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Background: Intracranial space is divided into three compartments by the falx 
cerebri and tentorium cerebelli. We assessed whether cerebrospinal fluid (CSF) 
distribution evaluated by a specifically developed deep-learning neural network 
(DLNN) could assist in quantifying mass effect.

Methods: Head trauma CT scans from a high-volume emergency department 
between 2018 and 2020 were retrospectively analyzed. Manual segmentations 
of intracranial compartments and CSF served as the ground truth to develop a 
DLNN model to automate the segmentation process. Dice Similarity Coefficient 
(DSC) was used to evaluate the segmentation performance. Supratentorial CSF 
Ratio was calculated by dividing the volume of CSF on the side with reduced 
CSF reserve by the volume of CSF on the opposite side.

Results: Two hundred and seventy-four patients (mean age, 61  years  ±  18.6) after 
traumatic brain injury (TBI) who had an emergency head CT scan were included. 
The average DSC for training and validation datasets were respectively: 0.782 
and 0.765. Lower DSC were observed in the segmentation of CSF, respectively 
0.589, 0.615, and 0.572 for the right supratentorial, left supratentorial, and 
infratentorial CSF regions in the training dataset, and slightly lower values in 
the validation dataset, respectively 0.567, 0.574, and 0.556. Twenty-two patients 
(8%) had midline shift exceeding 5  mm, and 24 (8.8%) presented with high/mixed 
density lesion exceeding >25  ml. Fifty-five patients (20.1%) exhibited mass effect 
requiring neurosurgical treatment. They had lower supratentorial CSF volume 
and lower Supratentorial CSF Ratio (both p  <  0.001). A Supratentorial CSF 
Ratio below 60% had a sensitivity of 74.5% and specificity of 87.7% (AUC 0.88, 
95%CI 0.82–0.94) in identifying patients that require neurosurgical treatment 
for mass effect. On the other hand, patients with CSF constituting 10–20% of 
the intracranial space, with 80–90% of CSF specifically in the supratentorial 
compartment, and whose Supratentorial CSF Ratio exceeded 80% had minimal 
risk.

Conclusion: CSF distribution may be presented as quantifiable ratios that help 
to predict surgery in patients after TBI. Automated segmentation of intracranial 
compartments using the DLNN model demonstrates a potential of artificial 

OPEN ACCESS

EDITED BY

Da Ma,  
Wake Forest University, United States

REVIEWED BY

Rajat Dhar,  
Washington University in St. Louis,  
United States
Moisey Aronov,  
Federal Medical and Biological Agency, Russia

*CORRESPONDENCE

Ernest J. Bobeff  
 ernest.bobeff@umed.lodz.pl

RECEIVED 20 November 2023
ACCEPTED 29 January 2024
PUBLISHED 19 February 2024

CITATION

Puzio T, Matera K, Wiśniewski K, Grobelna M, 
Wanibuchi S, Jaskólski DJ and 
Bobeff EJ (2024) Automated volumetric 
evaluation of intracranial compartments and 
cerebrospinal fluid distribution on emergency 
trauma head CT scans to quantify mass 
effect.
Front. Neurosci. 18:1341734.
doi: 10.3389/fnins.2024.1341734

COPYRIGHT

© 2024 Puzio, Matera, Wiśniewski, Grobelna, 
Wanibuchi, Jaskólski and Bobeff. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 19 February 2024
DOI 10.3389/fnins.2024.1341734

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1341734﻿&domain=pdf&date_stamp=2024-02-19
https://www.frontiersin.org/articles/10.3389/fnins.2024.1341734/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1341734/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1341734/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1341734/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1341734/full
mailto:ernest.bobeff@umed.lodz.pl
https://doi.org/10.3389/fnins.2024.1341734
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1341734


Puzio et al. 10.3389/fnins.2024.1341734

Frontiers in Neuroscience 02 frontiersin.org

intelligence in quantifying mass effect. Further validation of the described 
method is necessary to confirm its efficacy in triaging patients and identifying 
those who require neurosurgical treatment.

KEYWORDS

mass effect, automated segmentation, deep-learning neural network, intracranial 
compartments, cerebrospinal fluid reserve, traumatic brain injury

1 Introduction

The intracranial (IC) compartments, formed by the falx cerebri 
and tentorium cerebelli, have limited capacity to accommodate 
volume changes of the brain, blood, and cerebrospinal fluid (CSF) 
(Wilson, 2016). Brain injury results in reduction of CSF reserve that 
may lead to mass effect. This phenomenon can contribute to secondary 
injury, including cerebral edema, ischemia, and herniation. Further 
investigation is needed to understand the anatomical and pathological 
aspects of compartmental distribution of IC contents and 
its consequences.

Cerebrospinal fluid reserve is researched in terms of IC pressure 
(ICP) which is measured using intraventricular sensors, and volume 
which can be assessed on imaging studies (Dhar et al., 2021). However, 
there is no widely accepted method to quantify mass effect. The 
Marshall scale integrates qualitative aspects such as basal cistern 
effacement, midline shift exceeding 5 mm and high density lesion 
larger than 25 mm3, for prognostic assessment (Marshall et al., 1992). 
However, interrater variability may affect the results (Maas et  al., 
2005), and simplified formulas to ascertain the volumetric criterion 
may be imprecise (Vos et al., 2001). Automated volumetric evaluation 
may enhance its accuracy and assist in clinical decision-making at 
emergency departments without delays in diagnosis (Jain et al., 2019).

The growing demand for CT to detect IC hemorrhages and assess 
mass effect can be addressed through the use of artificial intelligence 
(AI) and machine learning (Chang et al., 2016; Heit et al., 2017; Raju 
et al., 2020; Brossard et al., 2021; Colasurdo et al., 2022). They are 
utilized in emergency care for various purposes, including triage, 
injury prediction, and outcome evaluation (Hunter et al., 2023). The 
ongoing efforts aim to automate lesion identification and 
segmentation, and assess CSF reserve (Monteiro et  al., 2020; 
Colasurdo et al., 2022; Schmitt et al., 2022; Hunter et al., 2023; Yamada 
et al., 2023).

We conducted manual segmentation of IC compartments and 
threshold segmentation of CSF on emergency CT scans, which served 
as the ground truth. This data was then utilized as input for a deep-
learning neural network (DLNN), which was trained to automate the 
segmentation task.

The main objective of this study was to develop an algorithm to 
quantify the mass effect requiring neurosurgical treatment on 
emergency head CT scans.

2 Methods

The study is in accordance with human rights declarations and 
regulations, and was approved by Institutional Review Board. Patient 
consent to the study was not required as it involved retrospective 
analysis of anonymized medical records. We screened head CT scans 
obtained from patients after traumatic brain injury (TBI) at a high-
volume emergency department between 2018 and 2020. CT scans 
were performed on three scanners (Optima CT540, Revolution CT, 
Lightspeed VCT; GE Healthcare, USA). The manuscript was prepared 
following the CLAIM (Mongan et  al., 2020) and the 
STROBE Guidelines.

2.1 CT screening and neurosurgical 
assessment

Studies with technical flaws, significant motion artifacts, or 
incomplete skull coverage were excluded. The presence of ischemia 
or hemorrhage, including subdural (SDH), epidural (EDH), 
intracerebral (ICH), cerebellar (CBH), subarachnoid (SAH), 
intraventricular (IVH), and contusions, was recorded. 
We  undertook a thorough investigation to identify radiological 
criteria for mass effect necessitating neurosurgical treatment, 
drawing from the literature of the past two decades (Bullock et al., 
2006a,b,c,d; Carney et al., 2017; Greenberg, 2019; Hawryluk et al., 
2020; Greenberg et al., 2022). A summary of the criteria is shown 
in Supplementary Table S1. Neurosurgical assessment was 
independently carried out by three investigators, following the 
radiological criteria and clinical experience.

2.2 Manual segmentation

Two investigators segmented brain series of ≤1.25 mm slice 
thickness. The sagittal plane was manually adjusted to closely align 
with the falx cerebri, serving as the delineation between the left 
and right supratentorial compartments. During IC space 
segmentation we utilized the two-dimensional smart brush tool in 
Exhibeon3 DICOM viewer (Pixel Technology, Lodz, Poland) in the 
bone window (W: 2500 L: 800). The boundary with the spinal canal 
was drawn along the transverse plane, perpendicular to the 

Abbreviations: AI, artificial intelligence; CBH, cerebellar hemorrhage; CSF, 

cerebrospinal fluid; CT, computed tomography; DLNN, deep-learning neural 

network; EDH, epidural hemorrhage; HCA, hierarchical clustering analysis; ICH, 

intracerebral hemorrhage; IC, intracranialICPintracranial pressure; IVH, 

intraventricular hemorrhage; SDH, subdural hematoma; SAH, subarachnoid 

hemorrhage; TBI, traumatic brain injury.
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established sagittal plane of the falx cerebri, intersecting the McRae 
line connecting basion and opisthion craniometric points. The 
boundaries with cranial openings were drawn in line with the 
inner surface of the cranium. The boundary between supra- and 
infratentorial compartments was delineated in the brain window 
(W: 80 L: 40) using multiplanar reconstructions, taking into 
account the course of the tentorium cerebelli. The tentorial notch 
was identified on coronal reconstructions as a line connecting the 
free edges of the tentorium cerebelli, and refined on transverse 
reconstructions. The three resulting compartments – right and left 
supratentorial and one infratentorial – covered everything inside 
the cranium, including the brain, CSF, and any potential 
pathologies. The sum of the volumes of the three compartments 
constitutes the IC space. Voxels exhibiting Hounsfield Unit (HU) 
values ranging from −5 to 15 were labeled as CSF. Presence of 
artifacts like beam hardening and pervasive noise, often led to 
misidentifying voxels as CSF, which was manually excluded.

2.3 Network architecture

We used a convolutional neural network with basic UNet 
architecture in a 3D version (Falk et al., 2019). The model takes in 
a single-channel image as input and produces seven channels of 
output with segmentation. The model’s encoder comprised five 
levels, with feature sizes of 32, 32, 64, 128, and 256, respectively. 
Leaky ReLU was employed as the activation layer (Xu et al., 2015). 
The total number of parameters in the model was 5.7 million. 
During the training process, the sum of Dice Loss and Cross 
Entropy was minimized using the AdamW optimizer. To schedule 
the learning rate, the One Cycle Scheduler technique was utilized 
with a maximum learning rate value of 0.001. PyTorch was used as 
a training framework. Augmentation and image processing was 
done in MonAI. Model weights were initialized randomly at the 
start of the training process.

2.4 Image preprocessing

The training and validation datasets were randomly selected to 
ensure representative coverage of the entire available data (Table 1). 
We conducted several preprocessing steps before utilizing medical 
images as inputs for our model. Firstly, the images were resampled 
to a spacing of 1 millimeter to ensure consistency in resolution. 
Secondly, based on the Hounsfield Scale a threshold value of 100 was 
applied to retain only the most relevant information. Specifically, any 
pixel values above 100 were set to this value. Following this, the 
intensities of the remaining pixels were normalized to range between 
−1 and 1. To ensure the model was exposed to a diverse range of 
inputs during training, randomly selected preprocessed images were 
used with augmentations such as Gaussian Noise, random contrast 
adjustments, and rotations. This helped to train a robust model 
capable of handling varied inputs. Single voxels marked as CSF by 
the initial threshold, which might have corresponded to artifacts or 
small post-ischemic lesions, were excluded from CSF. This 
augmentation resulted in a more faithful representation of the 
ventricular system and subarachnoid reserve on the CT scans, 
aligning with human perception (Figure 1). Upon visual inspection, 

the final model, which exhibited the smallest variations in studies 
with the greatest ground truth discrepancies, was selected. The 
performance metrics of the optimal model across all data partitions 
are provided in Table 1 and remained similar and consistent across 
both the training (dependent) and validation (independent) datasets. 
Consequently, we used the DLNN predictions from both the training 
and validation datasets to evaluate the clinical efficacy of CSF 
Distribution Ratios.

2.5 CSF distribution ratios

Volumetric data obtained from automated segmentation 
performed by the DLNN model was used to compute a series of 
quantitative indicators in each patient (Figure 2). The ratio “CSF/IC” 
refers to the proportion of CSF volume in relation to the IC space 

TABLE 1 Patients characteristics and comparison of the DCS between 
training and validation datasets.

Training 
dataset
n  =  189

Validation 
dataset
n  =  85

Patients characteristics

Mean age 62 years ±18.7 59 years ±18.1

Acute SDH 64 (33.9%) 25 (29.4%)

Chronic SDH 27 (14.3%) 13 (15.3%)

EDH 9 (4.8%) 6 (7.1%)

ICH 53 (28%) 15 (17.6%)

CBH 5 (2.6%) 1 (1.2%)

Traumatic SAH 28 (14.8%) 4 (4.7%)

Spontaneous SAH 12 (6.3%) 3 (3.5%)

IVH 27 (14.3%) 7 (8.2%)

Contusions 63 (33.3%) 20 (23.5%)

Ischemia 60 (31.7%) 21 (24.7%)

Marshall classification

- Diffuse injury I (no pathology)

- Diffuse injury II

- Diffuse injury III (swelling)

- Diffuse injury IV (shift)

- Evacuated mass lesion

- Nonevacuated mass lesion

21 (11.1%)

113 (59.8%)

9 (4.8%)

1 (0.5%)

42 (22.2%)

3 (1.6%)

22 (25.9%)

45 (52.9%)

4 (4.7%)

0

13 (15.3%)

1 (1.2%)

DSC

Average 0.782 0.765

Right supratentorial compartment 0.935 0.927

Left supratentorial compartment 0.932 0.927

Infratentorial compartment 0.905 0.903

Right supratentorial CSF 0.589 0.567

Left supratentorial CSF 0.615 0.574

Infratentorial CSF 0.572 0.556

The datasets were randomly selected to ensure representative coverage of the entire available 
data. CBH, cerebellar hemorrhage, CSF, cerebrospinal fluid, EDH, epidural hematoma, CT, 
computed tomography, DSC, Dice Similarity Coefficient, ICH, intracerebral hemorrhage, IVH, 
intraventricular hemorrhage, SAH, subarachnoid hemorrhage, SDH, subdural hematoma.
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volume. The “Supratentorial CSF/IC CSF” represent the proportion of 
CSF in the supratentorial compartments relative to the CSF volume. 
The “Supratentorial CSF Ratio” quantifies the asymmetry in CSF 
distribution within the supratentorial compartments by dividing the 
volume of CSF on the side with reduced CSF reserve by the volume of 
CSF on the opposite side.

2.6 Statistical analysis

We used StatSoft Statistica (Tulsa, OK) and R Programming. 
Continuous variables were compared using Mann–Whitney U test. 
Categorical variables were compared using either Pearson’s 
chi-squared test or two-sided Fisher’s exact test. Predictive model 
was developed using logistic regression modelling with backward 
stepwise feature selection with likelihood ratio-test and with 
p-value of greater than 0.01 needed for stepwise feature removal. 
The heatmap was generated using unsupervised hierarchical 
clustering analysis with the pheatmap package in R Studio. Bland–
Altman plots were generated using the ggplot2 package in R Studio. 
Power analysis for the test group was done using the pROC 
package. It yielded a required sample size of approximately 31 cases 
and 154 controls, with control-to-case ratio of 5, an anticipated 
area under the ROC curve of 0.7 and a desired power of 0.95 at a 
significance level of 0.05.

3 Results

The study included 274 patients, mean age 61 years ±18.6. 
Example segmentations of the IC compartments and CSF are 
presented in Figure 1. The mean volumes are provided in Table 2. The 
intraclass correlation coefficient (ICC) values between manual and 
automated segmentations were all above 0.92 (Figure 3).

Mass effect that required neurosurgical treatment was present in 
55 patients (20.1%). Supratentorial CSF Ratio below 60% 
demonstrated a sensitivity of 74.5% and specificity of 87.7% in 
accurately identifying these patients. The ROC curve illustrated an 
AUC of 0.88 (Supplementary Figure S1). Noteworthy, neurosurgery 
for mass effect was never indicated in patients whose CSF constituted 
10–20% of the IC space, with 80–90% being supratentorial, and whose 
Supratentorial CSF Ratio was larger than 80%. Uni- and multivariate 
analyses of radiological predictors of mass effect requiring 
neurosurgical treatment is provided in Table 3. Based on the selected 
CSF Distribution Ratios, we created a triage protocol for patients at 
the emergency department (Table 4).

By utilizing unsupervised hierarchical clustering analysis (HCA), 
patients (columns) were grouped according to A the triage protocol 
based on the selected CSF Distribution Ratios (Figure  4A) the 
presence and type of IC bleeding, any high or mixed density lesion 
larger than 25 mL, midline shift greater than 5 mm, and appearance of 
basal cisterns (Figure 4B).

FIGURE 1

Multiplanar reconstructions of manual (upper) and automated (lower) segmentations of IC compartments and CSF in the non-pathologic (left) and 
pathologic example (right) of emergency CT scans. The latter example shows a right-sided acute SDH with significant mass effect that requires 
neurosurgical treatment, despite a relatively low midline shift. Reduced IC reserve in the right supratentorial compartment is well visualized. SDH, 
subdural hematoma, CSF, cerebrospinal fluid, CT, computed tomography, IC, intracranial. This figure is original to this submission so no credit or 
license is needed.
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Quantitative assessment (Figure 4A) associated with the triage 
protocol revealed three clusters of patients. The first cluster contained 
patients marked in red according to triage protocol, among whom 41 
(60.3%) required neurosurgical treatment. In this group, all patients 
had a Supratentorial CSF Ratio below 60%. The second cluster 
contained patients marked in green who did not require neurosurgical 
treatment. All showed a balanced CSF distribution between IC 

compartments, and a Supratentorial CSF Ratio close to 1. The third 
cluster contains patients marked in yellow, among whom 14 (8%) 
required neurosurgical treatment. This is the largest and most 
heterogeneous group.

HCA based on the qualitative assessment is provided in 
Figure  4B. Clusters one and two were composed of patients with 
compressed basal cisterns, most of whom required surgery, whereas, 
patients in cluster three usually did not require surgery and were 
characterized by bilateral lesions, contusions, ischemia, traumatic SAH, 
and acute SDH. Cluster four included more than three-quarters of 
patients with either unremarkable head CT or surgical indications due 
to various lesions. HCA analysis highlights that incorporating the triage 
protocol based on the selected CSF Distribution Ratios could improve 
the accuracy of determining the need for neurosurgical treatment.

4 Discussion

Automated segmentation of IC compartments and CSF might 
contribute to fast, accurate, and consistent diagnosis of neurological 
emergencies. The underlying hypothesis is that various pathologies 
that require neurosurgical treatment, such as hemorrhage, brain 
edema, hydrocephalus or infarction, present as a mass effect associated 
with CSF displacement (Chen et al., 2016; Bobeff et al., 2018; Mönch 

FIGURE 2

The illustration showcases the proposed CSF Distribution Ratios, with their definitions outlined in the manuscript. Rows one and two visualize the 
numerator and denominator, respectively, for each CSF Distribution Ratio. In row three, the figure delineates potential applications of each ratio and 
elucidates the directional changes associated with specific pathologies. CSF, cerebrospinal fluid, IC, intracranial, This figure is original to this submission 
so no credit or license is needed.

TABLE 2 Comparison of the volumes of IC compartments and CSF 
obtained from manual and automated segmentations of 274 head trauma 
CT scans performed at the emergency department.

Segmentation Manual 
(ml)

Automated 
(ml)

ICC

Mean IC vol. 1415.9 ± 151 1416.3 ± 149.7 0.9948

Mean right supratentorial vol. 615 ± 68.3 613.9 ± 67.3 0.9882

Mean left supratentorial vol. 616.8 ± 67.9 615.8 ± 67.1 0.9905

Mean infratentorial vol. 184.1 ± 20.9 186.6 ± 21 0.9381

Mean CSF vol. 127.1 ± 65.2 120 ± 63 0.9561

Mean right supratentorial CSF vol. 52.9 ± 31.5 48.6 ± 31 0.9549

Mean left supratentorial CSF vol. 56.7 ± 32.1 54.6 ± 31.5 0.9678

Mean infratentorial CSF vol. 17.5 ± 6.7 16.8 ± 6.6 0.9213

CSF, cerebrospinal fluid, IC, intracranial, ICC, intraclass correlation coefficient, vol., volume.
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et al., 2020; Dhar et al., 2021) (Figure 5). Our key findings are: (1) 
there was strong agreement between manual and automated 
segmentations of IC compartments and CSF that support further 
validation of the latter and its use in clinical scenario, (2) CSF 

Distribution Ratios may help quantify mass effect and improve 
radiological reports without increasing time burdens.

Evaluation of automated segmentations was done in the context 
of Dice Similarity Coefficient (DSC), volumetric measurements, and 

FIGURE 3

Bland–Altman plots for the manual and automated measurements of: (A) IC volume, (B) CSF volume, (C) right supratentorial volume, (D) right 
supratentorial CSF volume, (E) left supratentorial volume, (F) left supratentorial CSF volume, (G) infratentorial volume, and (H) infratentorial CSF 
volume. Y axes represent the difference between manual and automated measurements. X axes represent the average of manual and automated 
measurements. The color of each dot signifies the training (black) and the validation (blue) datasets. The black horizontal line indicates the mean 
measurement difference (bias), and if it is below zero it means that the average automated measurement was lower than the average manual 
measurement. The two red dashed horizontal lines represent the limit of agreement (1.96  ×  SD). AI, artificial intelligence, CSF, cerebrospinal fluid, IC, 
intracranial, ICC, intraclass correlation coefficient, SD, standard deviation. This figure is original to this submission so no credit or license is needed.
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through an unmediated evaluation of images with a focus on the most 
outliers. DSC for training and validation datasets were broadly 
equivalent (Table 1) and ICC very high (Table 2); furthermore, upon 
visual assessment, automated segmentation excelled in accurately 
identifying CSF and effectively partitioning IC compartments 
(Figure 1).

Emergency CT imaging aims to identify primary injuries, such as 
extraaxial hematomas, cerebral hemorrhage, contusion, and skull 
fractures. It also assesses their impact on IC contents, resulting in 
cerebral edema and increased ICP (Rincon et al., 2016). Both primary 
and secondary injuries reduce CSF reserve in the affected IC 
compartment or reduce the overall IC reserve in case of diffuse injury. 
In fact, radiological manifestations such as sulcal marking obliteration 
and brain displacement into sulci, cisterns, and ventricles, can be more 
challenging to observe than primary injuries itself.

Quantifying mass effect can improve the interpretation of 
radiological findings and reduce reliance on subjective descriptions 
with variable agreement among raters. Currently, there is no 
standardized method for quantitatively assessing mass effect, apart 

TABLE 3 Radiological predictors of mass effect requiring neurosurgical treatment in 274 patients who were diagnosed at the emergency department.

All Neurosurgical 
treatment

Univariate OR
(95% CI)

Multivariate OR
(95% CI)

value of p

Total 274 55 (20.1%)

Bilateral Lesions 81 25 (30.9%) 2.4 (1.3–4.5) –

Acute SDH 89 21 (23.6%) 1.4 (0.7–2.5) –

Chronic SDH 40 19 (47.5%) 4.9 (2.4–10.2) 15.1 (3.9–58.9) <0.001

EDH 15 7 (46.7%) 3.8 (1.3–11.1) –

ICH 68 27 (39.7%) 4.2 (2.2–7.9) 8.0 (2.3–28.1) 0.001

CBH 6 3 (50.0%) 4.2 (0.8–21.2) –

Contusions 83 15 (18.1%) 0.8 (0.4–1.6) –

Traumatic SAH 32 6 (18.8%) 0.9 (0.3–2.3) –

Spontaneous SAH 15 4 (26.7%) 1.5 (0.5–4.9) –

IVH 34 13 (38.2%) 2.9 (1.4–6.3) –

Ischemia 82 19 (23.2%) 1.3 (0.7–2.5) –

Basal Cisterns Compressed 41 25 (61.0%) 10.6 (5.1–22.1) –

Basal Cisterns Absent 11 10 (90.9%) 48.4 (6.0–388) 388 (24.7–6,111) <0.001

MLS > 5 mm 22 21 (95.5%) 134 (17.5–1,033) –

High/Mixed Density Lesion>25 mL 24 20 (83.3%) 30.7 (9.9–95.2) 14 (2.9–67) <0.001

Supratentorial CSF Ratio

(continuous variable)
81% (62–92%) 40% (28–65%) >999 1,072 (87.1–13,221) <0.001

Supratentorial CSF Ratio < 60% 68 41 (60.3%) 20.8 (10.1–43.1) –

Supratentorial CSF Ratio > 80% 147 6 (4.1%) 0.07 (0.03–0.17) –

Supratentorial CSF/IC CSF

(continuous variable)
86% (80–89%) 81% (70–87%) 758 (33.1–17,363) –

Supratentorial CSF/IC CSF 80–90% 153 25 (16.3%) 0.59 (0.33–1.07) –

IC CSF/IC volume

(continuous variable)

8% (5–11%) 6% (3–9%) >999
-

IC CSF/IC volume 10–20% 94 9 (9.6%) 0.31 (0.14–0.66) -

CSF Distribution Ratios were calculated using automated segmentation by the DLNN model developed specifically for this study. Continuous variables are presented as medians and IQR. 
Supratentorial CSF Ratio was defined as a ratio of ipsilateral and contralateral supratentorial CSF volumes. “Ipsilateral” and “contralateral” refer to the supratentorial compartment with 
reduced CSF reserve. CBH, cerebellar hemorrhage; CSF, cerebrospinal fluid; EDH, epidural hemorrhage; IC, intracranial; ICH, intracerebral hemorrhage; IQR, interquartile range; IVH, 
intraventricular hemorrhage; MLS, midline shift; NS, not significant; SAH, subarachnoid hemorrhage; SDH, subdural hemorrhage.

TABLE 4 Triage protocol for mass effect that requires neurosurgical 
treatment based on the three selected CSF Distribution Ratios obtained 
from automated segmentation using the DLNN model developed 
specifically for this study.

Triage Criteria Mass effect requiring 
neurosurgical 

treatment

Red

Immediate
Supratentorial CSF Ratio < 60% 41/68 (60%)

Yellow

Urgent
other patients 14/168 (8%)

Green

Low risk

Supratentorial CSF Ratio > 80%

and

CSF/ IC vol. 10–20%

and

Supratentorial CSF/ IC CSF 

80–90%

0/38

CSF, cerebrospinal fluid, DLNN, deep-learning neural network, IC, intracranial, vol., 
volume.
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FIGURE 4

Heatmap representation of unsupervised HCA of selected quantitative (A) and qualitative (B) predictors of mass effect that requires neurosurgical 
treatment in patients after emergency head CT scans. Each column represents one patient, and they are grouped into clusters according to 
unsupervised HCA. The quantitative assessment (A) shows the selected CSF Distribution Ratios calculated from automated segmentation of IC 
compartments and CSF volumes and the proposed triage system presented in the Table 4, whereas the qualitative assessment (B) was based on the 
radiological reports and simplified formulas used to ascertain the volumetric criterion. Red indicates “yes” and blue indicates “no.” Color legend for the 
continuous variables is provided in the diagram. Explanation and interpretation of the findings depicted in the figure can be found in the Results section 
of the article. CSF, cerebrospinal fluid leak, CT, computed tomography, HCA, hierarchical clustering analysis, IC, intracranial. This figure is original to 
this submission so no credit or license is needed.

from midline shift. The evaluation of radiological findings indicating 
increased ICP relies on the expertise of neurosurgeons and radiologists. 
Common terms used in radiological reports include “CSF reserve 
reduction/loss,” “sulci effacement/loss,” accompanied by specifying the 
location, such as “right-sided supratentorial” or “infratentorial.” They 
are primarily qualitative and may not convey precise information. Our 
results show that CSF Distribution Ratios offer a valuable and 
potentially reproducible method to quantify mass effect.

Triaging imaging studies becomes increasingly important with the 
spread of teleradiology that potentially leads to delays in diagnosis. 
The use of CSF Distribution Ratios can prioritize cases with the 
utmost urgency, expedite radiology reports, and facilitate consultation 
between clinicians and radiologists, especially in centers with large 
numbers of CT scans (O'Neill et al., 2020). Possible triage criteria for 
categorizing patients into 3 risk groups of mass effect are outlined in 
Table 4. To comprehensively represent IC conditions, the protocol 
includes prognostic factors validated in univariate analysis and 
describes CSF reserve, supratentorial CSF asymmetry, and infra- and 
supratentorial CSF distribution.

Remote neurosurgical consultations frequently take place in distant 
hospitals and, if patient transportation is required, entail substantial 
costs and time. Frequently conservative therapy is preferred, still the 
stigma associated with IC hemorrhage, even without the need for 
neurosurgical treatment, can result in unnecessary patient transport. 
Automated segmentation and quantitative evaluation offer a precise 
and timely approach. This approach can be critical in situations where 
patient transport is risky and immediate surgery is being considered. It 
could facilitate remote neurosurgical consultations and aid in early-
stage diagnosis at the emergency department.

The ratios “CSF/IC” and “supratentorial CSF/IC CSF” may capture 
nuances in mass effect resulting from infratentorial lesions and 
hydrocephalus due to aqueductal stenosis. The diagnosis of 
hydrocephalus requires clinical expertise and careful evaluation of 
signs and symptoms. CSF Distribution Ratios could enable more 
precise assessment of subsequent examinations within the same patient 
to achieve a more accurate and comprehensive disease monitoring.

Other pathologies that should be  considered during the 
assessment of CSF reserve, where no localized primary injury is 
evident, include inflammatory or infectious processes, demyelinating 
diseases, vascular malformations, and metabolic disorders. Unless 
there is previous CT, it is often difficult to judge whether CSF reserve 
is within normal limits, diminished or severely diminished as a result 
of edema and mild brain swelling. Percentile grids for IC contents 
normalized by IC volume, gender, and age could guide radiologists by 
highlighting values outside established thresholds. For example, if 
normalized CSF reserve is below 3rd percentile, general brain swelling 
could be considered in impressions of radiologic report. Percentile 
grids could also help in cases of brain atrophy, a natural phenomenon 
associated with aging but not directly measured in clinical practice. In 
cases of cerebral atrophy, there is a notable reduction in the volume of 
both white and grey matter, which is subsequently supplanted by 
CSF. This phenomenon manifests radiologically as an enlargement of 
the lateral ventricles and widening of the arachnoid space fissures. 
Consequently, volumetric assessments reveal an increased CSF 
volume, leading to an increased CSF / IC ratio. Hence, the extent of 
cerebral atrophy can be quantitatively evaluated through our method, 
which leverages these radiological and volumetric changes.
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4.1 Limitations

It was a single center study. We acknowledge the heterogeneity 
of our patient cohort, consisting of individuals who experienced 
TBI and were diagnosed at the emergency department. On one 
hand this contributed to the diversity of mass effect presentations, 
including CBH, SDH, global edema, and hydrocephalus, on the 
other highlighted the method’s versatility as the precise cutoff 
points could be  tailored in specific pathologies. Another 
limitation of our study is the absence of detailed information on 
which patients with hydrocephalus required drainage procedures, 
limiting our ability to robustly assess the effectiveness of the 
presented ratios in predicting the need for such interventions. 
Our sample had a small number of infratentorial lesions. 
Reproducibility of our DLNN model was not subject to test–retest 
assessment. HCA of quantitative variables and one qualitative 
variable is very likely to split the group based on the latter; 
however, our goal was to show correlations between CSF 
Distribution Ratios and mass effect requiring neurosurgical 
treatment. We did not consider clinical factors related to patients 
condition that may influence the decision to perform 
neurosurgery, such as patient age, functional status, Glasgow 
Coma Scale (GCS) score, and comorbidities; however, this was 
our assumption that the model should identify radiological 
predictors, and the final treatment decision is made by clinicians, 
who take into consideration all available information. The role of 
the DLNN is to provide accurate and timely information, but not 
to replace a trained neuroradiologist. Going forward, we plan to 
integrate lesion volume calculations into our algorithm to 

enhance its capabilities and provide precise cutoff points for 
particular lesions.

5 Conclusion

Automated segmentation of IC compartments and calculation 
of CSF Distribution Ratios may enhance clinical decision-making 
and improve emergency management. The DLNN model 
effectively partitions the IC space into supra- and infratentorial 
compartments. CSF Distribution Ratios offer timely estimation of 
CSF reserve thus may enhance the predictive value of 
radiological reports. The integration of AI into the medical field 
can enhance the accuracy and speed of clinical diagnosis. Further 
research and implementation of AI into the healthcare system 
present an area of great interest bearing in mind their 
promising potential.

Data availability statement

The datasets presented in this article are not readily available 
because the dataset consisted only of computed tomography images. 
Requests to access the datasets should be directed to m.grobelna@
pixel.com.pl.

Ethics statement

The studies involving humans were approved by Institutional 
Review Board approval RNN/211/16/KE. The studies were conducted 
in accordance with the local legislation and institutional requirements. 
The ethics committee/institutional review board waived the 
requirement of written informed consent for participation from the 
participants or the participants’ legal guardians/next of kin because 
there was a retrospective study design.

Author contributions

TP: Conceptualization, Data curation, Formal analysis, 
Funding acquisition, Investigation, Methodology, Project 
administration, Resources, Software, Writing – original draft. KM: 
Data curation, Formal analysis, Writing – original draft. KW: 
Formal analysis, Investigation, Writing – original draft. MG: 
Investigation, Software, Writing – original draft. SW: Visualization, 
Writing – original draft. DJ: Methodology, Supervision, Writing 
– review & editing. EB: Conceptualization, Data curation, Formal 
analysis, Funding acquisition, Investigation, Methodology,  
Project administration, Resources, Software, Supervision, 
Validation, Visualization, Writing – original draft, Writing – review 
& editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. The 

FIGURE 5

An artistic representation of oblique posterior view of IC contents 
revealing mass effect that requires neurosurgical treatment due to a 
left-sided acute SDH. The illustration exhibits the removal of both 
sides of the skull, as well as the dura mater covering the right and left 
hemispheres, except for the regions of the falx cerebri and tentorium 
cerebelli in order to show the limited capacity of the IC 
compartments to accommodate volume changes of the brain, 
blood, and CSF. The acute SDH over the left cerebral hemisphere 
causes midline shift, while the CSF reserve remains unaffected on 
the right side. SDH, subdural hematoma, CSF, cerebrospinal fluid 
leak, IC, intracranial. This figure is original to this submission so no 
credit or license is needed.

https://doi.org/10.3389/fnins.2024.1341734
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
mailto:m.grobelna@pixel.com.pl
mailto:m.grobelna@pixel.com.pl


Puzio et al. 10.3389/fnins.2024.1341734

Frontiers in Neuroscience 10 frontiersin.org

research presented in this article was funded from the project 
“RADi – asystent radiologa,” co-financed by the European Union 
from the European Regional Development Fund under the Smart 
Growth Operational Programme 2014–2020, Priority Axis 
“Support for R&D activities of enterprises,” Action 1.1 “R&D 
projects of enterprises,” Sub-measure 1.1.1 “Industrial research 
and development work carried out by enterprises.” The project 
provided financial support for the preparation of the deep-
learning neural network and technical support necessary for 
the study.

Acknowledgments

We would like to acknowledge Pixel Technology for their support 
in making this research possible.

Conflict of interest

MG was employed by Pixel Technology. TP, KM, and EB 
participated in the project “RADi – asystent radiologa” 
described below.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest. The funding source did 
not have any influence on the study findings, and the authors declare 
no conflicts of interest related to the research. The results presented in 
this article are based solely on the data collected and analyzed in 
accordance with the study objectives and methods.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2024.1341734/
full#supplementary-material

References
Bobeff, E. J., Fortuniak, J., Bobeff, K. Ł., Wiśniewski, K., Wójcik, R., Stefańczyk, L., et al. 

(2018). Diagnostic value of lateral ventricle ratio: a retrospective case-control study of 112 
acute subdural hematomas after non-severe traumatic brain injury. Brain Inj. 33, 226–232. 
doi: 10.1080/02699052.2018.1539871

Brossard, C., Lemasson, B., Attyé, A., de Busschère, J. A., Payen, J. F., Barbier, E. L., 
et al. (2021). Contribution of CT-scan analysis by artificial intelligence to the clinical 
care of TBI patients. Front. Neurol. 12:666875. doi: 10.3389/fneur.2021.666875

Bullock, M. R., Chesnut, R., Ghajar, J., Gordon, D., Hartl, R., Newell, D. W., et al. 
(2006a). Surgical management of acute epidural hematomas. Neurosurgery 58, S2-7–
S2-15. doi: 10.1227/01.NEU.0000210363.91172.A8

Bullock, M. R., Chesnut, R., Ghajar, J., Gordon, D., Hartl, R., Newell, D. W., et al. 
(2006c). Surgical management of posterior fossa mass lesions. Neurosurgery 58, S2-47–
S2-55. doi: 10.1227/01.NEU.0000210366.36914.38

Bullock, M. R., Chesnut, R., Ghajar, J., Gordon, D., Hartl, R., Newell, D. W., et al. 
(2006d). Surgical management of traumatic parenchymal lesions. Neurosurgery 58, 
S2-25–S2-46. doi: 10.1227/01.NEU.0000210365.36914.E3

Bullock, M. R., Chesnut, R., Ghajar, J., Gordon, D., Hartl, R., Newell, D. W., et al. 
(2006b). Surgical management of acute subdural hematomas. Neurosurgery 58, S16–S24.

Carney, N., Totten, A. M., O'Reilly, C., Ullman, J. S., Hawryluk, G. W. J., Bell, M. J., 
et al. (2017). Guidelines for the management of severe traumatic brain injury. 
Neurosurgery 80, 6–15. doi: 10.1227/NEU.0000000000001432

Chang, J. C., Lin, Y. Y., Hsu, T. F., Chen, Y. C., How, C. K., and Huang, M. S. (2016). 
Trends in computed tomography utilisation in the emergency department: a 5 year 
experience in an urban medical Centre in northern Taiwan. Emerg. Med. Australas. 28, 
153–158. doi: 10.1111/1742-6723.12557

Chen, Y., Dhar, R., Heitsch, L., Ford, A., Fernandez-Cadenas, I., Carrera, C., et al. 
(2016). Automated quantification of cerebral edema following hemispheric infarction: 
application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs. 
Neuroimage Clin. 12, 673–680. doi: 10.1016/j.nicl.2016.09.018

Colasurdo, M., Leibushor, N., Robledo, A., Vasandani, V., Luna, Z. A., Rao, A. S., et al. 
(2022). Automated detection and analysis of subdural hematomas using a machine 
learning algorithm. J. Neurosurg. 138, 1–8. doi: 10.3171/2022.8.JNS22888

Dhar, R., Hamzehloo, A., Kumar, A., Chen, Y., He, J., Heitsch, L., et al. (2021). 
Hemispheric CSF volume ratio quantifies progression and severity of cerebral edema 
after acute hemispheric stroke. J. Cereb. Blood Flow Metab. 41, 2907–2915. doi: 
10.1177/0271678X211018210

Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., et al. (2019). 
U-net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 
67–70. doi: 10.1038/s41592-018-0261-2

Greenberg, M. S. (2019). Handbook of neurosurgery. 9th Edn, New York: Thieme 
Medical Publishers.

Greenberg, S. M., Ziai, W. C., Cordonnier, C., Dowlatshahi, D., Francis, B., 
Goldstein, J. N., et al. (2022). 2022 guideline for the Management of Patients with 
Spontaneous Intracerebral Hemorrhage: a guideline from the American Heart 
Association/American Stroke Association. Stroke 53, e282–e361. doi: 10.1161/
STR.0000000000000407

Hawryluk, G. W. J., Rubiano, A. M., Totten, A. M., O’Reilly, C., Ullman, J. S., 
Bratton, S. L., et al. (2020). Guidelines for the Management of Severe Traumatic Brain 
Injury: 2020 update of the decompressive Craniectomy recommendations. Neurosurgery 
87, 427–434. doi: 10.1093/neuros/nyaa278

Heit, J. J., Iv, M., and Wintermark, M. (2017). Imaging of intracranial hemorrhage. J 
Stroke 19, 11–27. doi: 10.5853/jos.2016.00563

Hunter, O. F., Perry, F., Salehi, M., Bandurski, H., Hubbard, A., Ball, C. G., et al. (2023). 
Science fiction or clinical reality: a review of the applications of artificial intelligence along 
the continuum of trauma care. World J. Emerg. Surg. 18:16. doi: 10.1186/s13017-022-00469-1

Jain, S., Vyvere, T. V., Terzopoulos, V., Sima, D. M., Roura, E., Maas, A., et al. (2019). 
Automatic quantification of computed tomography features in acute traumatic brain 
injury. J. Neurotrauma 36, 1794–1803. doi: 10.1089/neu.2018.6183

Maas, A. I., Hukkelhoven, C. W., Marshall, L. F., and Steyerberg, E. W. (2005). 
Prediction of outcome in traumatic brain injury with computed tomographic 
characteristics: a comparison between the computed tomographic classification and 
combinations of computed tomographic predictors. Neurosurgery 57, 1173–1182. doi: 
10.1227/01.neu.0000186013.63046.6b

Marshall, L. F., Marshall, S. B., Klauber, M. R., Van Berkum Clark, M., Eisenberg, H., 
Jane, J. A., et al. (1992). The diagnosis of head injury requires a classification based on 
computed axial tomography. J. Neurotrauma 9, S287–S292.

Mönch, S., Sepp, D., Hedderich, D., Boeckh-Behrens, T., Berndt, M., Maegerlein, C., 
et al. (2020). Impact of brain volume and intracranial cerebrospinal fluid volume on the 
clinical outcome in endovascularly treated stroke patients. J. Stroke Cerebrovasc. Dis. 
29:104831. doi: 10.1016/j.jstrokecerebrovasdis.2020.104831

Mongan, J., Moy, L., and Kahn, C. E. Jr. (2020). Checklist for artificial intelligence in 
medical imaging (CLAIM): a guide for authors and reviewers. Radiol. Artif. Intell. 
2:e200029. doi: 10.1148/ryai.2020200029

Monteiro, M., Newcombe, V. F. J., Mathieu, F., Adatia, K., Kamnitsas, K., 
Ferrante, E., et al. (2020). Multiclass semantic segmentation and quantification of 
traumatic brain injury lesions on head CT using deep learning: an algorithm 
development and multicentre validation study. Lancet Digit Health. 2, e314–e322. 
doi: 10.1016/S2589-7500(20)30085-6

O'Neill, T. J., Xi, Y., Stehel, E., Browning, T., Ng, Y. S., Baker, C., et al. (2020). 
Active reprioritization of the Reading worklist using artificial intelligence has a 
beneficial effect on the turnaround time for interpretation of head CT with 
intracranial hemorrhage. Radiol. Artif. Intell. 3:e200024. doi: 10.1148/
ryai.2020200024

https://doi.org/10.3389/fnins.2024.1341734
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2024.1341734/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2024.1341734/full#supplementary-material
https://doi.org/10.1080/02699052.2018.1539871
https://doi.org/10.3389/fneur.2021.666875
https://doi.org/10.1227/01.NEU.0000210363.91172.A8
https://doi.org/10.1227/01.NEU.0000210366.36914.38
https://doi.org/10.1227/01.NEU.0000210365.36914.E3
https://doi.org/10.1227/NEU.0000000000001432
https://doi.org/10.1111/1742-6723.12557
https://doi.org/10.1016/j.nicl.2016.09.018
https://doi.org/10.3171/2022.8.JNS22888
https://doi.org/10.1177/0271678X211018210
https://doi.org/10.1038/s41592-018-0261-2
https://doi.org/10.1161/STR.0000000000000407
https://doi.org/10.1161/STR.0000000000000407
https://doi.org/10.1093/neuros/nyaa278
https://doi.org/10.5853/jos.2016.00563
https://doi.org/10.1186/s13017-022-00469-1
https://doi.org/10.1089/neu.2018.6183
https://doi.org/10.1227/01.neu.0000186013.63046.6b
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104831
https://doi.org/10.1148/ryai.2020200029
https://doi.org/10.1016/S2589-7500(20)30085-6
https://doi.org/10.1148/ryai.2020200024
https://doi.org/10.1148/ryai.2020200024


Puzio et al. 10.3389/fnins.2024.1341734

Frontiers in Neuroscience 11 frontiersin.org

Raju, B., Jumah, F., Ashraf, O., Narayan, V., Gupta, G., Sun, H., et al. (2020). Big data, 
machine learning, and artificial intelligence: a field guide for neurosurgeons [published 
online ahead of print, 2020 Oct 2]. J. Neurosurg. 135, 1–11. doi: 10.3171/2020.5.JNS201288

Rincon, S., Gupta, R., and Ptak, T. (2016). “Imaging of head trauma” in Neuroimaging 
part I. Handbook of clinical neurology, vol. 135 Eds. J. C. Masdeu and R. Gilberto 
González (Elsevier) 447–477.

Schmitt, N., Mokli, Y., Weyland, C. S., Gerry, S., Herweh, C., Ringleb, P. A., et al. 
(2022). Automated detection and segmentation of intracranial hemorrhage suspect 
hyperdensities in non-contrast-enhanced CT scans of acute stroke patients. Eur. Radiol. 
32, 2246–2254. doi: 10.1007/s00330-021-08352-4

Vos, P. E., van Voskuilen, A. C., Beems, T., Krabbe, P. F., and Vogels, O. J. (2001). 
Evaluation of the traumatic coma data bank computed tomography classification 

for severe head injury. J. Neurotrauma 18, 649–655. doi: 
10.1089/089771501750357591

Wilson, M. H. (2016). Monro-Kellie 2.0: the dynamic vascular and venous 
pathophysiological components of intracranial pressure. J. Cereb. Blood Flow Metab. 36, 
1338–1350. doi: 10.1177/0271678X16648711

Xu, B., Naiyan, W., Chen, T., and Li, M. (2015). Empirical evaluation of rectified 
activations in convolutional network. ArXiv.org. 1505.00853. doi: 10.48550/
arXiv.1505.00853,

Yamada, S., Otani, T., Ii, S., Kawano, H., Nozaki, K., Wada, S., et al. (2023). Aging-
related volume changes in the brain and cerebrospinal fluid using artificial intelligence-
automated segmentation [published online ahead of print, 2023 Apr 15]. Eur. Radiol. 33, 
7099–7112. doi: 10.1007/s00330-023-09632-x

https://doi.org/10.3389/fnins.2024.1341734
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.3171/2020.5.JNS201288
https://doi.org/10.1007/s00330-021-08352-4
https://doi.org/10.1089/089771501750357591
https://doi.org/10.1177/0271678X16648711
https://doi.org/10.48550/arXiv.1505.00853
https://doi.org/10.48550/arXiv.1505.00853
https://doi.org/10.1007/s00330-023-09632-x

	Automated volumetric evaluation of intracranial compartments and cerebrospinal fluid distribution on emergency trauma head CT scans to quantify mass effect
	1 Introduction
	2 Methods
	2.1 CT screening and neurosurgical assessment
	2.2 Manual segmentation
	2.3 Network architecture
	2.4 Image preprocessing
	2.5 CSF distribution ratios
	2.6 Statistical analysis

	3 Results
	4 Discussion
	4.1 Limitations

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

