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Introduction: Posterior Cortical Atrophy (PCA) is a syndrome characterized 
by a progressive decline in higher-order visuospatial processing, leading to 
symptoms such as space perception deficit, simultanagnosia, and object 
perception impairment. While PCA is primarily known for its impact on 
visuospatial abilities, recent studies have documented language abnormalities 
in PCA patients. This study aims to delineate the nature and origin of language 
impairments in PCA, hypothesizing that language deficits reflect the visuospatial 
processing impairments of the disease.

Methods: We compared the language samples of 25 patients with PCA with 
age-matched cognitively normal (CN) individuals across two distinct tasks: 
a visually-dependent picture description and a visually-independent job 
description task. We  extracted word frequency, word utterance latency, and 
spatial relational words for this comparison. We  then conducted an in-depth 
analysis of the language used in the picture description task to identify specific 
linguistic indicators that reflect the visuospatial processing deficits of PCA.

Results: Patients with PCA showed significant language deficits in the visually-
dependent task, characterized by higher word frequency, prolonged utterance 
latency, and fewer spatial relational words, but not in the visually-independent 
task. An in-depth analysis of the picture description task further showed that 
PCA patients struggled to identify certain visual elements as well as the overall 
theme of the picture. A predictive model based on these language features 
distinguished PCA patients from CN individuals with high classification accuracy.

Discussion: The findings indicate that language is a sensitive behavioral 
construct to detect visuospatial processing abnormalities of PCA. These insights 
offer theoretical and clinical avenues for understanding and managing PCA, 
underscoring language as a crucial marker for the visuospatial deficits of this 
atypical variant of Alzheimer’s disease.
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Introduction

Posterior cortical atrophy (PCA) is a clinico-radiological 
syndrome characterized by a progressive decline in higher-order 
visuospatial processing with relative preservation in other cognitive 
domains at initial presentation (Benson et al., 1988; Renner et al., 
2004; Crutch et al., 2017). Common visuospatial symptoms of the 
syndrome include impaired object and space perception, 
simultanagnosia, environmental agnosia, and visual field defects 
(Crutch et  al., 2017). From the neuroimaging perspective, the 
syndrome is associated with atrophy, hypometabolism, and usually tau 
deposition in posterior parietal, occipital, and temporo-occipital 
cortices (Whitwell et al., 2007; Lehmann et al., 2011). As the majority 
of PCA cases are due to underlying Alzheimer’s pathology, PCA is also 
referred to as the visual variant of Alzheimer’s disease (AD) (Levine 
et al., 1993; Alladi et al., 2007). While the diagnostic criteria for PCA 
indicate preserved functions in cognitive domains outside of 
visuospatial processing at symptom onset, a growing literature has 
documented language abnormalities in PCA emerging early in the 
course of the illness. Specifically, impaired category fluency and 
confrontation naming have been documented on formal 
neuropsychological assessments (Tang-Wai et al., 2004; McMonagle 
et al., 2006; Putcha et al., 2018, 2020). Language abnormalities are also 
evident during spontaneous speech, such as using higher frequency 
words and slowed speech rate (number of words per minute) (Crutch 
et al., 2013). These emerging observations suggest that there is still 
much to be  understood about the nature and origin of language 
impairments in PCA.

The specific types of language abnormalities observed in PCA 
may be  related to the network dysfunction that supports 
lexicosemantic retrieval, as has been previously postulated across the 
phenotypic spectrum of AD (Putcha et al., 2020). Another possible 
explanation is that the language abnormalities observed in PCA may 
stem from the visuospatial impairments central to the syndrome, 
rather than representing a primary language deficit. A large body of 
research supports close relationships between the visual processing of 
objects and the amodal semantic processing required for retrieving 
the names of those objects (Binder and Desai, 2011; Huth et al., 2016; 
Aliko et al., 2023). Recently, it has been shown that anterior to each 
region that is selective for the visual processing of a given category in 
the visual cortex, there is a corresponding area selective to its linguistic 
processing (Popham et  al., 2021). This anatomical and functional 
configuration suggests that the anterior border of the visual cortex acts 
as a convergence zone where information from the unimodal visual 
system enters the amodal linguistic systems involved in linguistic 
retrieval. Therefore, the successful production of a word that has visual 
attributes requires intact visual processing, essential for providing the 
information needed to retrieve its corresponding linguistic 
representation (i.e., its name). Therefore, deficits in visual processing 
would theoretically impede the production of words with visual 
attributes. If the pathophysiology of language abnormalities in PCA 
involves disrupted visual processing, then it stands to reason that tasks 
heavily dependent on visual processing will exhibit significant 
language impairments. Conversely, tasks with minimal reliance on 
visual input should result in relatively intact language performance.

In the current study, we  sought to test this hypothesis by 
contrasting the language used in two different speech samples as PCA 
participants described the Picnic scene from the Western Aphasia 

Battery (Kertesz et al., 2007) (visually dependent) and their prior jobs 
(visually independent). In each speech sample, we measured word 
frequency, word utterance latency, and the use of spatial relational 
words. For the picture description task, we hypothesized that PCA 
patients would use higher frequency words (e.g., replacing specific 
names of pictured items with superordinate words potentially 
including “thing”), have increased word utterance latency due to 
object recognition difficulty, and use fewer spatial relational words 
such as “into” or “underneath” compared to healthy individuals. For 
the non-visually dependent job description task, we expected these 
linguistic features to be  comparable between PCA patients and 
healthy individuals.

Building on the hypothesis that speech patterns in visually 
dependent tasks reflect visuospatial processing deficits, we  next 
sought to identify linguistic markers of these challenges. Specifically, 
we  investigated which elements in the picnic scene presented 
particular retrieval difficulties and whether PCA patients could 
intuitively grasp and articulate the overall theme of the scene, such 
as using the word “picnic.” Due to the difficulty with visually 
integrating a scene (simultanagnosia) (Tang-Wai et al., 2004; Singh 
et al., 2015; Cui et al., 2022), we hypothesized that PCA patients were 
less likely to verbalize the term “picnic” compared to healthy 
individuals. Lastly, to address the clinical significance of this work, 
we used the language features derived from the picture description 
task to develop a classifier aimed at distinguishing PCA patients from 
healthy individuals and hypothesized a high degree of 
classification accuracy.

Methods

Participants

PCA patients
Twenty-five patients diagnosed with PCA were recruited from the 

Massachusetts General Hospital (MGH) Frontotemporal Disorders 
Unit PCA program for this study (Wong et al., 2019). All but one was 
confirmed amyloid positive (A+) and tau positive (T+) by either CSF 
analysis or amyloid and tau PET. The remaining participant’s 
biomarker status is unknown due to a failed lumbar puncture. Each 
patient had posterior cortical atrophy and/or hypometabolism (see 
Putcha et al., 2019 for the atrophy map of our PCA cohort), consistent 
with the typical neurodegeneration (N+) of PCA. All participants 
received a standard clinical evaluation comprising a structured history 
obtained from both participant and informant, comprehensive 
neurological and psychiatric history, as well as neuropsychological 
assessment. See Table 1 for neuropsychological profiles of the PCA 
cohort included in this study. Clinicians determined the impaired 
performance of PCA patients using the available normative data on 
these tests (Humphreys and Riddoch, 1993; Delis et al., 2000; Stern 
and White, 2003; Herrera-Guzmán et al., 2004; Strauss et al., 2006; 
Shirk et al., 2011; Weintraub et al., 2018). The clinical formulation was 
performed through a consensus conference by our multidisciplinary 
team of neurologists, psychiatrists, neuropsychologists, and speech 
and language pathologists, with each patient classified based on all 
available clinical information as having a 3-step diagnostic formulation 
of mild cognitive impairment or dementia (Cognitive Functional 
Status), a specific Cognitive-Behavioral Syndrome, and a likely 
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etiologic neuropathologic diagnosis (Dickerson et al., 2017). Patients 
underwent neuroimaging sessions involving structural MRI, FTP PET, 
and amyloid (PiB or FBB) PET scans. Aβ positivity was determined 
by a combination of visual read and mean amyloid PET signal 
extracted from a cortical composite region of interest according to 
previously published procedures (Rabinovici et al., 2010; Villeneuve 
et al., 2015; Cho et al., 2023). Determination of tau positivity and 
neurodegeneration was conducted by visual read using internal 
methods similar to published work (Rabinovici et al., 2011; Fleisher et 
al., 2020; Sonni et al., 2020). This work was carried out according to 
The Code of Ethics of the World Medical Association (Declaration of 
Helsinki) for experiments involving humans. All participants and 
their caregivers provided informed consent in accordance with the 
protocol approved by the Mass General Brigham Human Research 
Committee Institutional Review Board in Boston, Massachusetts. A 
speech sample for the picture description task was acquired from all 

25 PCA participants. Twenty-one PCA participants also took part in 
the job description task.

Cognitively normal individuals
Twenty-nine cognitively normal (CN) participants (CN1) were 

enrolled through the Speech and Feeding Disorders Laboratory at the 
MGH Institute of Health Professions to participate in the picture 
description task. These participants passed a cognitive screen, were 
native English speakers, and had no history of neurologic injury or 
developmental speech/language disorders. Twenty-two CN 
participants (CN2) were additionally recruited through Amazon’s 
Mechanical Turk (MTurk) to describe their jobs. MTurk participants 
filled out the short and validated version of the 12-item Everyday 
Cognition questionnaire, a questionnaire designed to detect cognitive 
and functional decline (Tomaszewski Farias et  al., 2011). Only 
language samples from participants who were native English speakers 
with no self-reported history of brain injury or speech/language 
disorder, either developmental or acquired, were included in the 
analyses. Table 2 compares demographic data across patients with 
PCA and CN groups. There was no statistical difference in any 
demographic data between CN1 and CN2. CN groups were matched 
to PCA patients with respect to age, gender, and handedness. 
We  included healthy individuals if they had at least 12 years of 
education which resulted in PCA participants having higher average 
years of education than CN1 [t(33.47) = −3.07, p = 0.004] and CN2 
[t(39.13) = −3.42, p = 0.002]. To ensure that the difference in years of 
education did not confound our results of language analyses, 
we  conducted two additional analyses as presented in the 
Supplementary materials. We  found no correlations between the 
language variables of interest and years of education. Furthermore, 
we observed findings similar to our main results when we repeated the 
analyses in a subgroup of PCA patients and CN participants with 
matched years of education (see Supplementary materials).

Speech samples and data analysis

Speech samples were collected under two conditions. For the 
visually dependent task, participants described the Western Aphasia 
Battery—Revised (WAB-R) (Kertesz et al., 2007) Picnic Scene with the 
instruction to use full sentences. For the visually independent task, 
participants were asked to describe what they did for work. There were 
no time limits applied to either task. Autotranscription was done using 
Google Cloud Speech-to-Text API for audio transcription (Cloud 
Speech-to-Text API v1 - Package cloud, n.d.), and manually verified 
by a research staff blinded to the diagnosis.

Speech sample analysis
All feature extraction was performed automatically using 

Quantitext, a fully automated speech and language analysis toolbox 
we developed in the Frontotemporal Disorders Unit of Massachusetts 
General Hospital. The program provides an objective assessment of 
language to enhance the precision of clinical evaluations as described 
previously (Rezaii et al., 2022). The program receives audio samples 
from participants and employs automated techniques for transcription, 
such as the Google API, ensuring reliable transcription accuracy. The 
toolbox uses a variety of software packages, such as Stanza (Qi et al., 
2020) and Librosa (McFee et al., 2015) to conduct speech and language 

TABLE 1 Neuropsychological test data in Aß  +  posterior cortical atrophy 
(PCA).

Test Mean  ±  SD

Executive functions

Longest digit span forward 6.0 ± 1.6

Longest digit span backward 3.3 ± 1.0

Auditory addition (/12) 8.6 ± 3.5

Auditory subtraction (/12) 6.4 ± 3.8

Trail making test part A (seconds) 161.4 ± 59.0

Trail making test part B (seconds) 195.0 ± 53.7

Language

Boston naming test (/30) 18.6 ± 7.6

Boston naming test with phonemic cue (/30) 24.1 ± 11.7

Auditory naming test (% correct) 88.6 ± 18.0

Auditory naming test with phonemic cue (% correct) 95.0 ± 10.2

Letter fluency (FAS) 35.0 ± 18.2

Category fluency (Animals) 12.3 ± 5.1

Memory

Craft story immediate recall (/44) 10.3 ± 5.6

Craft story delayed recall (/44) 8.0 ± 5.6

CVLT-II-SF total recall (/36) 18.4 ± 7.0

CVLT-II-SF SDFR (/9) 4.2 ± 3.3

CVLT-II-SF LDFR (/9) 3.3 ± 3.1

CVLT-II-SF LDCR (/9) 3.6 ± 2.8

Visuospatial

BORB single object identification (/40) 28.8 ± 7.7

BORB overlapping object identification (/40) 12.6 ± 8.2

VOSP number location test (/10) 3.8 ± 2.5

NAB visual discrimination (/18) 8.5 ± 3.4

As a group, our PCA cohort demonstrated significant impairment in visuospatial functions 
and memory encoding and retrieval. Milder impairment was observed in specific language 
and memory tests. Performance on tests of simple attention (longest digit span forward) as 
well as auditory naming with phonemic cues was intact. CVLT-II-SF, California Verbal 
Learning Test- 2nd Edition – Short Form. SDFR, short delay free recall; LDFR, long delay 
free recall; LDCR, long delay cued recall; BORB, Birmingham object recognition battery; 
VOSP, visual object spatial perception test.
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analysis. The program generates a comprehensive set of text-based 
metrics, including the ratio of parts of speech and dependency 
relations to the total word count, word frequency, syntax frequency 
(Rezaii et al., 2022, 2023a), content units (Josephy-Hernandez et al., 
2023), total units, and efficiency of words (Rezaii et  al., 2023c). 
Additionally, Quantitext assesses audio-based features encompassing 
the three primary domains of time, frequency, and time-frequency. 
The variables used in this work are further described below.

Word frequency
To measure word frequency, we used the Switchboard corpus 

(Godfrey et  al., 1992), which consists of spontaneous telephone 
conversations averaging 6 min in length spoken by more than 500 
speakers of both sexes from a variety of American English dialects. 
We use this corpus to estimate word frequency in spoken English, 
independently of the patient and control sample. The corpus contains 
2,345,269 words. Here, word frequency denotes the log frequency of 
content words (comprised of nouns, verbs, adjectives, and adverbs).

Word utterance latency and articulation rate
Our analysis employed the Google Cloud Speech-to-Text API to 

ascertain word timestamps, pinpointing the onset and offset for each 
spoken word within the audio recordings. Speech rate—often 
quantified as the number of words spoken per minute—can vary 
based on factors such as word utterance latency and the individual 
articulation rate of each word. To ensure a more granular and accurate 
interpretation of the underlying phenomena, we  sidestepped 
aggregated metrics like speech rate, focusing instead on separately 
evaluating its constituent components. Word utterance latency is 
defined as the time interval preceding the articulation of a word. This 
method was applied on all except for the very first word in each 
sample, as the time to start the description task depends on multiple 
factors. Articulation rate measures the number of syllables per second 
(Cordella et al., 2019).

Spatial relational words
Relational words are automatically tagged by Stanza as “case.” For 

most words, the relational words are spatial, for example, the word 

“under” in the sentence “I found the gem under my bed.” In our 
analysis, we divided the number of relational words by the total words.

Content units
To determine which items within the picture posed greater 

challenges for PCA compared to CN participants, we coded the 
visual items using content units. Content units are words with 
correct information units that are intelligible in context and 
accurate about the picture or topic. Words do not have to be used 
in a grammatically correct manner to be counted as content units 
(Nicholas and Brookshire, 1993). Each content unit is only 
counted once, regardless of how many times it is mentioned in a 
sample. The morphological variants were grouped within one 
single content unit. For example, the nouns “girl” and “daughter” 
are considered the same content unit. Therefore, if one participant 
used both words (girl and daughter), they would only be counted 
as one content unit. To specify content units, Quantitext first 
generates a Python dictionary using a predefined set of words as 
previously described and then uses this dictionary to 
automatically identify all content units in new texts it  
receives. Previously, we showed that the program has an accuracy 
of 99.7% in identifying content units (Josephy-Hernandez 
et al., 2023).

Statistical analysis

We used Welch Two Sample t-tests to compare the language 
features across the two groups. We  performed point-biserial 
correlation analysis on our dataset to investigate the relationships 
between the likelihood of reporting each content unit and the group 
designation (with PCA coded as 1 for patients and 0 for healthy 
controls). We applied Bonferroni’s correction to account for multiple 
comparisons, setting the significance threshold at 0.0016 
(Bonferroni, 1935). For classification, we  used a binary logistic 
regression model. We employed a leave-one-out cross-validation 
(LOOCV) approach on our dataset to validate the model’s 
performance. In each iteration of the LOOCV, a single observation 
was set aside as the test data, and the remaining observations were 
used to train the model.

Results

Language abnormalities in PCA are 
observed during picture description but 
not job description

We first compared the speech samples of PCA participants 
describing the WAB Picnic Scene to the CN1 group to determine 
language abnormalities in this task. We also compared the speech 
sample from the job description task between the PCA and CN2 
groups (see Table 3). We used Welch Two Sample t-tests to compare 
the means of the following features across the two groups (Figure 1).

Picture description task
Patients with PCA used higher frequency words (i.e., more 

commonly used words) (mean = 6.50 ± 0.53) compared to healthy 

TABLE 2 Clinical characteristics of the Aß  +  posterior cortical atrophy 
(PCA) and cognitively normal (CN) group.

Demographics PCA (N  =  25) CN1 
(N  =  29)

CN2 
(N  =  22)

Age (years) 68.4 ± 7.8 65.3 ± 8.4 66.9 ± 7.0

Sex (M/F) 13/12 13/16 7/15

Education (years) 17.2 ± 2.1 15.7 ± 1.0 15.2 ± 1.7

Handedness (R/L/

Ambidextrous)

23/0/2 21/6/2 19/2/1

MoCA 14.6 ± 7.8

CDR CDR 0 (N = 1)

CDR 0.5 (N = 11)

CDR 1 (N = 10)

CDR 2 (N = 3)

CDR-SOB 4.5 ± 3.1

Means and standard deviations are reported for continuous variables. MoCA, Montreal 
cognitive assessment; CDR, clinical dementia rating scale; SOB, sum of box scores.
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controls (mean = 5.85 ± 0.40) [t(44.28) = −5.02, p < 0.001]. The time 
latency to the onset of words was longer for patients with PCA 
(mean = 0.38 ± 0.54) compared to healthy controls (mean = 0.03 ± 0.05) 
[t(24.34) = −3.20, p = 0.004]. We found that patients with PCA used 
fewer spatial relational terms (mean = 0.08 ± 0.03) compared to healthy 
controls (mean = 0.09 ± 0.02) [t(45.55) = 2.35, p = 0.023].

There was a trend toward a slower articulation rate in PCA 
patients (mean = 2.92 ± 0.60) compared to healthy controls 
(mean = 3.14 ± 0.35) [t(33.88) = 1.616, p  = 0.115], suggesting that 
slower speech rate may be  primarily due to an increased word 
utterance latency rather than articulation rate.

Job description task
There was a trend toward a slower articulation rate in PCA 

patients (mean = 6.20 ± 0.64) compared to healthy controls 
(mean = 6.22 ± 0.74) [t(40.66) = 0.13, p = 0.901]. Similarly, there was no 
significant difference in word utterance latency between PCA patients 
(mean = 0.10 ± 0.21) and healthy controls (mean = 0.06 ± 0.06) 
[t(23.42) = −0.83, p = 0.415]. No statistical difference was found in the 
use of relational words between PCA patients (mean = 0.10 ± 0.04) and 
healthy individuals (mean = 0.09 ± 0.02) [t(34.18) = −1.27, p = 0.213]. 
There was no difference in articulation rate in PCA patients 

TABLE 3 Comparing language features obtained from picture description and job description tasks across PCA patients and healthy individuals.

Picture description PCA CN1 t-statistics, p-value

Word frequency 6.50 ± 0.53 5.85 ± 0.40 t(44.28) = −5.02, p < 0.001

Word onset latency 0.38 ± 0.54 0.03 ± 0.05 t(24.34) = −3.20, p = 0.004

Spatial relational words 0.08 ± 0.03 0.09 ± 0.02 t(45.55) = 2.35, p = 0.023

Job description PCA CN2

Word frequency 6.20 ± 0.64 6.22 ± 0.74 t(40.66) = 0.13, p = 0.901

Word onset latency 0.10 ± 0.21 0.06 ± 0.06 t(23.42) = −0.83, p = 0.415

Spatial relational words 0.10 ± 0.04 0.09 ± 0.02 t(34.18) = −1.27, p = 0.213

FIGURE 1

Language differs between PCA and healthy controls on the picture description task but not the job description task. Violin plots comparing the 
language features extracted from the picnic scene (A) and job (B) description tasks across healthy controls and PCA patients. *** denotes p  <  0.001, ** 
indicates 0.001  <  p  <  0.01, and * shows 0.01  <  p  <  0.05. NS indicates not significantly different. The gray diamond indicates the m.
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(mean = 2.84 ± 0.45) compared to healthy controls (mean = 3.12 ± 0.45) 
[t(37.91) = 1.82, p = 0.077].

Specific language indicators of visuospatial 
processing deficits of PCA can be extracted 
from the picture description task

We next probed the samples obtained from the picture description 
task to extract the specific language features that reflect visuospatial 
impairment in PCA compared to healthy controls. First, 
we determined the likelihood of mentioning each content unit by each 
diagnostic group. The picture consists of 32 content units, as shown in 
Figure  2. We  performed point-biseral correlation analysis on our 
dataset to investigate the relationships between the likelihood of 
reporting each content unit and the group designation. As shown in 
Figure 2, we did not observe a uniform reduction in the likelihood of 
mentioning each content unit in PCA. Instead, certain content units 
had a much lower chance of being verbalized. Of all content units, 
“fisherman,” a small, central feature of the WAB Picnic scene, was the 
least likely to be mentioned by a patient with PCA compared with 
healthy controls (r = −0.85, p < 0.001). A few content units had a 
numerically higher, though not statistically significant, likelihood of 
being mentioned by patients with PCA compared to healthy 
individuals, such as “clouds” (r = 0.18, p = 0.186). Figure 3 is the artistic 
rending we developed to show the rate at which patients with PCA 
mention each content unit. We then compared the total number of 
content units retrieved across the two groups. Overall, PCA patients 
retrieved fewer content units (mean = 7.20 ± 5.63) compared to healthy 
individuals (mean = 16.28 ± 4.41) [t(45.21) = 6.52, p < 0.001]. Lastly, 
patients with PCA had a lower likelihood of reporting the overall 
theme of the picture (i.e., mentioning the word “picnic”) 

(mean = 0.16 ± 0.37), than healthy individuals did (mean = 0.90 ± 0.31) 
[t(46.77), p < 0.001].

Diagnostic classification

We used binary logistic regression to classify PCA and healthy 
individuals. Our predictor variables consisted of word frequency, 
word utterance latency, relational words, the total number of content 
units, and the probability of mentioning “picnic.” As the sixth variable, 
we included the probability of mentioning “fisherman” because this 
content unit had the highest correlation with the group designation, 
likely due to its visuospatial processing demands. The average 
accuracy of the model was 98.15% after leave-one-out cross-validation. 
The average precision across all iterations was found to be 0.96, which 
means that, on average, 96% of the predicted positive cases were actual 
positive cases. Moreover, the model demonstrated an average recall of 
1, indicating that it successfully identified all the positive cases from 
the test data in each iteration. We also evaluated the performance of 
the model using a Receiver Operating Characteristic (ROC) curve. 
The Area Under the Curve (AUC) was 1, indicating the perfect 
discrimination ability of the model (Figure  4). Similar prediction 
outcomes were achieved after word frequency was excluded as a 
predictor variable, resulting in the most parsimonious model with the 
highest prediction accuracy. Removing other variables led to a decline 
in the model’s prediction accuracy.

Discussion

Using computational linguistic analysis in PCA, our study 
illuminated a distinction in language performance between 

FIGURE 2

PCA participants and healthy individuals described different content units on the picture description task. The point-biserial correlation coefficients 
between the likelihood of reporting each content unit in the picnic scene and the designated group. Negative values indicate that PCA patients have a 
lower chance of mentioning the content unit compared to healthy individuals. *** denotes p  <  0.001, ** indicates 0.001  <  p  <  0.01, and * shows 
0.01  <  p  <  0.05. Bars without an asterisk are not significantly different.
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visually-dependent and visually-independent contexts. At the 
theoretical level, we used this method to show that at least some of the 
language abnormalities increasingly being identified in PCA are 

byproducts of visuospatial deficits characteristic of this atypical AD 
syndrome. On the visually-independent job description task, the 
characteristics of language production we measured here were not 

FIGURE 3

The likelihood of mentioning each content unit of the WAB Picnic Scene by healthy individuals (A) and PCA patients (B). The shading intensity of each 
item corresponds to its verbalization probability by participants, with darker elements indicating a higher likelihood of being mentioned by PCA patients 
and healthy individuals.
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impaired in patients with PCA. Translating our observations to 
clinical practice, we showed that computational linguistic analysis of 
a simple picture description task robustly classified nearly all PCA 
patients as distinct from healthy controls, supporting its value in 
clinical diagnostic evaluation.

Our work is consistent with studies showing rich connections 
between networks representing information directly received from 
senses and information conveyed through spoken language 
(Damasio, 1989; Ralph et al., 2017; Popham et al., 2021). Unimodal 
sensory information and abstract language information are 
combined at multiple points across the cortex, such as inferior 
parietal lobule (comprising the angular and supramarginal gyri) 
and large swaths of posterolateral temporal cortex (Mesulam, 
2000; Devereux et al., 2013), many of which can be affected in 
PCA. Therefore, language abnormalities in PCA may arise for at 
least two potential reasons. First, the neurodegeneration of PCA 
may extend beyond visuospatial areas to encompass regions 
involved in abstract language processing. In support of this 
hypothesis, evidence suggests that the brain regions affected in 
PCA overlap with those critical for word retrieval (Vonk et al., 
1991; Migliaccio et al., 2009; Warren et al., 2012; Ossenkoppele 
et al., 2015; Leyton et al., 2017). Alternatively, language anomalies 
may arise as a consequence of visuospatial deficits hindering the 
transfer of necessary sensory information for amodal 
language processing.

While these two possibilities are not mutually exclusive, our 
results suggest that language impairments might be  largely 
secondary to visuospatial dysfunction. In our analysis comparing 
a variety of speech and language properties of the narratives 
produced when PCA patients describe a complex visual scene 
versus a recounting of their primary occupation from memory, 
we  observed speech and language impairments in only the 
visually dependent picture description task. We  believe the 
increased word frequency and word utterance latency in the 

picture description task reflect visual deficits in object 
recognition. Similarly, the reduced use of spatial relational words 
may reflect the patients’ difficulty processing spatial relations 
between elements of the picnic scene. The absence of 
abnormalities in word frequency, word utterance latency, and 
relational words in the job description task provides evidence 
that these language impairments do not stem from an intrinsic 
deficit in the language system in PCA.

Since most daily communication is a blend of visuospatial 
cognition, episodic memory, and other cognitive domains, 
we  anticipate that an analysis of everyday speech would reveal 
linguistic deficiencies proportionate to the visuospatial load of its 
content. This expectation aligns with prior research reporting 
linguistic anomalies in participants recounting their recent holiday, 
an account that naturally encompasses the visuospatial processing of 
a recent event, such as where they went and what they saw (Crutch 
et al., 2013). Relatedly, it has been shown that the autobiographical 
narratives of patients with PCA have diminished spatiotemporal and 
perceptual details compared to healthy individuals. This finding 
likely stems from the impaired access of PCA patients to visual 
information, which plays a crucial role in constructing 
autobiographical memories (Ahmed et al., 2018). Furthermore, the 
narratives of patients with PCA have been shown to be spatially 
fragmented when they were asked to imagine and describe 
commonplace scenes (Ramanan et al., 2018). These findings provide 
converging evidence for the hypothesis that language reveals the 
visuospatial impairments of PCA proportionate to the visuospatial 
load of the content.

Another consideration in interpreting these task differences is that 
the picture description task required the use of specific linguistic 
elements representing the specific visual stimulus. It is also possible 
that when given fewer constraints in the job description task, 
individuals had the freedom to choose a potentially more familiar and 
more easily accessible language. Our explanation of the underlying 

FIGURE 4

Diagnostic performance of a model that distinguishes PCA patients from healthy individuals using linguistic features from the picture description task. 
(A) The scatter plot shows the predicted probabilities of classifying an individual as having PCA using selected linguistic features. Each point represents 
an individual participant, with colors indicating the group. The sigmoid curve illustrates the general trend of predicted probabilities. The dashed black 
line at the predicted probability of 0.5 serves as a decision threshold to classify between PCA patients and healthy individuals. Points are jittered 
vertically for better visualization. (B) ROC curve illustrating the performance of the logistic regression model in discriminating between PCA patients 
and healthy individuals, with an AUC value of 1 indicating the model’s overall perfect accuracy.
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language abnormalities in PCA is consistent with findings that showed 
a striking discrepancy between visual and verbal comprehension tasks 
in this population (Rogers et  al., 2006). Our conclusion is also 
synergistic with results reporting very mild impairment in semantic 
memory in PCA, indicating that the apparent semantic impairment 
in these conditions may be secondary to visual impairment (Rogers 
et al., 2006).

Based on the observation that language is a sensitive indicator of 
visuospatial impairments of PCA, we performed an in-depth content 
unit analysis of language elicited through the picture description task. 
First, we measured the probability of verbalizing each content unit of 
the picture. The most distinguishing feature between PCA patients 
and healthy individuals was the probability of mentioning the 
“fisherman.” While 93% of healthy participants mentioned this 
content unit, only 8% of PCA patients did so. This discrepancy could 
be attributed to the smaller size of this element in the picture. In 
addition, multiple elements are superimposed in the location of this 
content unit. Numerically, though not significantly, certain items, such 
as “clouds,” had a higher likelihood of being mentioned by PCA 
patients than healthy individuals. This type of analysis provides a 
naturalistic way of identifying the visuospatial elements that are 
particularly challenging for PCA patients and could help clinicians 
devise rehabilitative strategies to alleviate these challenges. Moreover, 
we  observed that PCA patients often missed describing the 
overarching theme of the image (“picnic”), even when they identified 
certain components related to it (“basket”). We believe this finding 
represents the effects of simultagnosia, which prevents many PCA 
patients from grasping the integrated theme of a composite 
visual entity.

Finally, when specific quantitative language metrics were 
employed to differentiate PCA patients from healthy individuals, 
our predictive model achieved a high level of performance, as 
evidenced by an AUC of 1 and an accuracy rate of 98.15%. 
Automating this linguistic evaluation from an easily acquired 
speech sample would facilitate the integration of measures like 
this into digital healthcare infrastructure, which a wide array of 
healthcare providers could potentially use once trained. This 
work extends our prior research, which used narrative data from 
a simple picture description task for a high accuracy classification 
of the three primary progressive aphasia variants (Rezaii et al., 
2022, 2023a,b). Future studies are needed to directly analyze the 
sensitivity and specificity of language predictors across a wide 
range of patient populations, examine the neurobiological 
underpinning of linguistic indicators of PCA, and address some 
of the limitations of this study. These limitations include the 
absence of neuropsychological scores for participants recruited 
via the MTurk online platform and the lack of normative data for 
tests used to determine the severity of PCA symptoms.  
Ultimately, these advancements will facilitate early diagnosis of 
PCA as well as monitoring response to disease-modifying, 
rehabilitative, or other therapies in this underserved atypical 
variant of AD.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Mass General 
Brigham Human Research Committee Institutional Review Board in 
Boston, Massachusetts. The studies were conducted in accordance 
with the local legislation and institutional requirements. The 
participants provided their written informed consent to participate in 
this study.

Author contributions

NR: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Investigation, Methodology, Project administration, 
Resources, Software, Supervision, Validation, Visualization, Writing 
– original draft, Writing – review & editing. DH: Data curation, 
Writing – review & editing. MQ: Data curation, Writing – review & 
editing. BW: Data curation, Writing – review & editing. SM: Data 
curation, Resources, Writing – review & editing. BD: 
Conceptualization, Data curation, Funding acquisition, Investigation, 
Methodology, Project administration, Resources, Supervision, Writing 
– original draft, Writing – review & editing. DP: Conceptualization, 
Data curation, Formal analysis, Funding acquisition, Investigation, 
Methodology, Project administration, Resources, Supervision, Writing 
– original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This research 
was supported by NIH grants K23 AG065450, RF1 NS131395, R01 
DC014296, R21 DC019567, R21 AG073744, P50 AG005134, and P30 
AG062421, Alzheimer’s Association grant 23AACSF-1029880 and by 
the Tommy Rickles Chair in Primary Progressive Aphasia Research.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2024.1342909/
full#supplementary-material

https://doi.org/10.3389/fnins.2024.1342909
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2024.1342909/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2024.1342909/full#supplementary-material


Rezaii et al. 10.3389/fnins.2024.1342909

Frontiers in Neuroscience 10 frontiersin.org

References
Ahmed, S., Irish, M., Loane, C., Baker, I., Husain, M., Thompson, S., et al. (2018). 

Association between precuneus volume and autobiographical memory impairment in 
posterior cortical atrophy: beyond the visual syndrome. NeuroImage Clin. 18, 822–834. 
doi: 10.1016/j.nicl.2018.03.008

Aliko, S., Wang, B., Small, S. L., and Skipper, J. I. (2023). The entire brain, more or less is at 
work: ‘language regions’ are artefacts of averaging. bio Rxiv. doi: 10.1101/2023.09.01.555886v1

Alladi, S., Xuereb, J., Bak, T., Nestor, P., Knibb, J., Patterson, K., et al. (2007). Focal 
cortical presentations of Alzheimer’s disease. Brain J. Neurol. 130, 2636–2645. doi: 
10.1093/brain/awm213

Benson, D. F., Davis, R. J., and Snyder, B. D. (1988). Posterior cortical atrophy. Arch. 
Neurol. 45, 789–793. doi: 10.1001/archneur.1988.00520310107024

Binder, J. R., and Desai, R. H. (2011). The neurobiology of semantic memory. Trends 
Cogn. Sci. 15, 527–536. doi: 10.1016/j.tics.2011.10.001

Bonferroni, C. E. (1935). “Il calcolo delle assicurazioni su gruppi di teste” in Studi in 
Onore del Professore Salvatore Ortu Carboni. G. Bardi ed Rome, Italy:Tipografia del 
Senato del dott. 13–60.

Cho, H., Mundada, N. S., Apostolova, L. G., Carrillo, M. C., Shankar, R., Amuiri, A. N., 
et al. (2023). Amyloid and tau-PET in early-onset AD: baseline data from the 
longitudinal early-onset Alzheimer’s disease study (LEADS). Alzheimers Dement.:13453.  
doi: 10.1002/alz.13453

Cloud Speech-to-Text API v1  - Package cloud. Go client library|Google Cloud 
[Internet]. Available at: www.google.com/go/speech/apiv1(v1.19.0) and https://cloud.
google.com/go/docs/reference/cloud.google.com/go/speech/latest/apiv1

Cordella, C., Quimby, M., Touroutoglou, A., Brickhouse, M., Dickerson, B. C., and 
Green, J. R. (2019). Quantification of motor speech impairment and its anatomic basis 
in primary progressive aphasia. Neurology 92, e1992–e2004. doi: 10.1212/
WNL.0000000000007367

Crutch, S. J., Lehmann, M., Warren, J. D., and Rohrer, J. D. (2013). The language profile 
of posterior cortical atrophy. J. Neurol. Neurosurg. Psychiatry 84, 460–466. doi: 10.1136/
jnnp-2012-303309

Crutch, S. J., Schott, J. M., Rabinovici, G. D., Murray, M., Snowden, J. S., van der 
Flier, W. M., et al. (2017). Consensus classification of posterior cortical atrophy. 
Alzheimers Dement. J. Alzheimers Assoc. 13, 870–884. doi: 10.1016/j.jalz.2017.01.014

Cui, Y., Liu, Y., Yang, C., Cui, C., Jing, D., Zhang, X., et al. (2022). Brain structural and 
functional anomalies associated with simultanagnosia in patients with posterior cortical 
atrophy. Brain Imaging Behav. 16, 1148–1162. doi: 10.1007/s11682-021-00568-8

Damasio, A. R. (1989). Time-locked multiregional retroactivation: a systems-level 
proposal for the neural substrates of recall and recognition. Cognition 33, 25–62. doi: 
10.1016/0010-0277(89)90005-X

Delis, DC, Kramer, JH, Kaplan, E, and Thompkins, BAO. California verbal learning 
test-second edition (CVLT-II). San Antonio, TX: Psychological Corporation; (2000) 91

Devereux, B. J., Clarke, A., Marouchos, A., and Tyler, L. K. (2013). Representational 
similarity analysis reveals commonalities and differences in the semantic processing of 
words and objects. J. Neurosci. 33, 18906–18916. doi: 10.1523/JNEUROSCI.3809-13.2013

Dickerson, B. C., McGinnis, S. M., Xia, C., Price, B. H., Atri, A., Murray, M. E., et al. 
(2017). Approach to atypical Alzheimer’s disease and case studies of the major subtypes. 
CNS Spectr. 22, 439–449. doi: 10.1017/S109285291600047X

Fleisher, A. S., Pontecorvo, M. J., Devous, M. D. Sr., Lu, M., Arora, A. K., 
Truocchio, S. P., et al. (2020). Positron emission tomography imaging with [18F] 
flortaucipir and postmortem assessment of Alzheimer disease Neuropathologic changes. 
JAMA Neurol. 77, 829–839. doi: 10.1001/jamaneurol.2020.0528

Godfrey, JJ, Holliman, EC, and McDaniel, J. SWITCHBOARD: telephone speech 
corpus for research and development. In Proceedings of the 1992 IEEE international 
conference on acoustics, speech and signal processing San Francisco, CA, USA: IEEE 
Computer Society (1992). 517–520

Herrera-Guzmán, I., Peña-Casanova, J., Lara, J. P., Gudayol-Ferré, E., and Böhm, P. 
(2004). Influence of age, sex, and education on the visual object and space perception 
battery (VOSP) in a healthy normal elderly population. Clin. Neuropsychol. 18, 385–394. 
doi: 10.1080/1385404049052421

Humphreys, GW, and Riddoch, JM. (1993). BORB: Birmingham object recognition 
battery. Available at https://www.routledge.com/BORB-Birmingham-Object-
Recognition-Battery/Riddoch-Humphreys/p/book/9780863773150

Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., and Gallant, J. L. (2016). 
Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 
453–458. doi: 10.1038/nature17637

Josephy-Hernandez, S., Rezaii, N., Jones, A., Loyer, E., Hochberg, D., Quimby, M., et al. 
(2023). Automated analysis of written language in the three variants of primary progressive 
aphasia. Brain Commun. 5:fcad 202. doi: 10.1093/braincomms/fcad202

Kertesz, A, Kertesz, A, and Raven, JC, Psych Corp (firm). WAB-R: Western aphasia 
battery-revised. San Antonio, TX: Psych Corp (2007)

Lehmann, M., Crutch, S. J., Ridgway, G. R., Ridha, B. H., Barnes, J., Warrington, E. K., 
et al. (2011). Cortical thickness and voxel-based morphometry in posterior cortical 

atrophy and typical Alzheimer’s disease. Neurobiol. Aging 32, 1466–1476. doi: 10.1016/j.
neurobiolaging.2009.08.017

Levine, D. N., Lee, J. M., and Fisher, C. M. (1993). The visual variant of Alzheimer’s 
disease: a clinicopathologic case study. Neurology 43, 305–313. doi: 10.1212/
WNL.43.2.305

Leyton, C. E., Hodges, J. R., Piguet, O., and Ballard, K. J. (2017). Common and 
divergent neural correlates of anomia in amnestic and logopenic presentations of 
Alzheimer’s disease. Cortex J Devoted Study Nerv. Syst. Behav. 86, 45–54. doi: 10.1016/j.
cortex.2016.10.019

McFee, B, Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenbergk, E, et al.  
(2015)  “librosa: Audio and music signal analysis in python.” In Proceedings of the 14th 
python in science conference. 18–25.

McMonagle, P., Deering, F., Berliner, Y., and Kertesz, A. (2006). The cognitive profile 
of posterior cortical atrophy. Neurology 66, 331–338. doi: 10.1212/01.
wnl.0000196477.78548.db

Mesulam, M. M. (2000). (ed.) “Behavioral neuroanatomy” in Principles of behavioral 
and cognitive neurology. 2nd ed (Oxford, New York: Oxford University Press)

Migliaccio, R., Agosta, F., Rascovsky, K., Karydas, A., Bonasera, S., Rabinovici, G. D., 
et al. (2009). Clinical syndromes associated with posterior atrophy: early age at onset 
AD spectrum. Neurology 73, 1571–1578. doi: 10.1212/WNL.0b013e3181c0d427

Nicholas, L. E., and Brookshire, R. H. (1993). A system for quantifying the 
informativeness and efficiency of the connected speech of adults with aphasia. J. Speech 
Hear. Res. 36, 338–350. doi: 10.1044/jshr.3602.338

Ossenkoppele, R., Cohn-Sheehy, B. I., La Joie, R., Vogel, J. W., Möller, C., Lehmann, M., 
et al. (2015). Atrophy patterns in early clinical stages across distinct phenotypes of 
Alzheimer’s disease. Hum. Brain Mapp. 36, 4421–4437. doi: 10.1002/hbm.22927

Popham, S. F., Huth, A. G., Bilenko, N. Y., Deniz, F., Gao, J. S., Nunez-Elizalde, A. O., 
et al. (2021). Visual and linguistic semantic representations are aligned at the border of 
human visual cortex. Nat. Neurosci. 24, 1628–1636. doi: 10.1038/s41593-021-00921-6

Putcha, D., Brickhouse, M., Touroutoglou, A., Collins, J. A., Quimby, M., Wong, B., et al. 
(2019). Visual cognition in non-amnestic Alzheimer’s disease: relations to tau, amyloid, and 
cortical atrophy. Neuro Image Clin. 23:101889. doi: 10.1016/j.nicl.2019.101889

Putcha, D., Dickerson, B. C., Brickhouse, M., Johnson, K. A., Sperling, R. A., and 
Papp, K. V. (2020). Word retrieval across the biomarker-confirmed Alzheimer’s disease 
syndromic spectrum. Neuropsychologia 140:107391. doi: 10.1016/j.
neuropsychologia.2020.107391

Putcha, D., McGinnis, S. M., Brickhouse, M., Wong, B., Sherman, J. C., and 
Dickerson, B. C. (2018). Executive dysfunction contributes to verbal encoding and 
retrieval deficits in posterior cortical atrophy. Cortex J. Devoted Study Nerv. Syst. Behav. 
106, 36–46. doi: 10.1016/j.cortex.2018.04.010

Qi, P, Zhang, Y, Zhang, Y, Bolton, J, and Manning, CD. Stanza: a Python natural 
language processing toolkit for many human languages. In Proceedings of the 58th 
annual meeting of the Association for Computational Linguistics: System 
demonstrations. (2020)

Rabinovici, G. D., Furst, A. J., Alkalay, A., Racine, C. A., O’Neil, J. P., Janabi, M., et al. 
(2010). Increased metabolic vulnerability in early-onset Alzheimer’s disease is not 
related to amyloid burden. Brain 133, 512–528. doi: 10.1093/brain/awp326

Rabinovici, G. D., Rosen, H. J., Alkalay, A., Kornak, J., Furst, A. J., Agarwal, N., et al. 
(2011). Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 
77, 2034–2042. doi: 10.1212/WNL.0b013e31823b9c5e

Ralph, M. A. L., Jefferies, E., Patterson, K., and Rogers, T. T. (2017). The neural and 
computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55. doi: 10.1038/
nrn.2016.150

Ramanan, S., Alaeddin, S., Goldberg, Z., Strikwerda-Brown, C., Hodges, J. R., and 
Irish, M. (2018). Exploring the contribution of visual imagery to scene construction – 
evidence from posterior cortical atrophy. Cortex 106, 261–274. doi: 10.1016/j.
cortex.2018.06.016

Renner, J. A., Burns, J. M., Hou, C. E., McKeel, D. W., Storandt, M., and Morris, J. C. 
(2004). Progressive posterior cortical dysfunction: a clinicopathologic series. Neurology 
63, 1175–1180. doi: 10.1212/01.WNL.0000140290.80962.BF

Rezaii, N., Mahowald, K., Ryskin, R., Dickerson, B., and Gibson, E. (2022). A syntax-
lexicon trade-off in language production. Proc. Natl. Acad. Sci. U. S. A 119:e2120203119. 
doi: 10.1073/pnas.2120203119

Rezaii, N., Michaelov, J., Josephy-Hernandez, S., Ren, B., Hochberg, D., Quimby, M., 
et al. (2023a). Measuring sentence information via Surprisal: theoretical and clinical 
implications in nonfluent aphasia. Ann. Neurol. 94, 647–657. doi: 10.1002/ana.26744

Rezaii, N., Quimby, M., Wong, B., Hochberg, D., Brickhouse, M., Touroutoglou, A., 
et al. (2023b). Using generative artificial intelligence to classify primary progressive 
aphasia from connected speech. Med Rxiv. doi: 10.1101/2023.12.22.23300470v1

Rezaii, N., Ren, B., Quimby, M., Hochberg, D., and Dickerson, B. C. (2023c). Less is 
more in language production: an information-theoretic analysis of agrammatism in 
primary progressive aphasia. Brain Commun. 5:fcad136. doi: 10.1093/braincomms/
fcad136

https://doi.org/10.3389/fnins.2024.1342909
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.nicl.2018.03.008
https://doi.org/10.1101/2023.09.01.555886v1
https://doi.org/10.1093/brain/awm213
https://doi.org/10.1001/archneur.1988.00520310107024
https://doi.org/10.1016/j.tics.2011.10.001
https://doi.org/10.1002/alz.13453
http://www.google.com/go/speech/apiv1(v1.19.0)
https://cloud.google.com/go/docs/reference/cloud.google.com/go/speech/latest/apiv1
https://cloud.google.com/go/docs/reference/cloud.google.com/go/speech/latest/apiv1
https://doi.org/10.1212/WNL.0000000000007367
https://doi.org/10.1212/WNL.0000000000007367
https://doi.org/10.1136/jnnp-2012-303309
https://doi.org/10.1136/jnnp-2012-303309
https://doi.org/10.1016/j.jalz.2017.01.014
https://doi.org/10.1007/s11682-021-00568-8
https://doi.org/10.1016/0010-0277(89)90005-X
https://doi.org/10.1523/JNEUROSCI.3809-13.2013
https://doi.org/10.1017/S109285291600047X
https://doi.org/10.1001/jamaneurol.2020.0528
https://doi.org/10.1080/1385404049052421
https://www.routledge.com/BORB-Birmingham-Object-Recognition-Battery/Riddoch-Humphreys/p/book/9780863773150
https://www.routledge.com/BORB-Birmingham-Object-Recognition-Battery/Riddoch-Humphreys/p/book/9780863773150
https://doi.org/10.1038/nature17637
https://doi.org/10.1093/braincomms/fcad202
https://doi.org/10.1016/j.neurobiolaging.2009.08.017
https://doi.org/10.1016/j.neurobiolaging.2009.08.017
https://doi.org/10.1212/WNL.43.2.305
https://doi.org/10.1212/WNL.43.2.305
https://doi.org/10.1016/j.cortex.2016.10.019
https://doi.org/10.1016/j.cortex.2016.10.019
https://doi.org/10.1212/01.wnl.0000196477.78548.db
https://doi.org/10.1212/01.wnl.0000196477.78548.db
https://doi.org/10.1212/WNL.0b013e3181c0d427
https://doi.org/10.1044/jshr.3602.338
https://doi.org/10.1002/hbm.22927
https://doi.org/10.1038/s41593-021-00921-6
https://doi.org/10.1016/j.nicl.2019.101889
https://doi.org/10.1016/j.neuropsychologia.2020.107391
https://doi.org/10.1016/j.neuropsychologia.2020.107391
https://doi.org/10.1016/j.cortex.2018.04.010
https://doi.org/10.1093/brain/awp326
https://doi.org/10.1212/WNL.0b013e31823b9c5e
https://doi.org/10.1038/nrn.2016.150
https://doi.org/10.1038/nrn.2016.150
https://doi.org/10.1016/j.cortex.2018.06.016
https://doi.org/10.1016/j.cortex.2018.06.016
https://doi.org/10.1212/01.WNL.0000140290.80962.BF
https://doi.org/10.1073/pnas.2120203119
https://doi.org/10.1002/ana.26744
https://doi.org/10.1101/2023.12.22.23300470v1
https://doi.org/10.1093/braincomms/fcad136
https://doi.org/10.1093/braincomms/fcad136


Rezaii et al. 10.3389/fnins.2024.1342909

Frontiers in Neuroscience 11 frontiersin.org

Rezaii, N., Wolff, P., and Price, B. H. (2022). Natural language processing in psychiatry: 
the promises and perils of a transformative approach. Br. J. Psychiatry 220, 251–253. doi: 
10.1192/bjp.2021.188

Rogers, T. T., Ivanoiu, A., Patterson, K., and Hodges, J. R. (2006). Semantic memory 
in Alzheimer’s disease and the frontotemporal dementias: a longitudinal study of 236 
patients. Neuropsychology 20, 319–335. doi: 10.1037/0894-4105.20.3.319

Shirk, S. D., Mitchell, M. B., Shaughnessy, L. W., Sherman, J. C., Locascio, J. J., 
Weintraub, S., et al. (2011). A web-based normative calculator for the uniform data set 
(UDS) neuropsychological test battery. Alzheimers Res. Ther. 3:32. doi: 10.1186/alzrt94

Singh, T. D., Josephs, K. A., Machulda, M. M., Drubach, D. A., Apostolova, L. G., 
Lowe, V. J., et al. (2015). Clinical, FDG and amyloid PET imaging in posterior cortical 
atrophy. J. Neurol. 262, 1483–1492. doi: 10.1007/s00415-015-7732-5

Sonni, I., Lesman Segev, O. H., Baker, S. L., Iaccarino, L., Korman, D., Rabinovici, G. D., 
et al. (2020). For the Alzheimer's disease neuroimaging initiative evaluation of a visual 
interpretation method for tau-PET with 18F-flortaucipir. DADM 12:e12133. doi: 
10.1002/dad2.12133

Stern, RA, and White, T. Neuropsychological assessment battery. Psychological 
assessment resources. Lutz, FL; (2003). Available at: https://www.parinc.com/
Products?pkey=260

Strauss, E., Sherman, E. M. S., and Spreen, O. (2006). A compendium of 
neuropsychological tests: Administration, norms, and commentary New York, USA: 
Oxford University Press, 1235.

Tang-Wai, D. F., Graff-Radford, N. R., Boeve, B. F., Dickson, D. W., Parisi, J. E., 
Crook, R., et al. (2004). Clinical, genetic, and neuropathologic characteristics of 
posterior cortical atrophy. Neurology 63, 1168–1174. doi: 10.1212/01.
WNL.0000140289.18472.15

Tomaszewski Farias, S., Mungas, D., Harvey, D. J., Simmons, A., Reed, B. R., and 
Decarli, C. (2011). The measurement of everyday cognition: development and validation 
of a short form of the everyday cognition scales. Alzheimers Dement. J. Alzheimers Assoc. 
7, 593–601. doi: 10.1016/j.jalz.2011.02.007

Villeneuve, S., Rabinovici, G. D., Cohn-Sheehy, B. I., Madison, C., Ayakta, N., 
Ghosh, P. M., et al. (2015). Existing Pittsburgh compound-B positron emission 
tomography thresholds are too high: statistical and pathological evaluation. Brain 138, 
2020–2033. doi: 10.1093/brain/awv112

Vonk, J. M. J., Rizvi, B., Lao, P. J., Budge, M., Manly, J. J., Mayeux, R., et al. (1991). 
Letter and category fluency performance correlates with distinct patterns of 
cortical thickness in older adults. Cereb Cortex N Y N 29, 2694–2700. doi: 10.1093/
cercor/bhy138

Warren, J. D., Fletcher, P. D., and Golden, H. L. (2012). The paradox of syndromic 
diversity in Alzheimer disease. Nat. Rev. Neurol. 8, 451–464. doi: 10.1038/
nrneurol.2012.135

Weintraub, S., Besser, L., Dodge, H. H., Teylan, M., Ferris, S., Goldstein, F. C., et al. 
(2018). Version 3 of the Alzheimer disease centers’ neuropsychological test battery in 
the uniform data set (UDS). Alzheimer Dis. Assoc. Disord. 32, 10–17. doi: 10.1097/
WAD.0000000000000223

Whitwell, J. L., Jack, C. R., Kantarci, K., Weigand, S. D., Boeve, B. F., Knopman, D. S., 
et al. (2007). Imaging correlates of posterior cortical atrophy. Neurobiol. Aging 28, 
1051–1061. doi: 10.1016/j.neurobiolaging.2006.05.026

Wong, B., Lucente, D. E., Mac Lean, J., Padmanabhan, J., Quimby, M., Brandt, K. D., 
et al. (2019). Diagnostic evaluation and monitoring of patients with posterior cortical 
atrophy. Neurodegener. Dis. Manag. 9, 217–239.

https://doi.org/10.3389/fnins.2024.1342909
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1192/bjp.2021.188
https://doi.org/10.1037/0894-4105.20.3.319
https://doi.org/10.1186/alzrt94
https://doi.org/10.1007/s00415-015-7732-5
https://doi.org/10.1002/dad2.12133
https://www.parinc.com/Products?pkey=260
https://www.parinc.com/Products?pkey=260
https://doi.org/10.1212/01.WNL.0000140289.18472.15
https://doi.org/10.1212/01.WNL.0000140289.18472.15
https://doi.org/10.1016/j.jalz.2011.02.007
https://doi.org/10.1093/brain/awv112
https://doi.org/10.1093/cercor/bhy138
https://doi.org/10.1093/cercor/bhy138
https://doi.org/10.1038/nrneurol.2012.135
https://doi.org/10.1038/nrneurol.2012.135
https://doi.org/10.1097/WAD.0000000000000223
https://doi.org/10.1097/WAD.0000000000000223
https://doi.org/10.1016/j.neurobiolaging.2006.05.026

	Language uncovers visuospatial dysfunction in posterior cortical atrophy: a natural language processing approach
	Introduction
	Methods
	Participants
	PCA patients
	Cognitively normal individuals
	Speech samples and data analysis
	Speech sample analysis
	Word frequency
	Word utterance latency and articulation rate
	Spatial relational words
	Content units
	Statistical analysis

	Results
	Language abnormalities in PCA are observed during picture description but not job description
	Picture description task
	Job description task
	Specific language indicators of visuospatial processing deficits of PCA can be extracted from the picture description task
	Diagnostic classification

	Discussion
	Data availability statement
	Ethics statement
	Author contributions

	 References

