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Introduction: Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a

common sleep-related breathing disorder that significantly impacts the daily

lives of patients. Currently, the diagnosis of OSAHS relies on various physiological

signal monitoring devices, requiring a comprehensive Polysomnography (PSG).

However, this invasive diagnostic method faces challenges such as data

fluctuation and high costs. To address these challenges, we propose a novel

data-driven Audio-SemanticMulti-Modalmodel forOSAHS severity classification

(i.e., ASMM-OSA) based on patient snoring sound characteristics.

Methods: In light of the correlation between the acoustic attributes of a patient’s

snoring patterns and their episodes of breathing disorders, we utilize the patient’s

sleep audio recordings as an initial screening modality. We analyze the audio

features of snoring sounds during the night for subjects suspected of having

OSAHS. Audio featureswere augmented via PubMedBERT to enrich their diversity

and detail and subsequently classified for OSAHS severity using XGBoost based

on the number of sleep apnea events.

Results: Experimental results using the OSAHS dataset from a collaborative

university hospital demonstrate that our ASMM-OSA audio-semanticmultimodal

model achieves a diagnostic level in automatically identifying sleep apnea events

and classifying the four-class severity (normal, mild, moderate, and severe) of

OSAHS.

Discussion: Our proposed model promises new perspectives for non-invasive

OSAHS diagnosis, potentially reducing costs and enhancing patient quality of life.

KEYWORDS

obstructive sleep Apnea-Hypopnea Syndrome, snoring sounds, semantic information,

PubMedBERT, multimodal model

1 Introduction

Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a prevalent sleep-breathing

disorder worldwide, significantly impacting patients’ health and quality of life. However,

the gold standard of OSAHS diagnosis typically involves complex and time-consuming

processes, relying on resource-intensive methods of Polysomnography (PSG). This
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invasive method limits its applicability in large-scale screening

and may potentially result in delays in patient intervention and

treatment, thereby exacerbating health risks. Considering that

OSAHS patients experience recurrent partial or complete upper

airway blockages during sleep, leading to breathing pauses or

reduced airflow, these sleep apnea events can result in a range

of clinical consequences, including daytime sleepiness, fatigue,

hypertension, diabetes, lipid abnormalities, cognitive impairments,

cardiovascular events, and even mortality (Franklin and Lindberg,

2015). Therefore, developing a simple, precise, and cost-efficient

approach to automatically diagnose the severity of OSAHS is

crucial. In recent years, snoring has garnered significant attention

as an early symptom of OSAHS. Snoring, which results from the

vibration of upper airway structures, is observed in nearly 80% of

OSAHS patients. Analyzing snoring audio collected from OSAHS

patients can provide essential information about sleep apnea events.

Current OSAHS screening approaches rely on physiological

signals extracted from PSG, such as electroencephalography (EEG)

and electrooculography (EOG), to classify the severity of OSAHS

in patients. However, obtaining these signals requires patients to

connect multiple signal recorders, which complicates the extraction

process, increases costs, and fails to precisely differentiate between

different degrees of OSAHS patients (Emoto et al., 2007; Azarbarzin

and Moussavi, 2010; Franklin and Lindberg, 2015; Qian et al.,

2016, 2019). In addition to employing invasive PSG, some

researchers (Chatburn and Mireles-Cabodevila, 2011; Ma et al.,

2015, 2024; Albornoz et al., 2017; Likitha et al., 2017; Winursito

et al., 2018) utilize the conspicuous correlation between patients’

snoring audio and the severity of OSAHS. Hou et al. (2021)

proposed an innovative approach for estimating the Sleep Apnea

Hypopnea Index (AHI) by analyzing snore sounds using the

Equivalent Rectangular Bandwidth (ERB) correlation dimension,

demonstrating a potential non-invasive method for assessing

the risk of sleep apnea. These studies have achieved a certain

degree of success in classifying OSAHS by analyzing patients’

sleep audio features. However, challenges persist in accurately

categorizing patients into distinct classifications, such as normal,

mild, moderate, and severe.

To address these challenges, we have introduced a multi-

feature analysis-based audio-semantic multimodal model for

assessing the severity of OSAHS in patients. We concentrate

on analyzing sleep audio recordings from subjects suspected of

having OSAHS, with the goal of both streamlining the screening

process and diagnosing the severity of OSAHS. As shown in

Figure 1, we automatically segment patients’ audio data and extract

Mel-frequency Cepstral Coefficients (MFCC) as audio features.

Concurrently, we employ the PubMedBERT language model (Tinn

et al., 2023) to transform these audio features into text features,

capturing correlations among MFCC dimensions and thereby

enhancing feature discriminability. Subsequently, we concatenate

the audio features and text features to form the final sleep audio

features for suspected patients. We utilize an XGBoost (Chen and

Guestrin, 2016) to calculate the total number of sleep apnea events

and compute the AHI score (Malhotra et al., 2021), which is

used to classify the severity of OSAHS in patients. In conclusion,

we concatenate the audio and text features through multimodal

data fusion, leveraging both audio and text features, improving

XGBoost’s robustness for the automatic classification of OSAHS

severity. This approach offers insights into early OSAHS diagnosis

and treatment. Specifically, the main contributions of our work are

as follows:

• We present ASMM-OSA, a data-driven multimodal model

for analyzing sleep audio data in individuals susceptible

to OSAHS. Our objective is to automatically detect sleep

apnea events and assess their severity. Through the fusion

of audio and text features via feature concatenation,

we successfully integrate these modalities. Employing

XGBoost for preliminary classification, our model effectively

distinguishes various sleep apnea event types within

audio segments. This approach enhances audio feature

diversity, thereby improving OSAHS classification reliability.

Additionally, our model enhances feature representation and

achieves superior classification accuracy.

• By leveraging a pre-trained language model PubMedBERT, we

incorporate patient-specific semantic information, including

vital signs, pertinent medical history, and other relevant

data, to aid in overnight snoring audio diagnosis. Our

results demonstrate superior performance, demonstrating the

effects of integrating semantic prior knowledge in enhancing

classification accuracy.

• We extensively evaluate our ASMM-OSA using a clinical

dataset from a collaborative university hospital. Our model

outperforms baseline methods, achieving a state-of-the-art

diagnosis accuracy of 77.6% in identifying sleep apnea

events, offering a rapid and effective automatic tool for early

diagnosis.

The rest of the paper is organized as follows. Section 2

reviews related work on snoring features and semantic information

extraction. Section 3 introduces the proposed framework, and

Section 4 describes detailed experimental results and ablation

studies. Section 5 concludes the paper.

2 Related work

2.1 Snoring feature extraction

Due to the strong correlation between snoring and OSAHS,

prior research typically concentrates on analyzing patients’

snoring and subsequently determining whether they have

OSAHS. Emoto et al. (2007) utilized second-order autoregressive

models to characterize snoring sounds and analyze the severity

of OSAHS. Azarbarzin and Moussavi (2010) proposed an

automatic unsupervised snoring detection algorithm that used

two microphones, one on the trachea and one in the surrounding

environment, to capture respiratory sound signals from patients.

The vertical box (V-Box) algorithm was then employed to identify

sound segments as either snoring or non-snoring. Qian et al. (2019)

used machine listening techniques to identify the obstruction and

vibration positions in the upper airway of subjects, analyzing their

snoring data and employing a naive Bayes model as a classifier.

Similarly, Qian et al. (2016) introduced a novel feature set based
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on wavelet transform and a support vector machine classifier to

differentiate Velum, Oropharynx lateral wall, Tongue base, and

Epiglottis (VOTE) snoring data detected by in-sleep endoscopy,

distinguishing between OSAHS patients and primary snorers.

However, these studies are confined to focusing on the analysis

of snoring features to ascertain whether patients snore or have

OSAHS. Despite their success, they still face difficulty accurately

categorizing OSAHS severity into multiple classes (normal, mild,

moderate, and severe cases), limiting its potential usage in assisting

medical diagnoses.

The analysis of snoring characteristics is fundamentally

a part of audio analysis. Currently, Chatburn and Mireles-

Cabodevila (2011) and Likitha et al. (2017) have successfully

utilized acoustic features to analyze speakers’ emotions, achieving

excellent performance. Building on this foundation, in recent years,

researchers have employed MFCC for acoustic feature analysis to

classify different types of snoring. Albornoz et al. (2017) utilized

MFCC to extract snoring features and employed a support vector

machine (SVM) for snoring type classification. Ma et al. (2015)

detected snoring candidates using V-Box and then extractedMFCC

features from each candidate to classify snoring or non-snoring

using the K-Harmonic Mean clustering algorithm. Sun et al. (2020)

used MFCC to obtain snoring features and applied support vector

machines for snoring localization. However, most of these methods

either do not classify the types of snoring accurately or do not focus

on OSAHS severity assessment, which is crucial for effective patient

treatment.

2.2 Semantic information extraction

Pre-trained language models have been widely demonstrated as

extremely effective. These languagemodels are typically pre-trained

on large text datasets and can be fine-tuned in different domains

to extract distinctive features, exhibiting exceptional performance

across various tasks.

In the medication domain, Shin et al. (2020) proposed

BioMegatron, an improvement on BERT, to understand biomedical

language and context. Fang and Wang (2022), Chen et al.

(2021), and Tian and Zhang (2021) used PubMedBERT for

COVID-19 literature classification and annotation. Almeida et al.

(2022) utilized PubMedBERT’s contextual embeddings to enhance

document retrieval and question-answering tasks. Bevan and

Hodgskiss (2021) employed BERT to learn feature representations

of chemical entities. Portelli et al. (2021) evaluated and selected

SpanBERT and PubMedBERT for medical text recognition. Liu

et al. (2022) introduced MetBERT for predicting metastatic cancer

from clinical records. Lin et al. (2021) proposed EntityBERT, a

BERT-based model, to explore the clinical domain using a masked

strategy.Miao et al. (2021) and collaborators utilized PubMedBERT

for CID entity relation classification through Text-CNN fine-

tuning. Danilov et al. (2021) applied PubMedBERT to classify short

scientific texts and demonstrated better performance compared

to other models. Zhang et al. (2021) used models like BioBERT

and PubMedBERT for generating answers in QA tasks, with

PubMedBERT showing good performance but not matching the

BioBERT-MNLI-SQuAD model fine-tuned on external datasets,

potentially due to differences in pre-training corpora. Rao (2022)

tested the capabilities of BERT models in microbiology text

mining and compared their applicability. Gupta et al. (2023)

proposed an automated report generation method combining a

visual transformer and PubMedBERT. Shen et al. (2022) andMullin

et al. (2023) employed various BERT models to analyze electronic

health records of Alzheimer’s disease patients and study the impact

of lifestyle on the disease. Wang et al. (2021) introduced Cross-

contrast BERT for obtaining semantic information in biomedical

tasks. In the medical field, pre-trained language models have

been widely used to extract text features from medical records,

including patient medical histories and symptom descriptions. This

text information aids doctors in disease diagnosis, prediction, and

treatment decisions. Although previous research has utilized BERT

models (Devlin et al., 2018; Qi et al., 2023) and extensions such as

PubMedBERT and BioBERT, these models have not been applied to

extracting text information from patients’ snoring data, which has

primarily focused on electronic health records.

3 Method

Figure 1 demonstrates the overall framework of our proposed

method, comprising audio feature extraction, semantic feature

conversion, feature concatenation, and classification.

3.1 Audio feature extraction

For each patient’s sleep audio, we utilize the Mel Frequency

Cepstral Coefficients (MFCC) to extract audio features. MFCC, a

widely used method in audio signal processing, excels at capturing

spectral sound characteristics. This process involves multiple steps,

including preprocessing, Fast Fourier transform (FFT), Mel filter

banks, logarithmic operations, Discrete Cosine Transform (DCT),

as well as dynamic feature extraction. The specific steps of this

process are as follows.

3.1.1 Fast Fourier Transform
After performing data framing and windowing preprocessing

steps, we apply the Fast Fourier Transform (FFT) to map the

obtained time-domain signal into the frequency domain. This

transformation is then converted into a power spectrum, which

facilitates the subsequent transformation to the Mel scale.

X(k) =

N−1∑

n=0

x(n) · e−j 2πN nk

Where x(n) represents the input audio signal, N is the frame

size, and k is the frequency index.

3.1.2 Mel filter banks
The Mel filter bank is employed to transform the linear

spectrum into the Mel spectrum.

Sm =

K∑

k=1

|X(k)|2 ·Hm(k)
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Where X(k) represents the spectral values of the audio

frame,where k ranges from 1 toK(oftenK is half the number of FFT

points), representing different frequency components. whileHm(k)

corresponds to the response of them-th Mel filter.

3.1.3 Logarithmic operations
After obtaining the energy values for eachMel filter as described

above, a logarithm is taken to prepare for cepstral analysis.

Mm = log (Sm)

3.1.4 Discrete Cosine Transform
The obtained Mel energy values for each filter are then

subjected to Discrete Cosine Transform (DCT) to obtain the final

Mel-Frequency Cepstral Coefficients (MFCCs).

Cl =

M∑

m=1

Mm · cos

[
π l

M
(m− 0.5)

]

Following these steps, we obtain MFCC feature vectors for each

minute, including 13-dimensional static coefficients that reflect the

energy distribution and spectral characteristics of snoring sounds.

These MFCC feature vectors can then be utilized for subsequent

data processing.

3.2 Semantic feature transformation

We employ a pre-trained PubMedBERT model to transform

the MFCC features. We encode the MFCC features for each minute

into a sentence-like format and input them into the PubMedBERT

model to obtain semantic information. PubMedBERT is a model

trained on a large-scale collection of medical literature data,

endowed with robust semantic representation capabilities, enabling

it to effectively capture specific features and knowledge within the

medical domain.

We utilize the notation C1,C2, ...,Ct to denote the MFCC

feature vector for each minute, where Ct represents the MFCC

features at the t minute. These MFCC features are structured into a

sentence-like format:

Sinput = [C1,C2, . . . ,Ct]

Where Sinput is the obtained sentence, the encoding format

is shown in Figure 1. We then input this sentence into the

PubMedBERT model to get semantic information:

Soutput = PubMedBERT
(
Sinput

)

Soutput represents the semantic feature obtained by PubMedBERT.

3.3 Processing snoring event records

We extracted snoring event records for each minute from the

text files corresponding to the audio data. This yielded a 480-

dimensional event record dataset, where each entry indicated the

presence or absence of a snoring event for a specific minute. We

further converted these records into binary labels: 1 represented the

sleep apnea event lasting 30 s or more within the minute, while 0

denoted the normal sleep event. This transformation facilitated the

integration of snoring event information into subsequent analyses.

E = [e1, e2, . . . , eT]

Where eT represents the event records for each minute, with 1

indicating the sleep apnea event and 0 indicating the normal sleep

event. These records form a 480-dimensional dataset.

3.4 Feature concatenation

We then concatenate the obtained semantic feature with the

sleep apnea event records. The audio data is 480-dimensional,

and the semantic feature we obtained after transformation is

also 480-dimensional, aligning with the dimensionality of the

event records. By concatenating the MFCC features, semantic

features, and event records along their respective dimensions,

we built a comprehensive feature. The feature serves as the

input for the classification model, which is used for training and

prediction purposes.

Ft = [st , et ,Ct]

Where st represents the semantic feature of the t minute, et
represents the event record of the tminute, Ct is a 480-dimensional

vector, and Ft represents the comprehensive feature of the t

minute. This comprehensive feature includes semantic features,

event records, and audio features.

3.5 Classification model

XGBoost (Chen and Guestrin, 2016), based on gradient

boosting trees, incrementally integrates multiple decision tree

models to enhance predictive performance. This iterative approach

allows XGBoost to extract knowledge frommultiple relatively weak

learners, gradually approaching the true complexity of the problem.

In the diagnosis of OSAHS, a multitude of features are at play, and

the capabilities of XGBoost empower us to more effectively capture

these complex relationships, consequently enhancing diagnostic

accuracy.

The loss function of XGBoost consists of two parts: the

regularization term and the data fitting term. Specifically, the loss

function of XGBoost can be expressed as:

loss =

n∑

i=1

ℓ
(
yi, ŷi

)
+

K∑

k=1

�
(
fk

)

Where,n is the training sample size,yi is the ground-truth

label,ŷi is the predicted label,K is the number of trees,fk represents

the k-th tree, ℓ
(
yi, ŷi

)
is the data fitting term, and �

(
fk

)
is the

regularization term.

We adopt the XGBoost to construct a classification model

aimed at determining the presence of sleep apnea events on a
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FIGURE 1

The overall framework of our proposed audio-semantic multimodal model ASMM-OSA.

per-minute basis. The model takes as input the comprehensive

feature data obtained through prior steps. By training the model,

we are able to predict sleep apnea events for each minute,

consequently enabling the computation of the total count of such

events throughout the entire night. This predictive capacity of the

XGBoost model plays a pivotal role in diagnosing the severity of

obstructive sleep apnea, offering insights into the patient’s sleep-

related respiratory patterns.

Based on the total count of overnight sleep apnea events, we can

assess the severity of a patient’s sleep apnea syndrome. We calculate

the Apnea-Hypopnea Index (AHI) for each individual, computed

as the count of events with occurrences during the entire night’s

sleep divided by the duration of the sleep.

AHI =
N

t

Where N denotes the count of sleep apnea events during a

patient’s night of sleep, and t signifies the duration of that night’s

sleep in hours. Subsequently, the patient’s severity of OSAHS is

categorized into four levels using the AHI index, including simple

snoring (AHI < 5), mild (5 ≤ AHI < 15), moderate (15 ≤ AHI <

30), and severe (AHI ≥ 30) (Marti-Soler et al., 2016).

Additionally, we employ metrics such as Mean Squared

Error(MSE), Mean Absolute Error(MAE), precision, recall, F1

score, and Area Under the ROC Curve (AUC) to assess the

model’s performance, ensuring its accuracy and reliability. The

AUC measures the area under the ROC curve, with a range from

0 to 1. The larger the AUC value, the better the performance of the

classifier.

The definitions of these six metrics are as follows:

MAE =
1

n

n∑

i=1

|yi − ŷi|

MSE =
1

n

n∑

i=1

(
yi − ŷi

)

R2
−Score = 1−

∑
i

(
yi − ŷi

)2
∑

i

(
y− ŷi

)2

where: yi denotes the ground-truth label, ŷi denotes the

prediction and ȳ denotes the mean value.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1−Score =
2× Precision × Recall

Precision + Recall

4 Experiments and results

4.1 Data description and processing

The dataset was collected from the Eye & Ent Hospital of

Fudan University consisting of 250 patients. The dataset includes
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TABLE 1 Description of the dataset.

Dataset Sample size Normal Mild Moderate Severe Age <40 Age ≥ 40 Male Female

Train 200 26 45 44 82 67 133 178 22

Test 50 11 10 8 21 21 29 40 10

patients’ audios and corresponding OSAHS severity and event

labels, labeled by three clinical experts. The data acquisition and

processing followed these steps: first, we recorded 8 h of sleep

audio for each patient at a sampling rate of 8 kHz. Subsequently,

the sleep recordings were divided into hourly segments, generating

eight-hour audio clips, each containing sleep state and snoring

information for its corresponding hour. For each hourly audio

clip, a 13-dimensional MFCC feature extraction was applied,

which effectively captures audio spectral features. Then, the MFCC

features are standardized to have a mean of 0 and a variance of 1,

enhancing the stability and effectiveness of themodel. The dataset is

split into 80% for training and 20% for testing. Table 1 is a depiction

of our dataset, including the number of patients in the training and

test sets, the number of patients with different types of snoring, the

number of males and females, and the age distribution.

To obtain event labels, the sleep apnea events and their

durations were annotated in the respective text based on the

patient’s overnight sleep pattern. Event determination relied on

whether the event duration exceeded 30 s, thus deciding the

presence of a sleep apnea event per minute. Combining each

patient’s MFCC values with their corresponding event labels

resulted in a 480-dimensional dataset. This dataset was further

combined with the previously acquired semantic information,

creating a comprehensive dataset containing semantic information,

MFCC features, and event labels for training and testing

experiments.

4.2 Hyper-parameters settings and model
evaluation

During training, the model’s hyperparameters (such as

learning rate, number of trees, maximum depth, etc.) are

adjusted to optimize the model’s performance. Table 2 shows our

hyperparameter settings. We utilized cross-validation to choose the

best combination of hyperparameters and avoid overfitting.

4.3 Main results

4.3.1 Performance in identifying sleep apnea
events

We selected 50 patients as the test set and divided them into 10

groups, with each group containing five patients, conducting a total

of 10 experiments. Through training the dataset with the XGBoost

model, usingMFCC values as features, we predicted the occurrence

and type of sleep apnea events per minute and compared themwith

the ground-truth sleep apnea events, thus assessing the predictive

performance of the model. The results presented in Table 3 showed

that our model achieved superior performance in identifying sleep

TABLE 2 Optimal parameters for the classification model.

Parameter
name

Parameter
meaning

Optimal
parameters

Leaning rate Learning rate 0.3

Max depth Maximum depth of the

tree

9

Subsample Subsampling rate of the

sample

0.6

Reg lambda L2 regularization 10

Reg alpha L1 regularization 0.1

Colsample bytree Subsampling rate of the

feature

0.5

Gamma Control the splitting

process of the tree

0.2

apnea events, with an average accuracy of 77.6%, and an average

AUC of 0.709.

In addition, we have further evaluated our proposed model

using a confusion matrix (Figure 2). A confusion matrix is a

fundamental tool for assessing the performance of a binary

classification model. TP represents the cases where our model

correctly identified positive instances, meaning it accurately

detected the condition we were interested in, such as a medical

condition or an event. TN stands for the cases where the

model correctly recognized negative instances, indicating that it

correctly ruled out the presence of the condition or event. In

our study, we analyzed 23,370 samples, These samples originate

from audio snippets of participants’ entire night’s sleep, each audio

sample representing whether an apnea event occurred. Following

the preprocessing of these audios, the total number of samples

amounted to 23,370. The essential characteristic of these samples

is the MFCC per minute. Label 0 represents a normal sleep

event, while 1 indicates the occurrence of an apnea event. And

the confusion matrix revealed 12,869 TP cases and 4,643 TN

cases. These results demonstrate the model’s efficacy in accurately

discerning the presence of sleep apnea events. The abundance of

TP cases underscores its accuracy in identifying positive instances,

while the significant TN count signifies its proficiency in correctly

excluding negative instances.

As presented in Figure 3, we also employed The Receiver

Operating Characteristic (ROC) curves for model evaluation. The

ROC curve is a graphical tool that visually assesses a model’s binary

classification performance. It plots the True Positive Rate (TPR),

also known as Sensitivity, against the False Positive Rate (FPR),

reflecting the model’s accuracy in classifying positive instances

while minimizing negative. A higher AUC value close to 1 indicates

the model’s superior capacity to differentiate between positive and
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TABLE 3 Sleep apnea event classification results for 10 groups of patients.

Patient group
number

Accuracy Precision Recall F1-score AUC Specificity

01 0.963 0.850 0.975 0.908 0.968 0.961

02 0.967 0.965 0.960 0.963 0.966 0.972

03 0.675 0.506 0.692 0.584 0.679 0.667

04 0.825 0.861 0.766 0.810 0.824 0.882

05 0.700 0.296 0.301 0.298 0.554 0.658

06 0.659 0.523 0.662 0.584 0.660 0.885

07 0.829 0.544 0.587 0.565 0.736 0.853

08 0.716 0.417 0.311 0.357 0.582 0.881

09 0.681 0.490 0.248 0.329 0.564 0.809

10 0.742 0.192 0.300 0.234 0.554 0.972

Average 0.776 0.564 0.580 0.563 0.709 0.837

FIGURE 2

Confusion matrices for apnea event classification.

negative instances. In our study, an AUC of 0.8 indicates a strong

discriminative ability in distinguishing sleep apnea events.

4.3.2 Important parameter analysis
In this paper, we use the SHAP model to perform an

interpretive analysis of the XGBoost model’s output. The

importance ranking of the features of the SHAP is shown in

Figure 4, where the most important feature in the AHI predict

process is average SPO2, In addition to average SPO2, Lowest SPO2,

and Longest Apnea Duration are also an important indicator for

AHI predict.

Figure 5 shows the feature dependence plots of “Longest Apnea

Duration”. The scatter plot reveals the contributions of “Longest

Apnea Duration” and “BMI” to the model prediction. The gray

histogram represents the sample distribution of “Longest Apnea

Duration”, while points of different colors depict the distribution

of SHAP values for sample features with various BMI. The larger

the SHAP value, the greater the positive contribution of the

corresponding feature value in the model. The color represents

the numerical values of BMI, with the color bar displaying the

BMI value ranges corresponding to different colors. The figure

indicates a positive correlation between “Longest Apnea Duration”

and SHAP values, implying that as the duration of apnea prolongs,

the corresponding SHAP values increase, suggesting a higher

dependence on this feature. Meanwhile, the distribution of BMI

appears more scattered, which indicates the influence of BMI on

“Longest Apnea Duration” is relatively independent rather than
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linearly correlated, underscoring the complexity of the model’s

prediction.

4.4 Comparative experimental results of
di�erent models

4.4.1 Compare to baselines
In our experiments, we compared our model with other models

from related studies, and the results are shown in Table 4, which

indicates that our metrics outperform other snoring classification

prediction models in several assessment metrics. The chosen

baselines are as follows, implemented according to the details

specified within each baseline:

• Limin et al. (2019) extracted MFCC and used the Gaussian

mixture model to model and classify snoring sound all night,

and then estimated the AHI index of the subjects.

FIGURE 3

ROC of ASMM-OSA. The horizontal axis quantifies the proportion of

healthy cases incorrectly identified as diseased, while the vertical

axis quantifies the proportion of diseased cases correctly identified.

• Zhao et al. (2021) extracted the formants of snoring sound and

compared them with the personalized threshold to describe

the difference between OSAHS patients and simple snorers,

and estimated the simulated AHI of subjects.

• Shen et al. (2020) applied the Long Short Term Memory

(LSTM) to explore deeply representative features fromMFCC,

LPC, and the integration of LPCC and MFCC.

• Ding et al. (2023) detected apnea hypopnea-related snoring

sound based on analysis of the Mel-spectrogram.

4.4.2 Classify the severity of OSAHS
We utilize a test set consisting of 50 patients, calculating the

AHI score for each patient and determining their corresponding

severity level. These results are then compared to the severity levels

derived from the ground truth derived from PSG. We label 0, 1,

2, and 3 to represent the different degrees of OSAHS severity:

0 denotes normal, 1 signifies mild, 2 indicates moderate, and 3

represents severe.

Table 5 presents the label distribution of patients with different

severity level labels and the predictive accuracy of the four-class

classification. The overall predictive accuracy of the four classes

is 58%. It is noted that our model exhibits superior performance

in categorizing patients with moderate and severe conditions. In

practical situations, prioritizing the classification of moderate and

severe cases is crucial, given their potential need for urgent hospital

treatment. Consequently, the diagnostic outcomes facilitate swift

and precise identification of moderate and severe patients, enabling

expedited and effective interventions by healthcare professionals.

Table 6 shows our model accurately estimates the actual Apnea-

Hypopnea Index (AHI) for most subjects, especially for patients

1–7 and 9. The prediction discrepancies observed in patients 8 and

10 can be attributed to patient diversity and the first-night effect,

which refers to variations in sleep patterns during an individual’s

first exposure to a sleep study environment. Additionally, the size of

the dataset may have impacted the model’s generalizability. Despite

the challenges of data variability and size, Table 4 demonstrates

that our approach outperforms the baseline on the same dataset,

highlighting the effectiveness of our proposed model.

FIGURE 4

Feature importance ranking.
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FIGURE 5

The dependence between longest apnea duration and BMI. The gray histogram represents the sample distribution of the Longest Apnea Duration,

while points of di�erent colors depict the BMI of di�erent samples.

TABLE 4 Experimental results for the di�erentiation of sleep apnea events using the baseline classification approach.

Model Accuracy Precision Recall F1-score

GMMs (Limin et al., 2019) 0.769 0.550 0.501 0.496

Random Forest (Zhao et al., 2021) 0.709 0.491 0.507 0.533

LSTM (Shen et al., 2020) 0.680 0.509 0.511 0.559

VGG19-LSTM (Ding et al., 2023) 0.758 0.554 0.568 0.524

ASMM-OSA 0.776 0.564 0.580 0.563

The best performance is indicated in bold.

4.4.3 Ablation study
We further conducted ablations concentrating on

evaluating the impact of semantic information features

on the classification performance of the ASMM-OSA. We

designed two components, with one utilizing MFCC as the

feature and the other concatenating semantic features as

the final feature representation. The results are presented in

Table 7. From the experimental results, it can be observed

that after incorporating PubMedBERT, the average accuracy

increased to 0.776, compared to 0.746 without utilizing

PubMedBERT. Furthermore, there was a discernible improvement

in precision and ASMM-OSA demonstrated superior

precision in classifying positive samples when PubMedBERT

was employed.

Due to PubMedBERT being pre-trained on a large-scale

biomedical literature dataset, ASMM-OSA has acquired enhanced

semantic feature-capturing capabilities, particularly excelling in

capturing medical domain-specific features. Comparatively,

incorporating PubMedBERT significantly improves the

performance of ASMM-OSA in classifying the severity of

OSAHS patients when contrasted with not introducing this

language model.

TABLE 5 The number of people with each symptom in PSG and test

results.

0 1 2 3 All

PSG 14 18 6 12 50

Accuracy 50% 50% 66.7% 75% 58%

5 Conclusion

In this paper, we introduce an audio-semantic multimodal

model for the classification of OSAHS severity (i.e., ASMM-

OSA). We integrate patients’ sleep audio features with semantic

features and employ XGBoost to classify sleep apnea events,

thereby calculating the patient’s AHI score to assess the severity

of OSAHS. Experimental results demonstrate the enhancement

in classification performance achieved by incorporating semantic

information, highlighting the superior performance of ASMM-

OSA in classifying sleep apnea events. This approach provides

a robust tool for precisely diagnosing sleep-related disorders. In

the future, we will conduct a thorough analysis of performance
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TABLE 6 The comparison of OSAHS degree of our method compared with the gold standard PSG results in 10 random patients.

Patient number AHI (PSG) AHI (test) Label (PSG) Label (test) AUC

01 10.5 5.5 1 1 0.968

02 5.5 7 1 1 0.966

03 68.7 48.625 3 3 0.679

04 3.2 3.625 0 0 0.824

05 3.8 2.250 0 0 0.554

06 7.1 5.375 1 1 0.660

07 14.2 18 1 2 0.736

08 46 15.625 0 2 0.582

09 2.0 2.125 0 0 0.564

10 4.9 11.875 0 1 0.554

TABLE 7 The results of the ablation experiment sleep apnea event classification in 10 groups of patients.

Group
no.

Acc Acc
(w/o.)

Prec Prec
(w/o.)

Recall Recall
(w/o.)

F1 F1
(w/o.)

AUC AUC
(w/o.)

01 0.963 0.892 0.850 0.647 0.975 0.902 0.908 0.753 0.968 0.896

02 0.967 0.908 0.965 0.899 0.960 0.894 0.963 0.897 0.966 0.906

03 0.675 0.649 0.506 0.48 0.692 0.790 0.584 0.598 0.679 0.685

04 0.825 0.826 0.861 0.849 0.766 0.784 0.810 0.815 0.824 0.825

05 0.700 0.679 0.296 0.307 0.301 0.408 0.298 0.351 0.554 0.580

06 0.659 0.664 0.523 0.526 0.662 0.709 0.584 0.604 0.660 0.674

07 0.829 0.812 0.544 0.502 0.587 0.686 0.565 0.580 0.736 0.764

08 0.716 0.708 0.417 0.424 0.311 0.440 0.357 0.432 0.582 0.619

09 0.681 0.672 0.490 0.447 0.248 0.343 0.329 0.398 0.564 0.584

10 0.742 0.654 0.192 0.174 0.300 0.465 0.234 0.248 0.554 0.561

Average 0.776 0.746 0.564 0.526 0.580 0.642 0.563 0.568 0.709 0.709

variations among different patient groups. We will investigate

aspects such as feature selection, model fine-tuning, and other

enhancements to further improve model performance and its

generalization capabilities.
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