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Aberrant alterations in any of the two dimensions of consciousness, namely
awareness and arousal, can lead to the emergence of disorders of consciousness
(DOC). The development of DOCmay arise frommore severe or targeted lesions
in the brain, resulting in widespread functional abnormalities. However, when
it comes to classifying patients with disorders of consciousness, particularly
utilizing resting-state electroencephalogram (EEG) signals through machine
learning methods, several challenges surface. The non-stationarity and intricacy
of EEG data present obstacles in understanding neuronal activities and achieving
precise classification. To address these challenges, this study proposes variational
mode decomposition (VMD) of EEG before feature extraction along with
machine learning models. By decomposing preprocessed EEG signals into
specified modes using VMD, features such as sample entropy, spectral entropy,
kurtosis, and skewness are extracted across these modes. The study compares
the performance of the features extracted from VMD-based approach with the
frequency band-based approach and also the approach with features extracted
from raw-EEG. The classification process involves binary classification between
unresponsive wakefulness syndrome (UWS) and the minimally conscious state
(MCS), as well as multi-class classification (coma vs. UWS vs. MCS). Kruskal-
Wallis test was applied to determine the statistical significance of the features
and features with a significance of p < 0.05 were chosen for a second round
of classification experiments. Results indicate that the VMD-based features
outperform the features of other two approaches, with the ensemble bagged
tree (EBT) achieving the highest accuracy of 80.5% for multi-class classification
(the best in the literature) and 86.7% for binary classification. This approach
underscores the potential of integrating advanced signal processing techniques
and machine learning in improving the classification of patients with disorders
of consciousness, thereby enhancing patient care and facilitating informed
treatment decision-making.
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1 Introduction

Disorders of consciousness (DOC) encompass a broad range

of conditions that involve significant impairments in the level of

arousal and awareness (Altıntop et al., 2022). These conditions

pose complex challenges for individuals, their families, and

healthcare providers. Understanding the various DOC categories

and their characteristics is essential for appropriate treatment,

and prognostic assessment (Schnakers, 2020; Duszyk-Bogorodzka

et al., 2022). One of the most well-known DOC categories is

coma (Alnagger et al., 2023). Coma represents a deep unconscious

state where individuals are unresponsive and unaware of their

surroundings with usually closed eyes and with no evidence of

awareness or consciousness (Kondziella et al., 2020). It can result

from severe traumatic brain injury, stroke, brain hemorrhage,

or other causes that disrupt normal brain function and can be

typically defined by the absence of both wakefulness and purposeful

responses to stimuli (Alnagger et al., 2023). Unresponsive

wakefulness syndrome (UWS), formerly referred to as vegetative

state, is another significant DOC category (Morris et al., 2022).

In UWS, individuals may exhibit sleep-wake cycles, open their

eyes, and have basic physiological functions (Gervais et al., 2023).

However, there is a profound lack of awareness, with no signs

of purposeful or meaningful interaction with the environment

(Morris et al., 2022). The third category of DOC, namely minimally

conscious state (MCS) is characterized by individuals displaying a

degree of awareness, though limited, and inconsistent wakefulness

(Thibaut et al., 2020). Individuals in MCS may show occasional

purposeful behavior or response to stimuli that go beyond reflexive

or automatic actions (Gervais et al., 2023). These responses

may include following simple commands, gesturing, or exhibiting

emotional expressions. However, the level of consciousness and

awareness in MCS can fluctuate, making it a challenging state to

assess accurately (Gervais et al., 2023).

Categorizing patients with disorders of consciousness across

the spectrum involves the utilization of behavioral assessment

methods, with the Coma Recovery Scale-Revised (CRS-R) serving

as the primary tool for evaluating and scoring individuals

(Coleman et al., 2009). This comprehensive scale assesses

visual, auditory, motor, oromotor, and communication responses,

enabling clinicians to distinguish between different states of

consciousness (Majerus et al., 2005). The CRS-R provides a detailed

insight into a patient’s level of consciousness and recovery potential

by systematically evaluating specific responses and behaviors. In

addition to the CRS-R, established neurobehavioral assessment

tools tailored for DoC patients include the Glasgow coma scale

(GCS), Western Head Injury Matrix, Sensory Modality and

Rehabilitation Technique, the Sensory Stimulation Assessment

Measure (Opara et al., 2014), and Western Neurosensory

Stimulation Profile (Horn et al., 1993), which evaluate the overall

outcome and functional status of patients post-injury, providing

valuable insights into the long-term effects and recovery trajectory.

However, it is important to note that subjective interpretation,

consciousness fluctuations, and the inability of patients to respond

during behavioral assessments can lead to misclassification errors,

which occur in approximately 37% to 40% of cases (Jain and

Ramakrishnan, 2020). To minimize these errors, a combination of

diverse neuroimaging and electrophysiological techniques can be

utilized to enhance the accuracy of assessing levels of consciousness

(Jain and Ramakrishnan, 2020). Electroencephalography (EEG)

signals have emerged as a critical input in the clinical assessment

of DOC patients (Edlow et al., 2021). Being a non-invasive

neuroimaging technique, EEG provides insights into the

underlying brain activity and connectivity, that help understand

the neurological mechanisms governing consciousness. It plays

a multifaceted role in the clinical evaluation of DOC patients,

offering diagnostic clarity and aiding in the prediction of potential

recovery (Subha et al., 2010). The historical evolution of EEG-

based visual analysis methods for categorizing patients with

consciousness disorders dates back to 1965, marked by subsequent

refinements in 1988 and 1997 (Young et al., 1997; Bai et al.,

2021b). In 2012, EEG terminology was standardized to improve

consistency, which was complemented by additional scoring scales

in 2014 and 2016 (Estraneo et al., 2016), fostering a systematic

EEG interpretation approach (Hirsch et al., 2021). However,

challenges still persist in visual analysis methods of consciousness

disorders, such as subjectivity, limited predictive accuracy, and a

diverse patient population. Overcoming these challenges requires

a comprehensive strategy, incorporating machine learning for

objectivity, advanced EEG measures, tailored classifications,

standardized protocols, continuous monitoring, and biomarker

integration. These challenges can be tackled by integrating diverse

signal processing methods to analyze brain signals across different

domains namely time, frequency, and time-frequency domains.

Among various EEG paradigms to study DOC patients, resting-

state EEG-based analysis has gained attention as it does not require

active task performance or external stimulation, making it an ideal

tool for patients who are unable to follow commands or respond to

stimuli due to their compromised consciousness (Chen et al., 2022).

Spectral power analysis, a component of frequency domain

analysis, employs techniques such as the Fourier Transform to

convert time-domain signals into their frequency representation.

This facilitates the identification of variations in different frequency

bands such as alpha, delta, and theta bands, distinguishing

between patients in unresponsive wakefulness syndrome (UWS)

and minimally conscious state (MCS) (Bai et al., 2021b). Studies

reveal increased powers of delta and theta bands in MCS compared

to severe neurocognitive disorder patients, while UWS patients

exhibit decreased alpha but increased delta power compared to

MCS patients, along with variations in theta power (Bai et al.,

2021b). Limited exploration is reported for beta and gamma band

frequencies, and normalized powers show distinctions between

consciousness states, particularly in delta, theta, and alpha bands

(Corchs et al., 2019).

EEG microstates, representing stable scalp potential fields,

correlate with altered states of consciousness and unawareness

(Stefan et al., 2018). Reduced microstate types and diminished

diversity in alpha-rhythmic microstates are associated with altered

consciousness states. The percentage of time spent in microstate D

in the alpha frequency band is a key discriminator between UWS

and MCS patients (Bai et al., 2021a).

Functional connectivity assesses the integration of brain

networks and encounters challenges in DOC patients. Measures

like coherence, imaginary coherence (IC) (Stefan et al., 2018),
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phase lag index (PLI) (Sitt et al., 2014), and directed transfer

function (Höller et al., 2014) have been employed to analyze

EEG resting-state connectivity. Among patients with disorders

of consciousness, MCS patients exhibit heightened connectivity

in alpha and beta bands relative to UWS patients. Coherence

analysis struggles to differentiate between MCS and UWS patients,

while cross-approximate entropy reveals suppressed and increased

interconnections in UWS andMCS patients, respectively (Bai et al.,

2021b). Outgoing Granger causality is wider than incoming values

for UWS, MCS, EMCS, and controls, and dissymmetry is observed

in outgoing and incoming information in UWS patients (Lee et al.,

2013). Transfer entropy faces challenges in distinguishing groups,

with weighted symbolic mutual information offering independence

from etiology. Biomarker analysis successfully distinguishes

UWS from MCS and controls. Dynamic functional connectivity

reveals significant temporal differences between MCS and UWS,

which correlates with CRS-R. In specific connectivity measure

comparisons, Höller et al. (2014) find partial coherence to yield

optimal results, with directed transfer function and generalized

partial directed coherence also effectively differentiating UWS

from MCS patients. Lehembre et al. (2012) emphasize the equal

suitability of IC and PLI in distinguishing UWS from MCS in low-

density EEG, overcoming coherence limitations related to volume

conduction problems. Stefan et al. (2018) conduct a comprehensive

analysis combining various indices, determining the percentage of

time spent in alpha microstates as optimal for distinguishing UWS

from MCS patients. In contrast, the clustering coefficient, focusing

on beta coherence, exhibits a higher predictive value for outcomes.

Graph theory involves nodes and connections to provide

insights into altered functional connectivity in DOC patients

(Chennu et al., 2017). In the alpha band, reduced local/global

efficiency and fewer hubs are observed, with distinct modules.

Differences in network metrics indicate altered connectivity and

discriminate between UWS and MCS patients. DOC patients

exhibit impaired network integration, and their consciousness

level correlates with altered network dynamics. Naro et al. (2021)

studied functional connectivity in resting-state EEG among 17

UWS patients and 15 MCS patients based on multiplex and

multilayer network analyses of frequency-specific and area-specific

networks. The findings revealed the degradation and heterogeneity

of functional networks, particularly in the fronto-parietal region,

serving as a discriminant between patients with MCS and UWS.

However, these insights were not discernible when examining each

frequency-specific network.

Non-linear analysis of transformed EEG signals reveals several

measures that effectively discriminate between unconscious and

conscious patients while also correlating with different levels

of consciousness (Bai et al., 2021a). The Kolmogorov Chaitin

Complexity (KCC) stands out for successfully differentiating

between UWS and MCS patients, particularly in the parietal

region (Bai et al., 2021a). Diverse metrics, including Lempel-Ziv

complexity, approximate entropy, and cross-entropy, consistently

demonstrate their effectiveness in distinguishing between UWS

and MCS (Duszyk-Bogorodzka et al., 2022). Permutation entropy-

based measures, especially in the theta range, prove effective in

distinguishing UWS patients (Engemann et al., 2018). Additionally,

MCS patients exhibit a higher mean spectral entropy than UWS

patients, offering further insights into different consciousness

states. Higher entropy values, indicative of a less regular resting

EEG, are associated with proximity to an awake state, while lower

values correlate with unconscious states (Engemann et al., 2018).

Time-frequency analysis methods, such as wavelet transforms,

empirical mode decomposition (EMD) (Huang et al., 1998),

and variational mode decomposition (VMD) (Dragomiretskiy

and Zosso, 2013), play a pivotal role in the processing and

interpretation of electroencephalogram signals. These techniques

address the inherent non-stationarity and complexity of EEG

data, offering a dynamic perspective on the brain’s temporal and

spectral characteristics. In general, they decompose a given signal

into a collection of individual components known as modes and

each mode represents a distinct oscillatory behavior or pattern

within the signal. The wavelet transform (Daubechies, 1992) allows

for time-frequency analysis of the EEG signal by decomposing

it into different scales or frequency bands (Subasi et al., 2021).

Advanced wavelet decomposition techniques, including the flexible

analytic wavelet transforms, adaptive flexible analytic wavelet

transform (Khare and Acharya, 2023), tunable Quality Factor (Puri

et al., 2022), adaptive tunable Q wavelet transform, and rational

dilation wavelet transform (Taran et al., 2020), were employed

to investigate EEG signals in diverse clinical and non-clinical

contexts. These techniques were applied in studies involving

patients with conditions such as hypertension (El-Dahshan et al.,

2024), attention-deficit/hyperactivity disorder (Khare et al., 2023),

schizophrenia (Khare and Bajaj, 2021), and Alzheimer’s (Puri et al.,

2022). Apart from this, these advanced wavelet decomposition

methods found utility in the domain of emotion recognition

(Khare et al., 2024), motor imagery (Taran et al., 2020), and

automatic selection of tuning parameters for decomposing EEG

signals (Khare and Acharya, 2023).

Empirical mode decomposition is a data-driven and adaptive

technique that partitions the EEG signal into intrinsic mode

functions (IMFs) (Sweeney-Reed et al., 2018). IMFs represent the

different oscillatory components present in the signal, capturing

both stationary and non-stationary features (Carvalho et al., 2020).

By examining the amplitude, frequency, and energy distribution

of the IMFs, clinicians can identify abnormalities or distinctive

patterns that aid in diagnosis and prognosis. EMD has been

successfully applied to diverse neurological conditions, including

epilepsy, sleep disorders, and neurodegenerative diseases (Ren

et al., 2016), and other applications like emotion recognition

(Salankar et al., 2021), and brain-computer interface (Hsu et al.,

2020; Dash et al., 2022). Numerous expansions and variations of

EMD method have been suggested as a means to enhance its

applicability in EEG signal processing. One notable extension is

the ensemble empirical mode decomposition (EEMD) (Sweeney-

Reed et al., 2018). EEMD generates multiple realizations of the

EEG signal by adding white noise and applies EMD to each

realization. The resulting IMFs are then averaged to obtain a

more robust decomposition. Complementary ensemble empirical

mode decomposition (Yeh et al., 2010) decomposes the signal

into IMF components using both EMD and complementary

EMD and combines the corresponding IMFs to improve mode

separation. These extensions of the EMD method provide valuable

alternatives for EEG analysis, overcoming some of the limitations
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associated with traditional EMD and enabling more accurate

decomposition results. Furthermore, complete ensemble empirical

mode decomposition with adaptive noise (Jia et al., 2017) extends

EMD by utilizing a noise-assisted approach similar to EEMD and

adaptively adjusting the added noise to improve decomposition

accuracy. These extensions of the EMD method offer valuable

tools for analyzing EEG signals, facilitating the extraction of

relevant temporal and spectral information from complex and

non-stationary brain activity (Jia et al., 2017).

Variational mode decomposition (Dragomiretskiy and Zosso,

2013) introduces a variational principle to enhance mode

separation and has been developed recently. VMD incorporates a

regularization term that promotes smoothness in the decomposed

IMFs, leading to improved signal decomposition. This eliminates

the drawbacks of EMD like mode mixing, inability to cope with

noise, and recursive sifting in most methods that do not allow

backward error correction (Carvalho et al., 2020). VMD has been

applied for processing and interpretation of EEG for various

applications like epilepsy (Qin et al., 2023), seizure detection

(Mathew et al., 2023), emotion detection (Khare and Bajaj, 2020b;

Liu et al., 2023), ADHD (Khare et al., 2022), schizophrenia

(Siuly et al., 2020), Alzheimer’s disease diagnosis (Aslan, 2023),

drowsiness detection (Khare and Bajaj, 2020a), and sleep stage

classification (Che et al., 2023). In addition to processing EEG

signals, the VMD technique has been utilized in the analysis

of speech (Upadhyay and Pachori, 2015) and the detection of

glaucoma using fundus images (Maheshwari et al., 2017).

The examination of the literature indicates a gap in the

exploration of time-frequency-based analysis of EEG signals for

diagnosing and classifying patients with disorders of consciousness.

While variational mode decomposition has seen widespread

applications in various clinical and non-clinical domains, its

utilization in the context of DOC remains limited or non-

existent. VMD, particularly in the realm of EEG signals, has

been predominantly employed in studies related to epilepsy and

Alzheimer’s disease.

This study aims to address this gap through exploratory

analysis assessing the adaptive decomposition capabilities of

variational mode decomposition when integrated with machine-

learning models to classify patients with impaired consciousness.

The research also delves into the effectiveness of alternative

feature extraction and classification techniques for different

categories of disorders of consciousness. Additionally, it compares

the performance of VMD-derived features with those of the

conventional approaches based on frequency bands and raw EEG.

The overarching objective is to provide a supportive tool for

behavioral assessment methods and enhance the understanding

of the neurological conditions affecting individuals with disorders

of consciousness.

2 Methodology and data collection

2.1 Clinical EEG data acquisition protocol

The EEG recording was conducted at NIMHANS using the

EBNeuro Galileo NT Line 3.90 device equipped with EEG.NET

software, specifically the EEG Glant version. The procedure was

carried out under the supervision of an EEG technician. The

equipment utilized was a standard 32-channel system, inclusive of

the DC channel MK, with additional ECG and EKG channels. The

electrode placement during recording followed the international

10/20 system at a sampling rate of 256 Hz, with reference electrodes

placed on the left and right ear lobes (A1, A2), maintaining an

impedance below 5K Ohm. The steps followed for EEG recording

are as per the work (Raveendran et al., 2023).

2.2 Patients

Forty-five participants, aged 18 years and above, meeting the

inclusion/exclusion criteria for disorders of consciousness, were

enrolled in the study. Within the patient group, 15 individuals were

in a coma state, while 15 each were in MCS and UWS. The average

age of the participants was 42.95 years, comprising 24 males and 21

females. During the recording session, subjects were instructed to

assume a dorsal decubitus position and keep their eyes closed. Both

the healthy and patient cohorts underwent a recording duration of

30 min. The patient recruitment process involved a team of experts,

including neurologists and neuro-anesthetists. The focus was on

inpatients admitted toNeuroscience services, specifically neurology

wards and intensive care units, exhibiting consciousness disorders

due to various factors, both traumatic and non-traumatic. To

classify the recruited patients, their CRS-R and Glasgow coma scale

scores were calculated, aiding in determining their placement into

different categories of disorders of consciousness. The following

inclusion and exclusion criteria were followed during the patient

recruitment process:

2.2.1 Inclusion criteria
Adult patients, aged 18 years and above, who have been

diagnosed to be in coma, UWS, or MCS condition, as per the

guidelines provided by the American Academy of Neurology

were recruited for the study. The research also encompassed

patients with DOC arising from various underlying brain diseases,

including stroke, encephalitis, status epilepticus, and anoxia, as

well as both traumatic and non-traumatic causes. Patients or their

caregivers were required to provide informed consent to participate

in the study. The study included acute and chronic cases with

varying durations post-brain injury, where the acute cases lasted

for more than 7 days.

2.2.2 Exclusion criteria
The study excluded patients who met any of the following

criteria: those with medically unstable conditions that make

EEG recording impractical, individuals with progressive

neurodegenerative conditions, those with reversible and acute

causes of DOC with less than 7 days from the start of brain injury,

non-cooperative patients, and patients without informed consent

from the caregiver. Furthermore, individuals under the influence

of drugs were excluded from the study cohort. The recruitment

criteria further specified the inclusion of only those patients

who maintained stability for a consecutive three-day period with

consistent CRS profiles, and a commitment to a follow-up period
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of six months to ensure a more reliable and comprehensive dataset.

The detailed demographics of the recruited patients are listed in

Table 1.

2.3 EEG data pre-processing

The initial phase of signal pre-processing after data acquisition

involved the visual analysis of raw EEG data by skilled EEG

technicians at NIMHANS. Their primary objective was to identify

and flag artifactual epochs and problematic channels within each

signal. Epochs that exhibited significant levels of artifacts were

excluded from subsequent pre-processing procedures. The average

referencing step of preprocessing was followed by a bandpass filter

with a low cut-off at 0.1 Hz and a high cut-off at 45 Hz to eliminate

the powerline artifact at 50 Hz. Eye blink artifacts were mitigated

using independent component analysis. Since some channels were

unavailable in the EEG records of some coma patients; to maintain

uniformity in the data for further analysis, the number of channels

was reduced to 17 (F3, Fz, F4, F7, F8, Cz, C3, C4, T3, T4, T5,

T6, P3, Pz, P4, O1, and O2). The basic analysis of the resting

state EEG of DOC patients for the classification is performed as

reported in the previous work (Raveendran et al., 2023). The pre-

processing steps were carried out using Python on the Anaconda

Jupyter online platform.

3 Proposed approach

This paper proposes an exploratory study on how VMD can

be used as an analytical tool for the resting state EEG of DOC

patients. The performance of various classifiers is measured based

on features extracted from VMD modes. This performance is

then compared with those of the features extracted from different

frequency bands of EEG as well as raw EEG of the 17 channels. The

block diagram presented in Figure 1 depicts the proposed approach

and the different experiments conducted in graphical form.

3.1 Variational mode decomposition

Variational mode decomposition is a signal processing

algorithm designed to decompose a given signal into a finite

number of oscillatory modes, each characterized by its central

frequency, amplitude, and phase. These modes are extracted

through an iterative optimization process that seeks to minimize

the cross-term interference among the modes while preserving

their characteristics (Dragomiretskiy and Zosso, 2013). VMD can

be used to manage signal variability and artifacts by separating

the signal components that correspond to different sources of

information or noise. The advantages of VMD over other methods

in managing signal variability and artifacts are:

• VMD adapts to the signal and does not need any prior

knowledge of the signal or any a priori defined basis functions.

• VMD avoids the problem of modal mixing that occurs when a

single mode contains signals from different sources or scales.

This improves the accuracy and robustness of the signal

decomposition and artifact removal.

• VMD can be combined with other methods, such as blind

source separation, to further enhance the performance of

artifact removal.

At the same time, VMD also has certain limitations:

• It is dependent on two parameters, namely the number of

modes and the penalty factor, which affect the quality of the

decomposition and artifact removal. These parameters need

to be precisely chosen or optimized for each scenario and

application.

• VMD may not be able to handle non-stationary signals

with time-varying frequency or amplitude. This reduces the

effectiveness of VMD in handling signal variability and

artifacts in some cases.

The variational mode decomposition algorithm can be

summarized as follows:

3.1.1 Signal decomposition
Given a signal x(t), the VMD algorithm aims to find K

oscillatory modes uk(t) and corresponding central frequencies ωk

such that:

x(t) =

K
∑

k=1

uk(t) (1)

where k indexes the modes, and K is the desired number of modes.

3.1.2 Initialization
To start the iterative process, the algorithm requires an initial

estimate of the modes. This can be achieved using any method that

provides a reasonable initial approximation.

3.1.3 Optimization
The core of VMD lies in the optimization step, where it

refines the estimates of the modes and central frequencies. This

step involves solving an optimization problem to minimize a cost

function that encourages both spatial and spectral sparsity while

maintaining the fidelity of the signal reconstruction. The cost

function J is defined as:

J =

K
∑

k=1

∥

∥

∥

∥

∥

∂t

[(

δ(t)+
j

π t

)

∗ uk(t)

]

e−jωkt

∥

∥

∥

∥

∥

2

2

The minimization problem min(uk,ωk){J} subject to

Equation 1 is solved by finding the saddle point of augmented

Lagrangian L using alternate direction method of multipliers. This

is defined as,

L(uk,ωk, λ) = α

K
∑

k=1

∥

∥

∥

∥

∥

∂t

[(

δ(t)+
j

π t

)

∗ uk(t)

]

e−jωkt

∥

∥

∥

∥

∥

2
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TABLE 1 Demographics of the 45 DOC patients included in the study.

Etiology Age Gender DOC category

Male Female Coma UWS MCS

Acute disseminated encephalomyelitis 54 0 1 0 1 0

Aneurysmal intracranial hemorrhage 55 1 0 0 0 1

Autoimmune-CNS lupus 25 1 1 1 1 0

Bacterial meningitis 20 1 0 1 0 0

Cerebral venous thrombosis 49 1 2 0 0 3

Demyelination 31 1 0 0 0 1

Encephalopathy 46 5 3 1 5 2

Frontoparietal bleed 91 1 0 1 0 0

hypoxia 48 0 1 0 0 1

Hypoxic ischemic encephalopathy 27 1 2 1 2 0

Intracranial hemorrhage 54 2 1 0 1 2

Mass lesion 33 0 1 0 1 0

Meningioma 24 1 0 1 0 0

Meningoencephalitis 37 1 2 1 1 1

Metabolic/toxic encephalopathy 34 3 1 2 2 0

Stroke 69 2 2 2 0 2

Sub arachnoid hemorrhage 70 0 1 0 1 0

Traumatic brain injury 40 1 0 1 0 0

Tubercular meningitis 46 1 0 0 0 1

Tubercular meningitis with hydrocephalus 33 0 3 2 0 1

Vestibular schwannoma 57 1 0 1 0 0

FIGURE 1

Block diagram of the experiments conducted, illustrating the preprocessing steps, statistical feature extraction from EEG after three distinct initial
processings, and the four classifiers employed.
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where;

• x(t) is the original signal.

• uk represents the k-th mode.

• ‖ · ‖2 denotes the L2 norm.

• * denotes the convolution operator.

• λ and α are regularization parameters controlling the sparsity

and cross-term interference terms, respectively.

3.1.4 Mode update
After optimizing the cost function, the algorithm updates the

modes uk and central frequencies ωk to better fit the data. This

process continues iteratively until one of the criteria of relative

tolerance εr or absolute tolerance εa is met;

∑

k

‖un+1
k

(t)− unk(t)‖
2
2/‖u

n
k(t)‖

2
2 < εr (3)

∑

k

‖un+1
k

(t)− unk(t)‖
2
2 < εa (4)

3.1.5 Reconstruction
Once the iterations converge, the final decomposed modes and

their central frequencies are used to reconstruct the original signal.

The reconstructed signal x̂(t) is obtained by summing up all the

modes:

x̂(t) =

K
∑

k=1

uk(t)

3.2 EEG frequency band based approach

The EEG signal in general can be said to have five different

frequency bands. One of the primary frequency bands examined

in resting-state EEG analysis of DOC patients is the delta band

(0.5–4 Hz). Delta oscillations are typically associated with deep

sleep and are characterized by high-amplitude, slow-frequency

waves. In DOC patients, increased delta power during resting-

state EEG may suggest a profound impairment of consciousness,

resembling the patterns seen during deep non-REM sleep. Theta

band activity (4–8 Hz) is another crucial aspect of resting-state

EEG analysis in DOC patients. Theta waves are associated with

memory processes, attention, and cognitive engagement. Alpha

band (8–13 Hz) activity plays a pivotal role in resting-state EEG

analysis, as it is linked to the brain’s idling state during relaxation

and wakefulness with closed eyes. The presence of alpha activity,

particularly over posterior regions of the brain, suggests a degree

of preserved cortical functioning. The beta band (13–30 Hz)

in resting-state EEG analysis is associated with active thinking,

problem-solving, and alertness. The presence of beta activity in

DOC patients, especially over frontal regions, may suggest residual

cognitive processing. The gamma band (30–40 Hz) oscillations

are associated with information binding, sensory integration, and

conscious perception. The presence of gamma activity, particularly

over parietal and frontal regions, may indicate the potential for

higher-level cognitive processing and awareness (Ballanti et al.,

2022).

The frequency bands were extracted using the bandpass filters

with a specific range of bands.

4 Feature extraction

Four statistical features, namely spectral entropy (ES), sample

entropy (ESam), skewness (Sk), and kurtosis (K) were considered

for the study. Sample entropy and spectral entropy are two key

concepts in complexity analysis and signal processing. The features

are extracted from each mode for the VMD-based approach, from

each frequency band for the frequency band-based approach, and

from raw EEG of each channel to understand the feature variation

in each group of patients.

4.1 Spectral entropy

Spectral entropy (ES), a normalized adaptation of Shannon’s

entropy, utilizes the amplitude components of the power spectrum

derived from time series data to evaluate entropy (Gibson, 1994).

It measures the complexity or irregularity of the frequency content

within a specific frequency band of the EEG signal. To calculate

ES, one multiplies the normalized power within each frequency

component by the logarithm of that power and then negates the

product. The formula for spectral entropy as per (Schmierer et al.,

2022) is represented as:

ES = −
∑

(P(f ) · log(P(f ))

Higher spectral entropy values in certain frequency bands

indicate a more conscious state, while lower values suggest a

diminished level of consciousness.

4.2 Sample entropy

Sample entropy (ESam) is defined as a metric for assessing

the intricacy of time series data. This metric is a modified

version of approximate entropy and offers several advantages

over its predecessor. Unlike approximate entropy, sample entropy

is not contingent on the length of the time series, is devoid

of self-counting, and boasts straightforward implementation.

Mathematically, sample entropy is expressed as the negative natural

logarithm of the conditional probability that two sequences, each

similar for m data points, remain similar at the next point

(m+1). Notably, self-matches are not excluded in this computation.

Furthermore, sample entropy is known for preserving a sense of

relative consistency, and its key parameters, m (representing the

run length of the vector under analysis), r (the tolerance window),

and N (the total number of data points), play a pivotal role in
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determining its statistical properties.

ESam(m, r,N) = −log
A

B

where A = C(m+ 1, r), B = C(m, r)

4.3 Skewness

Skewness (Sk) is a higher-order moment, which measures the

asymmetry of a probability distribution, indicating whether the

distribution is skewed to the left or right. In the context of EEG

signals, skewness reflects the underlying asymmetry or imbalance

in the neural activity within different frequency components (Zhao

et al., 2023). If the input EEG data is distributed more towards

the left of the mean point, it has a positive skewness value. If it is

distributed more to the right side of the mean, the skewness value

is negative. Skewness is defined as,

Sk =
E[(x(n)− µ)3]

σ 3
(5)

where E is the expected value and σ is the standard deviation. High

skewness values in certain frequency bands indicate an imbalance

or abnormality in neural activity, suggesting a diminished level

of consciousness. Conversely, lower skewness values indicate a

more symmetrical distribution of activity, associated with a more

conscious state (as shown in Equation 5).

4.4 Kurtosis

Kurtosis (K) measures the “peakedness” or “tailedness” of a

probability distribution, providing insights into the shape and

distribution of the underlying neural activity within different

frequency components (Zhao et al., 2023). In the context of EEG

signals, kurtosis reflects the deviation of the distribution from a

Gaussian distribution. High kurtosis values indicate a more peaked

or heavy-tailed distribution, suggesting the presence of transient

changes in neural activity. On the other hand, low kurtosis values

indicate a flatter distribution, implying amore stable and consistent

pattern of neural activity. Kurtosis within each VMD mode is

computed as,

K =
E[(x(n)− µ)4]

[E[(x(n)− µ)2]]2
(6)

Higher kurtosis values in certain frequency bands may indicate

the presence of irregular or non-stationary activity, which could be

associated with a diminished level of consciousness. Lower kurtosis

values, indicating a more stable and consistent distribution (as

shown in Equation 6), may be indicative of a more conscious state

(Khoshnevis and Sankar, 2019).

5 Frequency band analysis vs. VMD
modes

Analyzing resting-state EEG signals in patients with disorders

of consciousness using traditional EEG frequency bands

and variational mode decomposition modes reveals distinct

perspectives on brain activity. It can offer complementary

insights into the neural dynamics underlying these complex

conditions. Traditional EEG frequency bands have long been

used to characterize the spectral content of EEG signals. These

bands can provide valuable information about the patient’s level

of consciousness and cognitive functioning. On the other hand,

variational mode decomposition is a novel signal-processing

technique that is mainly used for non-stationary signals like

EEG. Comparing the two approaches, traditional EEG frequency

bands provide a well-established framework for categorizing brain

activity based on frequency ranges. However, they oversimplify the

complexity of resting-state EEG signals in DOC patients, as they

assume predefined frequency ranges that do not always capture the

full spectrum of neural dynamics. In contrast, VMD modes offer

a more flexible and data-driven approach, allowing researchers

to uncover hidden components that traditional frequency bands

might miss.

6 Choice of machine learning models

For classifying the DOC cohort based on VMD mode-based,

frequency band-based, and raw EEG-based features, two types

of classifications are carried out. In one, binary classification is

performed between the UWS and MCS categories. In the other,

multi-class classification is carried out among the coma, UWS, and

MCS categories. For binary classification, the dataset included 30

patients, while for multiclass classification, the dataset comprised

45 patients. The choice of specific models for a machine learning

task needs to take into consideration the nature of the data and

the study’s objectives. Since obtaining EEG data on DOC patients

is a difficult task, there are no publicly available databases with a

sufficiently high number of patients to be able to use sophisticated

classifiers such as end-to-end deep learning-based models. So, we

take resort to conventional machine learning models. The classifier

model we are looking for needs to handle only two or three classes.

We intended to employ multiple classifiers (Duda et al., 2021)

in order to compare their performances on the different approaches

and identify the best of them for the task at hand. Decision trees

(DT) are appropriate for classification problems where the training

data may contain errors or noise, and thus we chose them as one

possible classifier. Whether one needs to perform binary or multi-

class classification, the K-nearest neighbor algorithm (KNN) works

well. Thus KNN was selected as another classifier. Support vector

machine (SVM) is a powerful machine learning algorithm that has

been used for a variety of classification tasks. SVMs are efficient

and adaptable since they can handle high-dimensional data and

nonlinear relationships. SVM is very effective since it finds the

maximum separating hyperplane between the different classes in

the feature space. So, SVM is selected as the third classifier. An

ensemble bagged tree (EBT) classifier combines the predictions of

many decision trees that are trained on random subsets of the data

and features, which reduces the effects of overfitting and improves

generalization. Thus, we included EBT also as a classifier. Thus,

four different classifiers are employed and the performance of

the classifiers is assessed using various metrics, namely accuracy,

precision, recall, and F1-score.
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7 Results

The research studies and compares the performances of

features obtained from five VMD modes, EEG frequency bands

(delta, theta, alpha, beta, and gamma), and the 17 channels chosen

for analysis. The extracted features consist of spectral entropy,

sample entropy, kurtosis, and skewness. Python was utilized for

data analysis and classification. Before extracting VMD modes and

frequency bands, the variations in features between groups were

scrutinized for each channel. Subsequently, the classification of

FIGURE 2

Mean sample entropy values (y-axis) of each group of patients computed from each of the 17 raw EEG channels (x-axis).

FIGURE 3

Mean spectral entropy values (y-axis) of each group of patients extracted from each of the 17 channels (x-axis) of raw EEG.

FIGURE 4

Mean kurtosis values (y-axis) of each group of patients derived from each of the 17 raw EEG channels (x-axis).
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FIGURE 5

Mean skewness values (y-axis) of each group of patients derived from each of the 17 channels (x-axis) of raw EEG.

disorders of consciousness groups, covering both binary and multi-

class scenarios, was carried out. A 10-fold cross-validation was

performed to prevent overfitting.

7.1 Choice of machine learning models

KNN, SVM with linear kernel, DT, and EBT classifiers were

considered for both binary and multi-class classifications.

7.2 Approach 1: features derived from the
raw EEG

Features extracted from the preprocessed EEG of all the 17

channels (a total of 17 × 4 = 68 features) are analyzed to

observe the variations of each feature between the 3 patient

groups. It was observed that the MCS patients had more

complex EEG signals indicating better awareness and wakefulness

than the coma and UWS groups. Figures 2, 3 illustrate the

variation in the mean values of the sample entropy and spectral

entropy features among the three patient groups for each

channel. Similarly, the variations in the mean values of kurtosis

and skewness are displayed in Figures 4, 5, respectively. The

features extracted from each channel were then considered as

input to the various classifiers and both binary and multi-

class classification were performed. Table 2 shows the binary

classification outcomes between UWS and MCS, leveraging

features extracted from the chosen 17 EEG channels. In this

analysis, Li.SVM emerges as a standout, achieving an accuracy

of 73.3%. It also demonstrates higher precision, recall, and F1

scores, attesting to its better performance in identifying UWS and

MCS states. Table 3 showcases the outcomes of the multi-class

classification endeavor between coma, UWS, and MCS patients.

Ensemble of bagged trees and KNN perform better than the

other two classifiers but achieve accuracy values of 45.5% and

46% only.

TABLE 2 Binary (UWS vs. MCS) classification results (in %) using 10-fold

cross-validation with all four features directly extracted from the 17

channels of the raw EEG.

Classifier Accuracy Precision Recall F1 score

KNN 56.7 45 55 49.5

Li.SVM 73.3 65.8 72.5 69

DT 53.3 47.5 52.5 49.9

EBT 60 55.8 62.5 59

Number of patients: 30.

TABLE 3 Multi-class (Coma vs. UWS vs. MCS) classification results (in %)

using 10-fold cross-validation with all the four features extracted from

the 17 channels of the raw EEG.

Classifier Accuracy Precision Recall F1 score

KNN 46 37.2 48.3 42

Li.SVM 35.5 28.3 40 33.1

DT 40 31.8 41.7 36.1

EBT 45.5 40.7 48.3 44.2

Number of patients: 45. The accuracy achieved with every classifier is below par.

7.3 Approach 2: features derived from the
frequency bands

The five distinct frequency bands of the EEG signal were

derived from the preprocessed signals employing a zero-phase,

non-causal FIR bandpass filter. The filter utilized a windowed

time-domain design method (firwin) with lower and upper cut-

off frequencies corresponding to various EEG bands. Specifically,

a Hamming window with a 0.0194 passband ripple and 53 dB

stopband attenuation was employed. Subsequently, the same four

features were extracted from each of these frequency bands (a total

of 17 channels× 5 bands× 4 = 340 features) and utilized as inputs

to the classifiers.

Table 4 shows the performance of the frequency band derived

features in the binary classification between UWS and MCS. For

the binary classification, KNN achieved a low accuracy of 36.7%. In
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TABLE 4 Binary (UWS vs. MCS) classification results (in %) using 10-fold

cross-validation with the entire set of frequency band-based features.

Classifier Accuracy Precision Recall F1 score

KNN 36.7 35.8 42.5 38.5

Li.SVM 66.7 58.3 75 65.6

DT 30 26.7 30 28.3

EBT 36.7 25.8 37.5 30.6

Number of patients: 30. The performance is inadequate with all the classifiers.

TABLE 5 Multi-class (Coma vs. UWS vs. MCS) classification results (in %)

using 10-fold cross-validation for the entire set of frequency

band-derived features.

Classifier Accuracy Precision Recall F1 score

KNN 34.5 32.5 35 33.7

Li.SVM 45 36.1 41.7 38.7

DT 43.5 36.1 43.3 39.4

EBT 42.5 34.2 45 38.9

Number of patients: 45. The performance is unsatisfactory with all the classifiers.

contrast, Li.SVM demonstrated higher accuracy, reaching 66.7%,

suggesting a more accurate classification than KNN. Decision tree

and EBT achieved lower performance with accuracies of 30%

and 36.7%, respectively. KNN exhibited precision, recall, and F1

scores of 35.8%, 42.5%, and 38.5%, respectively. These metrics

show KNN’s poor ability in making positive predictions, identify

actual positives, and achieve a balanced measure of precision

and recall. Li.SVM demonstrated somewhat better performance,

with precision, recall, and F1 scores of 58.3%, 75%, and 65.6%,

respectively. DT demonstrated poor performance across precision,

recall, and F1 scores, with values of 26.7%, 30%, and 28.3%,

respectively. EBT showcased precision, recall, and F1 scores of

25.8%, 37.5%, and 30.6%.

Table 5 lists the performance of the four classifiers in the multi-

class classification task between coma, UWS, and MCS patients.

Support vector machine with linear kernel performed better in

distinguishing among coma, UWS, and MCS, than the other three

classifiers, but achieved a poor accuracy of 45% only.

7.4 Approach 3: features derived from VMD
modes

In this approach, the same four features were extracted from

each of 5 VMD modes (a total of 17 channels × 5 IMFs ×

4 = 340 features). The penalty factor α was considered 2,000,

noise-tolerance (tau) was taken as 0, omegas were initialized

uniformly as 1. VMDmodes were extracted using the Equations 2–

4. These features were given as input to the classifiers. Table 6

lists the binary classification performance of the four classifiers

for VMD features. K-nearest neighbor classifier correctly classified

60% of the instances from UWS and MCS groups. Its precision

and recall were 44.2% and 57.5%, respectively, indicating that it

possessed comparatively less capability to identify both positive

and negative instances. The F1 score, which combines precision

and recall, was 50%. Support vector machine classifier with linear

kernel performed with an accuracy of 80%. Decision tree classifier

TABLE 6 Binary (UWS vs. MCS) classification results (in %) using 10-fold

cross-validation employing all the VMD-based features.

Classifier Accuracy Precision Recall F1 score

KNN 60 44.2 57.5 50

Li.SVM 80 77.5 82.5 79.9

DT 63.3 62.5 67.5 64.9

EBT 83.3 84.2 87.5 85.8

Number of patients: 30. Ensemble bagged tree performs the best with VMD-based features.

The bold values indicate the performance obtained by the proposed VMD approach and

indicating EBT classifier combined with the proposed approach gives better performance than

other classifiers.

TABLE 7 Multi-class (Coma vs. UWS vs. MCS) classification results (in %)

using 10-fold cross-validation employing all the VMD-based features.

Classifier Accuracy Precision Recall F1 score

KNN 46 32.3 45 37.6

Li.SVM 57 46.9 56.7 51.3

DT 73.5 67.2 73.3 70.1

EBT 76 78.9 78.3 78.6

Number of patients: 45. Ensemble bagged tree performs the best with VMD-based features.

The bold values indicate the performance obtained by the proposed VMD approach and

indicating EBT classifier combined with the proposed approach gives better performance than

other classifiers.

obtained an accuracy of 63.3%. EBT classifier achieved the highest

accuracy of 83.3% for 2-group classification, indicating a high

percentage of correct classifications. It showed 84.2% precision,

87.5% recall, and an F1-score of 85.8%.

Table 7 shows the multiclass performance of various classifiers

for features derived from VMD. KNN showed only 46% accuracy

with a precision and recall of 32.3% and 45%, respectively. Support

vector machine classifier with linear kernel performed with an

accuracy of 57%. Decision tree classifier obtained a better accuracy

of 73.5%, and a precision of 67.2%, and a recall of 73.3%, showing

a good ability to correctly identify positive instances. The F1

score was 70.1%, suggesting a balanced performance. EBT classifier

achieved the highest accuracy of 76%. It had a precision of

78.9%, suggesting a low false positive rate, and a recall of 78.3%,

implying a good ability to identify positive instances for 3-group

classification. The F1 score was 78.6%, indicating a balanced and

better performance.

7.5 Performance comparison between the
three approaches

Table 8 lists the improvement in performance with VMD-

derived features over the ones derived from the frequency band

and raw EEG approaches. Except in the case of KNN multiclass

classifier, there is increase in accuracy with VMD-based features

over the other two approaches with all the classifiers. With the

multiclass classification using EBT classifier, there is a relative

improvement of 78.8% in accuracy from the value of 42.5%

obtained with frequency band derived features to 76% with

VMD-derived features. Similarly, the binary classification accuracy

increases from 36.7% to 83.3%, which is a relative improvement

of 127%.
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TABLE 8 Comparison of percentage increase in accuracy of VMD-derived features over frequency band-derived (FB) and raw EEG-derived (EEG)

features, when all the features are employed in each of the approaches.

Multiclass classification Binary classification

Classifier FB-features Raw EEG-features FB-features Raw EEG-features

KNN 33.3 0 63.5 5.8

Li.SVM 26.7 60.6 19.9 9.1

DT 69 83.8 111 18.8

EBT 78.8 67.0 127 38.8

8 Statistical analysis: selection of
Kruskal-Wallis test

The statistical analysis of the data was conducted using

Kruskal-Wallis test, which was selected based on the following

considerations. It is a non-parametric technique, which compares

the medians of two or more independent groups (Clark et al.,

2023). It is essentially a rank-based test and can be used

when the assumptions of one-way ANOVA are not met,

particularly when the data does not follow a normal distribution.

The following are some of the merits of this test, which

make it suitable to handle the complexity and of the EEG

signal:

• Non-parametric: This test does not presume Gaussian

distribution of the analyzed data, making it a preferred choice

for skewed or ordinal data.

• Robust to outliers: Compared to parametric tests,

Kruskal-Wallis test is less sensitive to outliers since

it utilizes the ranks of the data and not their

actual values.

• Versatility: It can be applied to more than two independent

groups. Thus, it is more versatile than the two-sample Mann-

Whitney U test.

The above properties of Kruskal-Wallis test make it particularly

suitable for EEG data, which often exhibits non-normal

distributions and high variability. However, while it tells us

whether there is a statistically significant difference between

the groups, it does not pinpoint where this distinctness occurs.

For the latter, post-hoc tests are needed. Further, it presumes

that the distributions of the groups are similar in shape. If this

assumption is not valid, the results may be questionable. In our

case, we use this test to compare the 3 groups of coma, UWS, and

MCS. The examination was carried out for every feature derived

from the raw EEG approach, frequency bands-based approach,

and the VMD-based approach employing a significance level of

p < 0.05. Following the Kruskal-Wallis test, Dunn’s post-hoc

method was employed to compare multiple groups. The subset

of features that showed a significance level of p < 0.05 were

selected in each of the three approaches to investigate whether

they can lead to improved accuracies. Thus, another round of

binary and multiclass classifications was conducted using 10-fold

cross-validation.

8.1 Clinical implications of correlations

The correlation coefficients of the significant feature-electrode

combinations extracted from the raw EEG approach, frequency

band-based approach, and VMD approach with CRS-R and GCS

scores were estimated using the Spearman Rank correlation

method. The correlation coefficients of each of the chosen

electrode-feature combinations for the different approaches are

shown in Figures 6–11. It can be seen that feature selection is

effective in that most of the chosen features have correlation

coefficients with absolute values varying between 0.2 and 0.5.

The results obtained for binary and multiclass classification

using the reduced set of chosen features are shown for

all the approaches in Tables 9, 10, respectively. The results

showed that the performance of the classifiers increased when

only significant features were considered for classification. The

utilization of significant features obtained using Kruskal-Wallis

test in classification resulted in enhanced accuracy for all the

approaches. The performance of the EBT classifier in the VMD-

based approach saw an improvement from 83.3% to 86.7% in

effectively distinguishing between UWS and MCS. For multiclass

classification using EBT in VMD based approach, the performance

increased from 76% to 80.5%with precision and recall of 81.1% and

81.7%. The F1 score improved from 78.6% to 81.4%.

EEG being a complex signal, absolute values of correlation of

above 0.2 imply that the corresponding EEG-derived features have

the potential to indicate improvement in the clinical condition of

the patients. So, in addition to the assessment by the therapist, we

could explore the direct use of these features as possible indicators

of the clinical condition of the patients, and their credibility

for assessing the improvement in the patients as an outcome of

the treatment strategy determined. If successful, such EEG-based

features will be valuable additions for objective clinical evaluation

of the DOC patients.

8.2 Improvement in the performance of
the classifiers due to feature selection

Table 11 shows the advantage gained by the rejection of VMD-

based features which are not significant as determined by the

Kruskal-Wallis test. The Table reveals that the accuracy of all

the classifiers increases due to feature selection, except DT in

the multiclass scenario, and SVM in the binary scenario. By
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FIGURE 6

Spearman rank correlation coe�cients (y-axis) between the CRS-R scores of 45 patients and each of the chosen feature-electrode combinations
(with significance p < 0.05) amongst the 4 features extracted from each of the 17 EEG channels (x-axis) of raw EEG.

FIGURE 7

Spearman rank correlation coe�cients (y-axis) between the GCS scores of 45 patients and each of the chosen feature-electrode combinations (with
significance p < 0.05) amongst the 4 features extracted from each of the 17 EEG channels (x-axis).

taking the performance of the EBT classifier beyond 80% in

multiclass classification, this establishes the importance of feature

selection in such machine learning problems. The inclusion of

features that are not statistically significant confuses the classifier

during training, leading to lower recognition performance. Thus,

eliminating such features has the potential to improve the model’s

ability to generalize and perform equally well on new, unseen data.

8.3 Performance comparison between the
three approaches post feature selection

Table 12 compares the performance of the three approaches

after feature selection based on the significance scores given

by the Kruskal-Wallis test. Once again, the accuracy achieved

by VMD-based features is higher than those of the other two

approaches, irrespective of the classifier employed. Thus, even

with the best subset of features chosen for each approach, VMD-

derived features achieved a relative improvement of 50.5% and

61% in performance over frequency-based and raw-EEG-based

features, respectively, in the multiclass classification scenario. For

the binary classification scenario, the corresponding figures are 13%

and 62.7%, respectively.

9 Discussion

The proposed work investigated the application of variational

mode decomposition as the initial processing method before

feature extraction for resting state EEG signals of DOC patients.

It aimed to apply machine learning models for distinguishing DOC

patients without relying solely on behavioral assessment methods.
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FIGURE 8

Spearman rank correlation coe�cients (y-axis) between the CRS-R scores of 45 patients and each of the chosen feature-electrode combinations
(with significance p < 0.05) amongst the features extracted from each of the five frequency bands of the 17 channels (x-axis).

FIGURE 9

Spearman rank correlation coe�cients (y-axis) between the GCS scores of 45 patients and each of the chosen feature-electrode combinations (with
significance p < 0.05) amongst the features extracted from each of the five frequency bands of the 17 channels (x-axis).

It also aimed to compare the VMD-based features with

those derived from commonly used frequency bands. The study

showed that VMD-derived features gave better results. Tables 8,

12 present the percentage increase in accuracy achieved by the

VMD-derived features over those derived from both the frequency

bands and the raw EEG signals with all the features extracted

and with significant features obtained using statistical analysis

test, respectively.

Table 13 compares the performance of various existing works

in EEG-based classification of DOC classes, each employing

distinct features and classifiers. The studies evaluated include

those by Höller et al. (2014), Sitt et al. (2014), Chennu et al.

(2017), Engemann et al. (2018), and Di Gregorio et al. (2022).

Höller et al. (2014) focused on directed transfer function features,

employing Li.SVM classifiers for differentiating between patients

in MCS and UWS states with high accuracy, reaching 82% for

MCS vs. UWS and 92% for healthy controls (HC) vs. MCS.

Sitt et al. (2014) utilized a combination of weighted symbolic

mutual information (wSMI), permutation entropy (PE), spectral

entropy, and KCC features with SVM classifiers, achieving an

accuracy of 89% for the binary classification of MCS and UWS

patients. The study provided a detailed description of various

features extracted from the EEG signals. Engemann et al. (2018)

employed features such as normalized alpha-band power, PE,

wSMI, and complexity measures to discriminate between MCS

and UWS patients, achieving an unspecified accuracy with SVM

classifiers.

Chennu et al. (2017) utilized spectral power, debiased weighted

phase lag index (dwPLI), and graph-theoretic metrics with an

Rb.SVM classifier to distinguish between different states (UWS,

MCS–, MCS+, and controls), achieving an accuracy of 79%.

Di Gregorio et al. (2022) incorporated features like mutual

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2024.1340528
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Raveendran et al. 10.3389/fnins.2024.1340528

FIGURE 10

Spearman rank correlation coe�cients (y-axis) between the CRS-R scores of 45 patients and each of the chosen feature-electrode combinations
(with significance p < 0.05) amongst the features extracted from each of the five VMD modes of the 17 channels (x-axis).

FIGURE 11

Spearman rank correlation coe�cients (y-axis) between the GCS scores of 45 patients and each of the chosen feature-electrode combinations (with
significance p < 0.05) amongst the features extracted from each of the five VMD modes of the 17 channels (x-axis).

information (MI), dominant frequency, and partial coherence

(PCoh) with LDA classifiers to differentiate between traumatic

brain injury (TBI) and non-TBI patients, achieving varying

accuracies for different TBI subgroups; without specifically

classifying the DOC categories. All the above studies considered

only binary classification between MCS and UWS, and coma

patients were not included in any of the studies.

The proposed method in this study employs VMD mode-

based features and an ensemble bagged tree classifier for classifying

coma, UWS, and MCS patients. The results showcase a promising

accuracy of 86.7% in distinguishing between UWS and MCS states

and 80.5% accuracy in distinguishing among coma, UWS, and

MCS states. This suggests that the VMD mode-based features, in

conjunction with the EBT classifier, offer competitive performance

compared to existing methods, especially in the challenging task of

discriminating among different levels of consciousness in patients.

When compared to the frequency band-based features, an

advantage of VMD-based features of resting-state EEG of DOC

patients is its ability to capture transients and non-stationarities.

Patients with DOC often exhibit intermittent moments of

consciousness or changes in their neurological state. Traditional

frequency bands might struggle to capture these nuanced shifts,

whereas VMD can identify and isolate these dynamic changes

in neural activity. This capability is particularly relevant in

clinical contexts, where monitoring the patient’s responsiveness

and potential for recovery is of utmost importance. Furthermore,

VMD can provide enhanced spatial localization of neural activity by

decomposing EEG signals into spatially independent modes. This

spatial information can be invaluable for pinpointing the source of

abnormal brain activity in DOC patients and potentially guiding

targeted interventions such as neuromodulation or neurofeedback.

Another advantage of VMD is its adaptability to various EEG data
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TABLE 9 Binary (UWS vs. MCS) classification results (in %) using 10-fold cross-validation with significant features extracted using Kruskal-Wallis test for

the 3 di�erent approaches.

Binary classification

Classifier Accuracy Precision Recall F1 score

Approach 1: features derived from

the raw EEG

KNN 56.7 52.5 57.5 54.9

Li.SVM 50 49.2 52.5 50.8

DT 43.3 40.8 47.5 43.9

EBT 53.3 50 60 54.5

Approach 2: features derived from

the frequency bands

KNN 70 67.5 67.5 67.5

Li.SVM 46.7 35.8 47.5 40.8

DT 56.7 39.2 47.5 43

EBT 76.7 70.8 77.5 74

Approach 3: features derived from

VMDmodes

KNN 73.3 60.8 72.5 66.1

Li.SVM 80 68.3 75 71.5

DT 66.7 63.3 65 64.1

EBT 86.7 83.3 85 84.1

Number of patients: 30. The bold values indicate the performance obtained by the proposed VMD approach and indicating EBT classifier combined with the proposed approach gives better

performance than other classifiers.

TABLE 10 Multi-class (Coma vs. UWS vs. MCS) classification results (in %) using 10-fold cross-validation with significant features extracted using

Kruskal-Wallis test for the 3 di�erent approaches.

Multiclass classification

Classifier Accuracy Precision Recall F1 score

Approach 1: features derived from

the raw EEG

KNN 44 37.2 45 40.7

Li.SVM 32.5 21.6 36.7 27.2

DT 55 50.3 56.7 53.3

EBT 50 45.3 51.7 48.3

Approach 2: features derived from

the frequency bands

KNN 42 33.9 45 38.7

Li.SVM 49 38 53.3 44.4

DT 52 42.8 55 48.1

EBT 53.5 44.7 56.7 50

Approach 3: features derived from

VMDmodes

KNN 61 53.1 58.3 55.6

Li.SVM 70.5 67.8 75 71.2

DT 57.5 50 58.3 53.8

EBT 80.5 81.1 81.7 81.4

Number of patients: 45. The bold values indicate the performance obtained by the proposed VMD approach and indicating EBT classifier combined with the proposed approach gives better

performance than other classifiers.

acquisition setups and patient-specific characteristics. Since VMD

does not rely on predefined frequency bands, it can be applied

across different EEG protocols and it adapts to the individual

patient’s unique neural dynamics. This flexibility makes VMD

a promising tool for the classification of DOC. The ability of

the VMD method to analyze complex EEG signals of various

conditions (medical and non-medical) has been explored by

researchers and found that it performed better than other signal

processing methods. From the literature review, it was found that

VMD has not been applied for analyzing DOC patients. Thus

this study fills up the gap in the literature on DOC analysis. It is

important to note that while VMD offers numerous advantages,

it is not a replacement for traditional EEG frequency band

analysis. Instead, these two approaches can complement each

other. Researchers and clinicians could use traditional frequency

bands to assess the patient’s overall level of consciousness and
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TABLE 11 Improvement in accuracy (%) of di�erent classifiers due to the selection of features shown to be statistically significant by Kruskal-Wallis test:

VMD-derived features.

Multiclass classification Binary classification

Classifier All features Sel. features IA All features Sel. features IA

KNN 46.0 61.0 15.0 60.0 73.3 13.3

Li.SVM 57.0 70.5 13.5 80.0 80.0 0

DT 73.5 57.5 -16.0 63.3 66.7 3.4

EBT 76.0 80.5 4.5 83.3 86.7 3.4

IA, absolute improvement in accuracy.

TABLE 12 Comparison of percentage increase in accuracy of VMD over frequency band-derived (FB) and raw EEG-derived (EEG) features after feature

selection based on Kruskal Wallis test.

Multiclass classification Binary classification

Classifier FB-features Raw EEG-features FB-features Raw EEG-features

KNN 45.2 38.6 4.7 29.3

Li.SVM 43.9 116.9 71.3 60

DT 10.6 4.5 17.6 54

EBT 50.5 61 13 62.7

TABLE 13 Comparison of performance with existing work.

References Features No. of subjects Classifier Accuracy (%) Precision (%)

Höller et al. (2014) Directed transfer function

generalized partial

directed coherence

partial coherence

MCS 22, UWS 27,

Controls 23

Li.SVM MCS vs. UWS: 82 -

HC vs. MCS: 92 -

HC vs. UWS: 92.6 -

Sitt et al. (2014) wSMI, PE, SpecE, KCC MCS 68, UWS 75 SVM 89 -

Engemann et al. (2015) Normalized alpha-band

power, PE, wSMI,

complexity measure

MCS 69, UWS 76 SVM - -

Chennu et al. (2017) Spectral power, dwPLI,

graph-theoretic metrics

UWS 23, MCS- 17, MCS

+ 49, controls 26

Rb.SVM 79 -

Di Gregorio et al. (2022) Dominant frequency,

PCoh MI, PCoh

DOC 33 LDA TBI: 80 77.7

Non-TBI: 83.3 85.7

Proposed Method

(features selected by

Kruskal-Wallis test)

VMDmode based

features: kurtosis,

skewness, spectral

entropy, sample entropy

Coma 15, UWS 15, MCS

15

Ensemble bagged tree UWS vs. MCS: 86.7 83.3

Coma vs. UWS vs. MCS:

80.5

81.1

The bold values indicate the performance obtained by the proposed VMD approach and indicating EBT classifier combined with the proposed approach gives better performance than other

classifiers. HC, healthy controls; wSMI, weighted symbolic mutual information; PE, permutation entropy; KCC, Kolmogorov Chaitin complexity; dwPLI, debiased weighted phase lag index;

MI, mutual information; PCoh, partial coherence; TBI, traumatic brain injury.

cognitive functioning, while VMD can provide a dynamic picture

of neural activity.

9.1 Implications of the findings for clinical
practice and future research

Since the results we have obtained are the best in the literature

for the 3-class classification problem, our approach is encouraging.

The reliability of the performance of the model must be established

by using it in a clinical setup, while simultaneously collecting

more patient data. This will be attempted in NIMHANS, Bangalore

so that the effectiveness of the model on new patients can be

studied, leading to improvement of the model over time. Better

classification of the nature of DOC will definitely lead to better

treatment strategies. However, more comprehensive data must

be collected that includes comparable number of patients from

different aetiologies, and other features can be experimented with
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to enhance the performance much further. It will be ideal if

different clinical groups working across different countries come

together and create a master database of a significant number of

patients covering the various causes of DOC. This will lead to

more coordinated and effective research and we can expect that

this will lead to a classification scheme that performs better on new,

unseen data.

Further, better classification will also lead to better assessment

of treatment strategies, since if a UWS patient improves faster and

becomes MCS, which is accurately reflected by the classifier model,

it will validate both the model and the treatment strategy.

9.2 Limitations of our work

However, the challenges in utilizing VMD for EEG signal

analysis arise from the necessity to choose parameters, such

as the number of modes and regularization parameters. In the

study, the number of modes has been selected as 5 based on

literature which is a limitation of this study. Inaccurate parameter

selection may yield decomposition results that are not reliable.

Furthermore, VMD presupposes that the original signal is a

linear combination of modes with distinct frequency components.

In the context of EEG analysis, VMD demonstrates heightened

computational complexity, especially for lengthier EEG signal

recordings or datasets with high dimensions. This increased

complexity can render the analysis time-consuming, restricting its

real-time applicability and posing challenges for large-scale studies.

9.2.1 E�ect of sample size and distribution on the
validity of results

The effect of size and distribution of samples on the reliability

of the findings of machine learning models is an important topic in

machine learning research (Rajput et al., 2023). Below, we give an

overview of this issue.

• How the data is balanced across different classes and how it

is split into training, validation, and testing sets impacts the

acceptability of the models concerning their evaluation, bias,

and variance.

• If the model is too simple and does not fully capture

the underlying structure of the data, we say that sample

distribution is poor, resulting in high bias and low variance.

• If the model is trained and tested on representative and diverse

samples of the data, we say that the sample distribution is

good, ensuring low bias, and low variance.

• The number of data points used to train and test a machine

learning model impacts its validity in terms of accuracy,

reliability, and generalization.

• A low sample size may lead to overfitting, which implies that

the model learns the patterns specific to the training data

including any noise present, and hence may fail to do well on

new data.

• A high sample size may increase the robustness and

classification accuracy of the model; however, it may not

improve significantly after a certain size, depending on the

variability, and complexity of the data.

• Various validation methods, namely k-fold cross-validation,

nested cross-validation, and train/test split, are used to

determine the model’s performance on unseen data and avoid

both underfitting and overfitting.

Obtaining an equal number of coma patients and ensuring the

hemodynamic stability of DOC patients proved to be challenging.

The reproducibility and generalizability of findings hinge on the

rigor of inclusion/exclusion criteria, the behavioral scores assigned

to patients, and the processing steps employed during analysis.

Notably, the outcome analysis may have been influenced by

recruitment bias stemming from difficulties in conducting EEGs

within the ICU setting, leading to the inclusion of a more diverse

patient population.

10 Conclusion

This paper presents an exploratory study on the application

of VMD for classifying patients with disorders of consciousness

into different categories, namely coma, UWS, and MCS. In

the proposed approach, four features namely sample entropy,

spectral entropy, kurtosis, and skewness were derived from three

distinctly processed EEG signals. The analysis was performed

on the dataset collected from NIMHANS. The results showed

that VMD-derived features distinguished the three classes more

effectively than the frequency band-derived and raw EEG-derived

ones. The accuracy of 80.5% we have obtained is the best in

the literature for the 3-class classification problem. It is also

observed that the ensemble bagged tree classifier using VMD

features performed better in classifying different DOC cohorts than

KNN, DT, and SVM classifiers. Thus the study focused on the

ability to classify DOC patients based on the features extracted

from VMD modes. However, since the dataset is considerably

small and the classification of DOC patients based on machine

learning methods is an emerging area of research, the results

obtained cannot be generalized for DOC patients as a whole. Future

research will center on improving the VMD methodology through

specific modifications to address challenges in determining the

number of modes and regularization parameters. Moreover, there

will be a focus on integrating an adaptive filter into the extraction

of frequency bands from EEG signals. This strategic integration

aims to resolve issues such as edge effects, lack of adaptability to

signal changes, suboptimal performance under varying EEG signal

properties, and the inability to effectively capture non-stationary

signal changes.

Despite these limitations, the suggested approach illustrates

how the integration of machine learning and signal decomposition

techniques, such as VMD, can assist clinicians in classifying

individuals with different disorders of consciousness.
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