of neuron processing elements (NPEs) that operate

in a vector-like fashion, and a programmable Network on Chip

(NoC) which facilitate the event communication among the cores.

Although the figure shows only eight NPEs in a core,

the processor allows for the configuration of the number of

NPEs, with up to 128 NPEs per core. The NPEs are hardware

functional units that are time-multiplexed to perform neuron

activity computations, providing a balance between parallelism and

configurability.

Each NPE is connected to a high-bandwidth SRAM data

memory (16 bits for each NPE) and has a register file (RF) with

64 16-bit words that can be used for computation. This improves

energy efficiency as the access energy cost is smaller than the SRAM

memory. When in computation mode, all NPEs work in lock-step

mode, executing the same instruction at any given cycle similar to

a single instruction, multiple data (SIMD) operation.

As a neuromorphic platform, SENECA generates spike outputs

through the NPEs when they meet certain conditions according

to the workload. These spikes are then processed by the event

capture unit, which converts the input spike vector into address

event representation (AER) format (Yousefzadeh et al., 2017). The

event capture unit sends an interrupt to the RISC-V controller for

further processing whenever a new spike is generated. The spikes

that are generated can either be consumed in the same core or

transmitted to another core through the NoC. The NoC delivers

the event to the destination core based on the content of its routing

table, which can change dynamically by RISC-V.

The RISC-V controller decides which operations should be

executed on the NPEs depending on the workload scheduling.

The loop controller coordinates the time-multiplexing of NPEs

and the address generation for data memory access. It dispatches
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microcodes to the NPEs, enabling the processing of events. Each

microcode is invoked to handle a specific type of event, such as

neuron updates, threshold evaluations, or data conversions. For a

more in-depth review of the SENECA architecture, please refer to

Yousefzadeh et al. (2022), Tang et al. (2023a,b).

2.2 Event-driven neural processing on
SENECA

In order to optimize the processing of sparse data flows

between layers of neurons, SENECA executes event-driven neural

processing. There are different types of events, where each type

triggers a specific set of computations, such as binary spikes

produced by spiking neurons, non-zero activations generated

by the ReLU activation function, and inter-core synchronization

signals representing the end of the time step or data frame. In

general, event-driven processing for neural networks includes three

phases:

• Event reception: Unpack the event and prepare for neural

processing based on the information carried by the event and

the recipient neurons.

• Neural processing: Execute neurosynaptic computations and

update neural states.

• Event transmission: Pack the generated spikes in one event

packet and multi-cast it to the destination core(s).

Figure 2 illustrates the data flow and the hardware components

involved for each phase of the event-driven processing pipeline.

During neural network computation, an event received from the

NoC wakes up the RISC-V controller in a SENECA core and

triggers the event-reception phase. According to the decoded

event, the event-receiving function determines the type of neural

processing required and defines a set of executable tasks (which

are represented by micro-code to be executed at the NPEs). The

loop controller receives the tasks and controls the time-multiplexed

neural processing steps in the NPEs. The loop controller operates

asynchronously with the event-receiving functions, allowing for

accelerated and parallelized event processing. If a task execution

involves event generation from neural states, the event generator

collects non-zero outputs from NPEs and packs them as AER

events. These events then wake up the RISC-V controller and

trigger the event-transmission phase, which encodes and packages

the AER events as compressed network event packets. Finally, the

network event packet is sent to the destination cores through the

Network on Chip (NoC) for further processing. Neural processing

through the loop controller can work in parallel with the event

reception/transmission processes since the loop controller can

orchestrate the neural processing independently from the RISC-V

controller.

For inference of the neural networks that are trained with time-

step (synchronous), we need another type of network event packets

to synchronize cores and signal advancement in time-step. For

example, during the inference of an event-based fully connected

(FC) neural network layer, two types of events are involved: non-

zero neuron activation events and a synchronization event at the

end of each time step. The synchronization event marks that all

required input information for the current time step has been

received.

• When an activation event is received, an event-integration

task is executed. The event-integration task multiplies the

activation value with the weight vector and integrates the

results to all neural states.

• When a synchronization event is received, an event-generation

task is executed. The event-generation task applies the

activation function (e.g., ReLU) to neural states and possibly

generates non-zero activation events.

We can map multiple FC layers of a neural network to a single

SENECA core and thus apply the same event-driven processing

for each layer. When having multiple layers mapped on a core,

event-transmission from one layer directly passes events to the

event-reception of the succeeding layer on the same core without

involving the NoC.

It is worth noting that this paper exclusively utilizes spikes

with graded values. These spikes are produced by applying the

ReLU activation function to the neurons at the end of each time

step. Previous research (Tang et al., 2023b) has demonstrated that

integrating graded spikes results in minimal energy overhead while

achieving high accuracy in our tasks. The use of spikes with graded

values is gaining acceptance in digital neuromorphic processors,

where each spike is encoded into AER format.

2.3 Event-driven depth-first convolution

Figure 3 shows the differences between the standard and

event-driven convolution. The latter processes sparse events from

the previous layer one by one in their order of arrival and

accumulates them incrementally, directly into the neural states

of the corresponding fanned-out postsynaptic neurons. However,

this process requires maintaining high-dimensional neural states

of convolutional layers in memory, which is impractical for the

limited size of the on-chip memory, if the output tensor has

a high dimension. To overcome this challenge, we propose the

event-driven depth-first convolution.

Depth-first inference (Waeijen et al., 2021; Mei et al., 2023) is a

scheduling method in neural network inference that prioritizes the

network’s layer (depth) dimension by consuming activations right

after their generation. In our event-driven depth-first inference, the

input events within a time step are assumed to be sorted in spatial

order from the top-left corner of the (X,Y) plane to the bottom-

right corner. Under this assumption, a neuron will receive all of its

input events in a pre-defined order. Accordingly, its neural state

updates will be concluded earlier than those of spatially lower-

ranked neurons (Figure 4). As a result, it can fire immediately

after its last neuron state update without needing to wait to

process all the input events. After the event-generation process of

a neuron, the memory for its neuron state can be released. As

shown in Figure 4, for event-based depth-first convolution, each

layer only needs to buffer a small portion of neural states that
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FIGURE 2

Hardware processing flow of event-driven paradigm components. The colored blocks demonstrate the active elements of the SENECA core. The

components can execute asynchronously and in parallel.

FIGURE 3

Comparison between the standard and the event-driven convolution. The event-driven convolution requires to rearrange the sequence of kernel

weights. The change in the spatial sequence for a 3×3 convolution kernel is shown in the figure. The channel dimension of the tensor is omitted for

simplicity.

are incomplete/partially summed (the amount of required memory

increases with the kernel size).

In event-based depth-first convolution, the cycle of event-

reception, neural processing, and event-transmission is executed

as a tail-recursion for each 2D coordinate (pixel location).

Figure 4 illustrates the detailed procedure of our proposed

event-driven depth-first convolution on a fused convolutional

(kernel size 3×3, stride 1) and max-pooling (kernel size

2×2, stride 2) layer. We can divide this procedure into the

following phases:

• When an event from the input location (x, y) has been

received, all the neural states above the (y − 1)th row or on

the left of location (x − 1, y − 1) will not be updated further

because there will not be any future incoming event that is

within the kernel window view (3×3). Therefore, the event

generation task will be triggered to generate the respective

post-synaptic layer activations and then free up the memory

storing the neural states.

• After firing the fully updated neurons, the input events at

location (x, y) are processed. As a result, post-synaptic activity

is generated at the same time as the input event trace is

being processed. The event integration task integrates an input

activation value to the neural states within the 3×3 spatial

locations around the input location (x, y).

• If the neural states at a spatial location have been fully updated,

the event generation task applies the activation function (e.g.,

ReLU) and 2×2 max-pooling function to the neural states

to generate non-zero activation events. The event-sending

function packs the non-zero activation events from the same

spatial neuron location into an event stream with shared

header information, including source neuron, number of

events, etc. The event stream is then sent to the destination

cores through the NoC.
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FIGURE 4

An illustration of the event-driven depth-first convolution on SENECA. We show a fused layer combining 3×3 convolution and 2×2 max-pooling.

The layer processes input events sequentially from the sorted input event queue. Based on the location of the input, events are generated from

spatial locations that have been fully updated, and their corresponding memory spaces are released. The channel dimension is omitted for simplicity.

As shown in Figure 4, the event-driven depth-first convolution

requires storing (K + 1) lines of neuron states per layer, equal

to X × C × (K + 1) neurons, where X is the spatial resolutions

(height or width), C is the number of channels, and K is the width

of the kernel. In Figure 4 where K = 3, neurons that are below

the line (X + 1) do not need to be stored because they have not

received any spikes yet. Similarly, neurons that are above the line

(X − 2) also do not need to be stored because they have already

fired and do not expect to receive any more spikes. Compared

to other neuromorphic approaches that store all the neural states

(X × Y × C) in the on-chip memory, the memory requirement for

neuron states is significantly reduced by a factor of (K + 1)/Y . Our

efficient mapping strategy enables the mapping of a convolutional

layer with a high spatial resolution to just one SENECA core.

Moreover, event-driven depth-first convolution can

significantly reduce the inference latency when performing

layer-to-layer event-driven data-flow processing in hardware.

Traditional event-driven neuromorphic processing requires

barrier synchronization at the end of the time step before event

generation and communication. This introduces an additional

latency per layer that equals the time required to integrate

all the input events before a neuron can fire. The lock-step

processing of Event Reception and Neural processing in depth-first

convolution enables multilayered parallelism in a pipelined fashion

across layers without the need for explicit per-timestep barrier

synchronization primitives.

There are two main limitations of event-based depth first

convolution. Firstly, this technique cannot be used in cases where

recurrent and stateful neurons are required. This is because, for

recurrent networks, the neuron states need to be kept alive to be

used in the next time-steps. However, some studies have shown

that it is not necessary to keep the states for all the convolutional

layers in certain deep spiking convolutional neural networks (Perot

et al., 2020). Therefore, for such layers, using the depth-first scheme

can save a significant amount of memory. As a result, depth-first

convolution can incentivize algorithm developers to optimize the

efficiency of their network by using stateful neurons only where it

is required.

As the second limitation, the proposed event-driven depth-first

convolution requires the input events to be sorted and arrive in

order. When using a conventional frame-based sensor (e.g. RGB

camera), this requirement is automatically satisfied. However, an

additional process is needed to sort the input events of the first layer

when dealing with asynchronous events from event-based sensors.

Nonetheless, the overhead is minimal if the input events are sparse.

2.4 Spike grouping

Despite the advantages of event-driven processing, it imposes

significant per-spike overheads during event-reception (unpacking

each event and preparing the task) and neural processing

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2024.1335422
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2024.1335422

FIGURE 5

The spike-grouping technique groups together spikes with similar

source addresses, reducing communication, and memory access.

(read/write neuron states per each event). The time and resources

required for these steps can easily dominate the overall costs. For

example, as shown in Tang et al. (2023a), a single memory access

for the data movement from SRAM to registers can be more than

twice the cost of an arithmetic instruction.

As mentioned, processing each spike requires the following

steps: (1) event decoding or projecting the spike address to several

physical addresses of the weights and neuron states in datamemory,

(2) reading the relevant weights and neuron states from the data

memory, (3) performing the neural calculation, and (4) writing the

updated neuron states to the data memory.

To reduce the processing cost per event, we suggest grouping

spikes with specific constraints and treating them as a single event.

For instance, in this study, spikes that occur in the same time step

and target the exact same neurons in the next layer are combined as

a group. Packing such spikes that share the same destination neuron

addresses significantly reduces the overhead of event decoding (step

1). Then, during the neural processing step, a neuron’s state can be

read once and updated multiple times by the grouped events before

it is stored back into memory, considerably reducing memory

accesses (steps 2 and 4).

Furthermore, as shown in Figure 5, since these events share

part of their spike address, grouping them together decreases

the communication overhead by reducing the number of overall

address bits per spike in a spike-group event and minimizing data

movements between cores.

As we discuss later in our results, spike grouping with a

maximum of four spikes in one group reduced the average

energy/latency cost of synaptic operation on SENECA by half.

2.5 Hardware-aware training

Hardware-aware training is required to fully exploit the benefits

of event-driven computation on processing latency and energy

efficiency. Our hardware-aware training produces a model with

sparse activation patterns and low-precision parameters, which will

reduce synaptic operations and data movements on SENECA.

To improve the efficiency of neural networks, we use sparsity-

aware training which penalizes positive neural states and replaces

the ReLU activation function with FATReLU (Forced Activation

Threshold ReLU) (Kurtz et al., 2020). FATReLU uses a trainable

activation threshold. Additionally, we use quantization to reduce

weight precision to 4b integer, with a shared power-of-two scaling

factor for all the weights of the same layer. Other network

parameters are quantized to 16-bit BrainFloat.

To maintain high model accuracy, we adopt an incremental

quantization-aware training strategy. We start by quantizing the

parameters of the first layer after training for N epochs. Then we

freeze the first-layer parameters and proceed to quantize and freeze

the second-layer parameters after 2N epochs, and so on for all

layers.

3 Experiments and results

To demonstrate the advantages of our optimized event-

driven computing paradigm, we performed experiments on

mapping different neural networks on the SENECA neuromorphic

architecture. This section comprises three major components.

First, we demonstrate the exploration process we conducted to

optimize the event-driven computing on SENECA via hardware-

algorithm co-optimization. Specifically, we show step-by-step how

to achieve optimal event-based neural network inference with the

proposed spike-grouping processing for the keyword spotting task.

Second, we benchmark our event-driven depth-first convolution

on visual recognition tasks. We compare the benchmarking results

with state-of-the-art event-driven neuromorphic and conventional

solutions. Third, we trained a larger neural network using the

challenging Prophesee 1M Pixel automotive detection dataset

(Gen4) (Perot et al., 2020) and presented in-depth benchmarking

results. As far as we know, this is the first paper to report the results

for this task on a neuromorphic processing platform. Therefore,

we were unable to compare our results with others. Overall, the

experiments validate our optimization techniques on the event-

driven paradigm and show the advantages of our proposed event-

driven depth-first convolution regarding energy, latency, and area

efficiency.

3.1 Hardware measurement setup

All hardware-related measurements were performed in gate-

level simulation (post-synthesis) using industry-standard ASIC

simulation and power measurement tools (Cadence Xcelium and

Cadence JOULES) for GF-22nm FDX technology node (in the

typical corner 0.8V and 25C, no back-biasing, 500MHz clock

frequency). Even though the physical layout (place and route) is

not done, the design flow still estimates the parasitic effects of wires

in the actual IC. Therefore, the power results are accurate within

15% of signoff power and include the total power consumption of

the chip, i.e. both dynamic and static power. We have not included

the I/O power consumption in the reported results. In the reference
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comparison with other chips, theymay report either the total power

(static and dynamic) or only the dynamic power of the core [e.g.,

Loihi (Blouw et al., 2019)].

3.2 Step-by-step architectural
benchmarking on keyword spotting task

To evaluate the effects of the various design choices in

the SENECA architecture, we perform an ablation study that

reveals the contribution of each component in the architecture

to the total latency and energy consumption of the system. In

order to be able to compare with other neuromorphic processor

architectures (Blouw et al., 2019; Yan et al., 2021), we mapped the

“ABR Keyword Spotting (KWS) Power Benchmarks” (Blouw et al.,

2019) in one SENECA core, using a similar fully connected neural

network. The KWS task processes an audio stream to detect some

keywords of interest (e.g., "Aloha"). The ablation study is carried

out using a sequence of step-by-step experiments.

3.2.1 Algorithm
We deployed the same 3-layer fully connected feed-forward

neural network used in Blouw et al. (2019), which has 390

input neurons, two dense layers with 256 neurons each, and

an output layer with 29 outputs. The input of the network

is a 390-dimensional Mel-frequency cepstral coefficient (MFCC)

feature of the audio waveform. The network’s output is a 29-

dimensional representation of English characters together with

special characters such as silence. During inference, ten time-steps

of MFCC features are fed to the network, and the final results are

obtained by post-processing the generated outputs. For the model

instantiated on SENECA, all synaptic weights were quantized to

4b by the post-training quantization process1, which reduced the

test accuracy by 2% (from 95% to 93%). We only quantized the

weights while keeping the bias parameters and neural states at

higher precision.

3.2.2 Step-by-step experiments
To quantify the increase in efficiency brought by each of the

architectural blocks in the architecture, we start with a baseline

experiment where the entire data path of the neural computation

(model inference) takes place inside the RISC-V controller. Then

we introduce additional experiments where we incrementally

enable components of the architecture to accelerate parts of the data

path computation and measure its effect (Figure 6):

• Experiment 1 (RISC-V only): We used the RISC-V controller

of the SENECA core to perform the neural network

computations. RISC-V controller can only perform integer

(fixed-point) operations. In this experiment, the synaptic

weights are 4b integer values. Biases and neuron states are

1 We use post-training quantization only for this task because we could not

download the training dataset.

int32, the native precision of the RISC-V (IBEX) (Schiavone

et al., 2017; Chadwick, 2018).

• Experiment 2 (+ NPEs): We offload the neural computations

to NPEs. In this experiment, the synaptic weights are similarly

4b; however, biases and neuron states are in Brain Float

(16b), the native precision of the NPEs. The RISC-V is

responsible for event preprocessing, address calculations for

NPE operations, and event post-processing (packetization).

• Experiment 3 (+ Loop controller): We use the loop

controller to take over (from the RISC-V) the acceleration

of address calculations and orchestrate the time-multiplexing

of repetitively executed SIMD microcodes to the NPEs (for

various neural computation tasks).

• Experiment 4 (+ Event generator): We add the event

generator accelerator to the data path to take over the task of

converting the neuron activations (spikes) to AER events.

• Experiment 5 (+ Spike-grouping): This experiment has

added the optimizations for spike-grouping to reduce total

memory accesses required in the data computations. This

allows the reuse of loaded neuron states inside the NPEs

several times before storing them back in the data memory.

The results of these experiments are summarized in Table 1.

One can see that RISC-V alone consumes a lot of energy and

time per inference. Using NPEs in Experiment 2 to perform neural

operations improves the inference time by 6× and reduces the

total energy consumption by 5× from Experiment 1. Involving

the loop controller (Experiment 3) further improves the inference

time by 2× and reduces the total energy consumption by 2.4×.

Along the same lines, Experiment 4 shows that the event generator

improves the inference time by 1.3× and reduces the total

energy consumption by 1.3×; and Experiment 5 shows that spike-

grouping improves the inference time by 1.8× and reduces the

total energy consumption by 1.7×. Overall, with all optimizations

(Experiment 5), the inference time is improved by 30× and the

total energy consumption is reduced by 28×, compared to the

RISC-V-only implementation (Experiment 1).

3.2.3 Comparison with other platforms
We compare SENECA against various other neuromorphic

processors on the KWS task in terms of accuracy, energy and

latency (Table 2). The KWS benchmarking task is initially

introduced to benchmark intel Loihi (Blouw et al., 2019). Loihi’s

measurement results show 10× higher energy consumption

than our RISC-V-only implementation (Experiment 1) of

SENECA. We believe the main reason for this inefficiency

is the use of rate coding in the model of the KWS neural

network. Rate coding converts every neuron activation

into a train of spikes just to communicate a single graded

(non-binary) value.

SpiNNaker2 has a very similar architecture to SENECA,

using a MAC array next to a ARM processor. It is also based

on the same technology-node as SENECA (GF-22nm FDX).

SpiNNaker2 performs better than Loihi regarding inference time

(3.3×) and energy (52×). We believe the main reason for this

better performance is the flexibility of SpiNNaker2 architecture,
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FIGURE 6

Accelerators used in the KWS experiments. Experiment 5 (Spike-grouping) is a pure mapping optimization that uses all the accelerators (same as

Experiment 4).

TABLE 1 Results comparison for various implementations of the KWS task on SENECA.

Experiment Inference RISC-V NPEs Dmem Total Core
Time (µS) Energy (µJ) Energy (µJ) Energy (µJ) Energy (µJ)

(1) RISC-V only 6,625 29.1 0.013 1.67 34.0

(2) +NPEs 1,098 2.87 1.91 1.45 6.71

(3) +Loop Controller 541 0.23 1.29 1.16 2.81

(4) +Event Generator 400 0.24 0.92 0.83 2.10

(5) +Spike-grouping 218 0.17 0.50 0.47 1.20

All reported time and energies are for one inference (averaged over the dataset). RISC-V energy includes RISC-V and its instruction memory. NPEs energy includes all NPEs, Loop buffer and

Event-generator blocks. In all the experiments, the accuracy is the same (93%). The reported energy numbers include the leakage power of 30µW.

which allows the implementation of graded spikes. Using graded

spikes removes the requirement of rate-coding in the model

implementation. Graded spikes optimization is also supported by

the new version of the Intel Loihi chip (Orchard et al., 2021)

(however, benchmark results of Loihi2 are not available yet). The

main difference between SpiNNaker2 and SENECA is the lack of a

hierarchical task-controlling system (RISC-V and loop controller).

Therefore, the SpiNNaker2 results are similar to SENECA results

in Experiment 2 of Table 1, where we use NPEs without the

loop controller.
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TABLE 2 Results comparison for KWS deployment in various hardware

architectures.

Hardware Accuracy
(%)

Inference
per

second

Energy/
inference

(µJ)

Loihi (Blouw et al.,

2019)

93.8% 296 372

SpiNNaker2 (Yan

et al., 2021)

93.8% 1,000 7.1

SENECA 93% 4,587 1.2

3.3 Event-driven depth-first convolution
for visual recognition and sensor fusion

The proposed event-driven depth-first convolution promises

to increase computation and memory efficiency in multi-core

neuromorphic processors. To characterize and quantify the

improvements, we carry out experiments in two classification tasks:

gesture recognition (Ceolini et al., 2020) and handwritten digit

classification (Deng, 2012). The selection of tasks was made to

allow benchmarking against other neuromorphic processors. We

used the same convolutional neural network (CNN) for both

experiments, mapped on four SENECA cores.

The gesture recognition task (Ceolini et al., 2020) requires

fusing signals from electromyography (EMG) and vision sensors

in order to identify hand gestures. EMG signals are captured

using electrodes on the subject’s wrist to measure electrical signals

produced by muscle activity. In this dataset, two vision sensors

are used to capture the subject’s hand spatial motion: 1) Dynamic

Vision Sensor (DVS), which generates spikes in response to changes

in light intensity, and 2) Active Vision Sensor (APS), a gray-scale

camera with 240 × 180 pixels resolution. The dataset comprises

five sign language gestures. The visual and EMG signals are

synchronized. There are 63 recording sessions from 21 subjects,

over 15k samples in total. The DVS was attached to a random

moving platform during the recordings to capture information

similar to that captured by the APS vision sensor.

The handwritten digit classification task uses the MNIST

dataset (Deng, 2012), which allows us to benchmark our platform

against a wider range of acceleration options. The dataset consists

of 60,000 training and 10,000 testing images with 28 × 28 pixels

resolution. Some neuromorphic processors reported their results

on the N-MNIST dataset (Orchard et al., 2015). It is an equivalent

dataset that converts the MNIST dataset to spikes using a DVS

camera.

3.3.1 Algorithm
While some Neuromorphic processors (Lines et al., 2018)

only process binary spikes as inputs or neuron activations, which

necessitates a pre-processing step to convert multi-bit input data

(e.g. measurement of the EMG sensor), SENECA, on the other

hand, is capable of handling graded spikes. So, we did not need to

convert the analog EMG sensor measurements into graded spikes

directly. Additionally, we found that the APS vision sensor is

more suitable for our event-driven depth-first inference due to the

potential of the APS sensor to directly output naturally sorted pixel

values. To process APS data, we convert each pixel value to a graded

spike and drop the values that are smaller than a specific threshold.

We used three neural network architectures: two for processing

independently EMG data and APS data and one to perform sensor

fusion with both modalities, as illustrated in Figure 7:

• The EMG network contains three fully connected (FC) layers

with Input(16)-FC1(128)-FC2(128)-Output(5) neurons.

• The APS network contains three convolutional layers

(CONV) and two fully connected layers (FC): Input(40×40×

1)-CONV1(8c3-2p, 20× 20× 8)-CONV2(16c3-2p, 10× 10×

16)-CONV3(32c3-2p, 5 × 5 × 32)-FC1(128)-Output(5). XcY

denotes a convolution layer with X kernels of shape Y-by-Y,

while 2p denotes a 2-by-2 max pooling. All CONV layers have

stride 1 for convolution and stride 2 for max pooling.

• The Fusion network contains both the APS and the EMG

networks. The last fully connected layers of both, are then

merged into one fully connected layer.

Our neural network architecture is based on the baseline from

Ceolini et al. (2020), albeit with smaller FC1 layers for the APS

network and the fusion network. All layers (except from the output

layers) use FATReLU (Forced Activation Threshold ReLU) (Kurtz

et al., 2020) as the activation function. As a result, the overall MAC

operation sparsities of the trained EMG, APS, and fusion networks

are 79%, 88%, and 88%, respectively.

For the handwritten digit classification task, we used the same

network architecture and training method as the APS network in

the gesture recognition task. The MNIST image frames have lower

resolution (28 × 28), which results in less memory required for

neuron states. The overall operation sparsity (assuming no weight

sparsity) of the trained digit classification network is 80%.

3.3.2 Gesture recognition benchmark results
Table 3 presents the model and performance metrics of the

gesture recognition task on SENECA and a comparison with

a few other hardware accelerator platforms from the literature.

Our implementation outperforms others in accuracy, energy, and

latency aspects.

Unlike other neuromorphic chips, SENECA achieves faster

inference due to the single-step and depth-first convolutional

processing using graded spikes. For instance, Loihi requires 200

time-steps for one inference in the fusion network, whereas

SENECA only needs one time-step.

The Silicon Area in Table 3 is extracted by adding up the area

of the used cores in the neuromorphic platforms. In contrast to

the one hundred Loihi cores used in a previous study (Ceolini

et al., 2020), we could map the fusion network into only four

SENECA cores as shown in Figure 7, thanks to the proposed

memory-efficient mapping technique (event-driven depth-first

convolution). Considering that SENECA and Loihi have similar

memory capacities per core, our approach achieved a remarkable

25× improvement in silicon area efficiency. However, as shown in

Figure 8, there is still room for improvement since the resource

utilization is unevenly distributed among the SENECA cores.
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FIGURE 7

Architectures of EMG, APS, and Fusion neural networks, mapped on four cores of the SENECA neuromorphic platform. The color of each layer in the

fusion network corresponds to the core where it is mapped.

TABLE 3 Results comparison for gesture recognition task with a single sensor and sensor fusion in various hardware architectures.

System Modality Accuracy Inference Inference Silicon Number
(%) Energy (µJ) Time (ms) Area (mm2) of cores

Spiking CNN EMG 55.7 173.2 5.89 2.4 6

(LOIHI) DVS 92.1 815.3 6.64 39 95

(Ceolini et al., 2020) Fusion 96.0 1104.5 7.75 41 100

Spiking MLP EMG 53.6 7.42 23.5 0.08 1

(ODIN +MorphIC) DVS 85.1 57.2 17.3 2.86 4

(Ceolini et al., 2020) Fusion 89.4 37.4 19.5 2.9 5

Event-driven EMG 67.34 0.147 0.019 0.47 1

CNN(SENECA) APS 94.75 16.9 2.15 1.88 4

Fusion 96.52 17.6 2.16 1.88 4

The Silicon area is the total area of the utilized cores. The memory capacities and technology nodes of each core are: Loihi = 2 Mb in 14 nm, ODIN = 286kb in 28 nm, MorphIC = 576 Kb in 65

nm, and SENECA is 2.3 Mb in 22 nm.

Therefore, there is potential to increase the area efficiency with

further optimization efforts. For instance, multiple CONV layers

can be fused together in a single core. Additionally, when it

comes to FC layers, they have less computing but more memory

requirements, as shown in Figure 8. In this case, utilizing shared

memory (slower but denser) can prove to be beneficial.

3.3.3 MNIST benchmark results
Analogous results and comparisons for the MNIST

handwritten digit classification task on SENECA are reported

in Table 4. Our implementation outperforms other hardware

platforms regarding accuracy, energy consumption, and latency.

The second fastest deployment is reported in IBM TrueNorth

(Esser et al., 2015), which performs a single-stepMNIST processing

using binary weights and activations. However, the TrueNorth

implementation requires 1,920 cores and consumes 192Mb of

memory (compared to 4 cores and 8Mb memory in SENECA). On

the other hand, SENECA is four times faster, mainly due to depth-

first convolutional processing. Overall, SENECA consumes more

than 9× less energy due to the significantly more memory-efficient

mapping that results in efficient deployment in only four cores.
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FIGURE 8

SENECA cores’ resource utilization for fusion network. (Left) Power consumption of each core in time, and (right) the data memory utilization of

each core. The total data memory size is 2 Mb (256 KB). The current mapping is straightforward but not fully optimized for best performance and

area e�ciency.

Despite not being a neuromorphic chip, ADI’s MAX78000 in

Table 4 shows competitive performance to other neuromorphic

platforms, due to its efficient usage of on-chip memory. In

comparison to SENECA, MAX78000 does not exploit activation

sparsity during inference. This means the amount of activation

sparsity does not affect the performance of MAX78000. To

highlight the impact of activation sparsity on SENECA, we

deployed a model of the neural network that generates denser

activations (50% sparsity compared to the previously reported

80%, produced without activation-sparsity-aware training) and

measured its performance. Execution of this less compute-

optimal network model in SENECA increased the average

inference energy by 2× and the average inference latency

by 1.5×.

3.4 In-depth benchmarking for
high-resolution automotive object
detection task

In this section, we are presenting a detailed report on the

performance of different layers and accelerators in SENECA

for a larger neural network. Through this benchmarking, we

aim to gain valuable insights into the hardware architecture,

sparsity, and layer dimensions’ impact on the system’s

performance. To achieve this, we chose one of the most

challenging neuromorphic datasets available, the Prophesee

1M Pixel automotive detection dataset (Gen4) (Perot et al.,

2020). Our event-driven depth-first inference approach enables

us to process high-resolution visual inputs without excessive
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TABLE 4 Results comparison for MNIST handwritten digit classification task in various hardware architectures.

System Dataset Accuracy Inference Inference Silicon
(%) Energy (µJ) Time (ms) Area (mm2)

Event-Driven CNN MNIST 99.44 12 1.1 1.88

(SENECA)

Spiking CNN (LOIHI) MNIST 99.21 660 6.65 5.74

(Rueckauer et al., 2022) N-MNIST 98.51 620 7.07 12.3

Spiking CNN (Speck) N-MNIST 98.56 180 300 30

(Richter et al., 2023)

Spiking CNN (TrueNorth) MNIST 99.42 108 4 192

(Esser et al., 2015)

CNN (MAX78000) MNIST 99.44 215 8.3 NA

(Moss et al., 2022)

The Silicon area is the total area of the utilized cores.

FIGURE 9

A snapshots of the Gen4 dataset, along with its corresponding labels.

use of the on-chip memory. Although other neuromorphic

platforms have benchmarked on smaller object detection

tasks (Caccavella et al., 2023), we are the first neuromorphic

systems that have benchmarked with this large-scale dataset.

Therefore, in this section, we have provided an in-depth

benchmarking report of SENECA without any comparison to

other systems.

The Prophesee 1M Pixel automotive detection dataset (Gen4)

(Perot et al., 2020) has been recorded by placing a 1MP event-

based camera (1280 × 720) in front of a car. The dataset contains

15 hours of street view recording and includes 25M bounding

boxes around six different object categories. However, only three

classes of objects are used for benchmarking: Cars, two-wheels,

and Pedestrians. Figure 9 shows a snapshot of the recordings in

this dataset.

3.4.1 Algorithm
Figure 10 shows the seven-layer tiny YOLOCNN structure that

we used for object detection in this task (XcY denotes a convolution

layer with X kernels of shape Y-by-Y, while 2p denotes a 2-by-2 max

pooling). All CONV layers have stride 1 for convolution and stride

2 for max pooling. We also included the dimensions for each layer,

which indicate the number of neurons in each layer. The input is

down-sampled to 320 × 192 since higher resolution input did not

improve the network accuracy. This CNN has 486K neurons and

288K parameters.

We used Prophesee meta-vision libraries to convert input

events into histogram data points. To increase sparsity,

we added a fixed threshold during both the training and

inference phases. Figure 11 displays four scenes of the

dataset using the preprocessing technique with varied
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FIGURE 10

Tiny YOLO CNN architecture used for the object detection task (Gen4 dataset), along with the details on how the mapping has been done on

SENECA cores and information about memory and energy consumption. The memory usage per core includes the total occupancy of the data

memory (instruction memory consumption is about 20KB for all cores). Additionally, memory used for neuron states (16b per neuron) and

parameters (weights and biases, 8b) are reported separately. The energy consumption is averaged over the entire dataset to infer a 50ms event

stream and is presented in four columns: “All” shows the total energy consumption of the core, while “RV” is RISC-V and its instruction memory, “DM”

is Data Memory, and “NP” is all the Neural Processing accelerators: NPEs, loop controller and event generator.

FIGURE 11

Prediction of our tiny YOLO CNN for four di�erent scenes in the dataset with varying levels of sparsity (99.9%, 98%, 89%, 77%).

levels of sparsity and also depicts the predictions of our

SENECA platform.

The last layer of the network has a total of 5 × (3 + 4 + 1)

channels2. To achieve a COCO mean Average Precision (mAP)

of 16, we quantized all parameters to 8 bits while still using the

16b floating point (BF16) format for neuron states. The average

amount of operation sparsity in this network is 88%. We used the

same technique as described in Section 3.3.1 for sparsification and

quantization.

2 Here, the number “5” refers to the number of anchor boxes. The “3”

represents the number of classes, which are cars, pedestrians, and two-

wheelers. The “4” indicates the attributes of the corresponding anchor box,

while the last “1” channel signifies the confidence of prediction for the

corresponding anchor box.

3.4.2 Detailed benchmarking results
Figure 10 illustrates the detailed results of benchmarking our

tiny YOLO network for the Gen4 dataset. Same as before, we

decided to use a straightforwardmapping of one layer per core. The

memory consumption of each core includes the parameters, neuron

states and other overheads (such as stack). The depth-first inference

method introduced in this work consumes 8 times less neuron state

memory (112 KB for 486K neurons) than a conventional solution.

In Figure 10, we can see the energy consumption for each

layer/core. The total energy consumption for inferring a single

data point (50 ms events) is 2.4 mJ. The figure also shows the

energy distribution between RISC-V, data memory, and neural

processing accelerators. As mentioned earlier, RISC-V performs

address calculation for each input event at every (X, Y) location.

Therefore, RISC-V’s energy consumption depends on the (X, Y)

dimensions and sparsity but not on the Channel dimension. For the

layers with lower (X, Y) dimensions and higher sparsity, RISC-V’s
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FIGURE 12

Snapshot of activity of each core in time for the inference of one data point (50 ms of events) with the average sparsity.

energy consumption is reduced. On the other hand, the energy

consumption of neural processing accelerators and data memory

depends on all layer dimensions (X, Y, C) and sparsity. Neural

processing accelerators perform all the important computations,

but the energy consumption of RISC-V is still high. This is

because the depth-first inference method needs a complex address

calculation process, which consumes more energy. To address this

issue, further research is needed to create a specialized accelerator

that can assist RISC-V with depth-first address calculation.

Figure 12 displays the activity of each core over time. It shows

that, for the current mapping of our application, it takes 195 ms

to process 50ms of events. This means that the processing is about

four times slower than real-time. However, we can see that the

mapping is not optimized since only the first two cores are busy,

while other cores have very little to do. By redistributing the layers

or performing hardware-aware training, it is possible to improve

the latency.

It is important to note that the measurement was taken for

a data point with an average amount of sparsity. Therefore,

the latency can be better or worse, depending on the input

data. Additionally, the graph shows the scheduling of depth-first

inference. This allows the next core to start processing before the

previous core has finished. This depth-first scheduling improves the

latency of the system, as can be seen in the graph.

4 Discussion and limitations

This paper explored optimizations of neural network

processing on an event-driven neuromorphic accelerator with the

aim of improving latency, energy, and silicon area efficiency. Spike-

grouping alleviates the high overheads of per-event processing,

and event-driven depth-first convolution improves the mapping

efficiency in digital neuromorphic accelerators. The flexibility of the

SENECA architecture allowed the exploration and characterization

of the proposed optimization techniques. These optimizations

improve the state-of-the-art hardware performance of event-based

neural network processing on digital CMOS accelerators.

While we did not assess the power consumption of certain

critical units, such as I/Os (because of resorting to hardware

simulation tools), nevertheless, our results are still significantly

better than the current state-of-the-art, even when using

pessimistic estimates. On the positive side, using simulated power

measurement platforms allowed us to perform detailed sub-system

power breakdown measurements as reported in this paper.

It is worthmentioning that although the proposed event-driven

depth-first convolution addresses the problem of memory cost,

there are side issues to be considered. Namely, the processing

requirement to spatially sort input events. This may add pre-

processing overhead for asynchronous neuromorphic sensors, such

as event-based cameras (Gallego et al., 2020).

In addition, if a layer is to be mapped to multiple

asynchronously operating cores, its output to the next layer needs

special care since the input events to the next layer may arrive out

of order.

Despite the limitations, the presented optimizations

complement recent advancements in neuromorphic algorithm

designs (Yik et al., 2023). The cost of event-driven depth-first

convolution can be further reduced by adopting cutting-edge

activation-sparsity-aware training methods (Kurtz et al., 2020; Zhu

et al., 2023). This can gain even more significant improvements in

real-world applications requiring more complex and deeper neural

networks, which are due to be explored in the coming works.

Additionally, our optimizations promise to reduce the latency

of stateful convolutional networks by increasing parallelism and

decreasing event overheads. Developments in hybrid networks

combining non-stateful and stateful convolutional layers present

another possibility for optimizing neuromorphic solutions that

take advantage of both sides. With a similar hardware-algorithm

co-optimization strategy, future event-based neural network

algorithms (Schuman et al., 2022), for instance, synaptic delay

(Patiño-Saucedo et al., 2023) and learning (Tang et al., 2021), can

be further optimized for neuromorphic processors.

We showed that a flexible digital neuromorphic processor

can result in better hardware performance than inflexible designs.

This contradicts the traditional thinking that flexibility always

comes with a cost of efficiency (Garcia et al., 2006). In the

case of digital neuromorphic processors, the inflexible design

largely limits the optimization space for event-based neural

network processing. Our results demonstrated that the benefits of

having a large optimization space to explore outweigh the cost

of enabling flexibility (in a strategically designed architecture).

Nevertheless, the proposed event-driven depth-first convolution

can result in a specialized hardware design, further increasing
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the performance in real-world applications by reducing the

control overheads.
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