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The GLP-1 receptor agonist 
exenatide improves recovery 
from spinal cord injury by 
inducing macrophage 
polarization toward the M2 
phenotype
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Japan

Although a wide variety of mechanisms take part in the secondary injury 
phase of spinal cord injury (SCI), inflammation is the most important factor 
implicated in the sequelae after SCI. Being central to the inflammation reaction, 
macrophages and their polarization are a topic that has garnered wide interest 
in the studies of SCI secondary injury. The glucagon-like peptide 1 (GLP-1) 
receptor agonist exenatide has been shown to enhance the endoplasmic 
reticulum stress response and improve motor function recovery after spinal 
cord injury (SCI). Since exenatide has also been reported to induce the 
production of M2 cells in models of cerebral infarction and neurodegenerative 
diseases, this study was conducted to examine the effects of exenatide 
administration on the inflammation process that ensues after spinal cord injury. 
In a rat contusion model of spinal cord injury, the exenatide group received a 
subcutaneous injection of 10  μg exenatide immediately after injury while those 
in the control group received 1  mL of phosphate-buffered saline. Quantitative 
RT-PCR and immunohistochemical staining were used to evaluate the effects 
of exenatide administration on the macrophages infiltrating the injured spinal 
cord, especially with regard to macrophage M1 and M2 profiles. The changes 
in hind limb motor function were assessed based on Basso, Beattie, Bresnahan 
locomotor rating scale (BBB scale) scores. The improvement in BBB scale 
scores was significantly higher in the exenatide group from day 7 after injury 
and onwards. Quantitative RT-PCR revealed an increase in the expression of 
M2 markers and anti-inflammatory interleukins in the exenatide group that was 
accompanied by a decrease in the expression of M1 markers and inflammatory 
cytokines. Immunohistochemical staining showed no significant difference in 
M1 macrophage numbers between the two groups, but a significantly higher 
number of M2 macrophages was observed in the exenatide group on day 3 after 
injury. Our findings suggest that exenatide administration promoted the number 
of M2-phenotype macrophages after SCI, which may have led to the observed 
improvement in hind limb motor function in a rat model of SCI.
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1 Introduction

Traumatic spinal cord injury (SCI) can be broadly subdivided into 
two phases: the primary injury directly caused by a traumatic external 
force, and the secondary injury that involves a complex vascular, 
cellular, and biochemical cascade that leads to necrosis and apoptosis 
of surrounding cells affecting a wider area (Beattie et al., 2000; Oyinbo, 
2011; Borgens and Liu-Snyder, 2012). As the primary injury is 
unavoidable, treatment for SCI mainly focuses on mitigating the 
secondary injury. This study aims to establish a treatment for SCI 
using a drug that is already approved for use in the Japanese market 
for the treatment of type-2 diabetes. Glucagon-like peptide 1 (GLP-1) 
reduces blood sugar levels by stimulating insulin secretion from 
pancreatic islet β cells, and GLP-1 receptor agonists function by 
binding to GLP-1 receptors distributed throughout the body, including 
the central nervous system.

Various studies have examined the effects of multiple GLP-1 
receptor agonists for the treatment of several neurological conditions 
and have reported beneficial effects (Graaf et al., 2016; Zhao et al., 
2021; Kopp et al., 2022). While GLP-1 receptor agonists have been 
approved as a treatment for type-2 diabetes, recent research has 
uncovered that its effects are wide-ranging. In type-2 diabetes, 
pancreatic islet cell function declines due to chronic nonspecific 
inflammatory reactions including oxidative stress, endoplasmic 
reticulum stress, and mitochondrial dysfunction (Böni-Schnetzler and 
Meier, 2019), and the anti-inflammatory properties of GLP-1 receptor 
agonists improve islet cell function (Nauck et al., 2021). This anti-
inflammatory function has benefits in the central nervous system as 
well (Diz-Chaves et al., 2022), and GLP-1 receptor agonists have been 
shown to be neuroprotective in animal models of Alzheimer’s disease 
(Perry and Greig, 2002; Reich and Holscher, 2022; Holscher, 2022a; 
Perry et al., 2023), Parkinson’s disease (Aviles-Olmos et al., 2013; Feng 
et  al., 2018; Reich and Holscher, 2022; Holscher, 2022b), epilepsy 
(Wang et al., 2018), and stroke (Li et al., 2009; Teramoto et al., 2011). 
The robust data gained from animal studies has prompted the 
examination of GLP-1 receptor agonists in clinical trials of Alzheimer’s 
disease (Gerstein et  al., 2019; Cukierman-Yaffe et  al., 2020) and 
Parkinson’s disease (Aviles-Olmos et  al., 2013, 2014) with 
promising results.

The neurotrophic/neuroprotective activities of GLP-1 receptor 
agonists have also been reported in the field of traumatic brain injury 
(Combs, 2015; Li Y et al., 2015; Glotfelty et al., 2019). This is highly 
relevant because the neuroinflammatory cascade seen in the 
secondary phase of traumatic brain injury mirrors that of SCI. In the 
secondary phase of injury in both the brain and the spinal cord which 
begins immediately following the primary injury, there are multiple 
factors that come into play, including vascular damage of the blood–
brain/spinal cord barrier that causes edema, accumulation of 
excitotoxic neurotransmitters and free radicals that exacerbate 
inflammation, calcium influx as well as lipid peroxidation that 
collectively cause wide-spread necrotic cell death (Popovich et al., 
2002; Donnelly and Popovich, 2008; Oyinbo, 2011; Chavez-Gala et al., 
2015; von Leden et al., 2017). In the subacute to chronic phase of 
secondary injury, apoptosis, demyelination of surviving axons, axonal 
dieback, and Wallerian degeneration lead to loss of tissue and matrix 
remodeling that creates a cavity surrounded by a glial scar (Katoh 
et al., 2019). While stem cell therapy is a hot topic in the field of SCI 
research, many more patients could potentially benefit if the 

devastating effects of secondary injury could be mitigated; the use of 
GLP-1 receptor agonists is one of drugs being looked into as a 
potential pharmacological agent to protect against secondary injury.

While there is a diversity of GLP-1 receptor agonists, exenatide is 
the drug most studied, possibly due to its relatively high penetration 
of the blood–brain/spinal cord barrier (Athauda et al., 2017; Salameh 
et al., 2020). We previously reported that exenatide enhanced the 
endoplasmic reticulum (ER) stress response and led to the recovery 
of motor function after SCI in a rat model of spinal cord contusion 
injury (Nomura et  al., 2023). While there are many SCI animal 
models such as precision cut injuries (transections), compression 
injuries (aneurysm clips), and contusion injuries (weight drop 
injuries), we  have selected contusion injuries because they are 
considered to be reproducible and faithful models of human SCI that 
are caused by falls or physical impacts (Kjell and Olson, 2016). This 
study was conducted similarly to our previous study, but by a different 
primary researcher in a different set of animals, with the aim to 
confirm the benefits of exenatide and to examine its effect on the 
inflammatory response after SCI, especially on the polarity of 
infiltrating macrophages.

In the SCI secondary injury process, monocytes derived from the 
blood and bone marrow differentiate into macrophages and are 
recruited at the injury site and join the microglia endogenous to the 
spinal cord. Two macrophage phenotypes have been reported: 
“classically” activated M1 cells involved in inflammation and tissue 
damage, and “alternatively” activated M2 cells that reduce 
inflammation and promote tissue repair (Kigerl et al., 2009; Chavez-
Gala et  al., 2015; Gensel and Zhang, 2015). The involvement of 
exenatide in macrophage polarization has been noted in several 
studies (Shiraishi et al., 2012; Darsalia et al., 2014; Buldak et al., 2016; 
Wu et al., 2017), and here we report on the effects of exenatide on 
macrophage polarization in the injured spinal cord.

2 Materials and methods

2.1 Rat model of SCI

All animal experiments were conducted in accordance with the 
National Institutes of Health Guidelines for the Care and Use of 
Laboratory Animals and were approved by the Animal 
Experimentation Committee of Tokai University School of Medicine 
(approval number: 191010). Female Sprague–Dawley rats (10-week-
old, weight: 280–320 g) procured from CLEA Japan, Inc., (Kanagawa, 
Japan) were placed under general anesthesia by inhalation of 4% 
isoflurane. The dorsal area of each animal was shaved, and an incision 
was made in the skin under aseptic conditions. The subcutaneous fat 
and paraspinal muscles were separated from the midline to expose the 
lower thoracic spine and a laminectomy of the 10th thoracic vertebra 
was performed to expose the dura mater. A contusion SCI was created 
using a spinal cord impactor (Infinite Horizon Impactor, Precision 
Systems & Instrumentation Lexington, KY, United States) with a force 
of 200 Kdyne. The paraspinal muscles and skin were then sutured and 
the animal was awakened from anesthesia.

Immediately after SCI, animals in the exenatide group were 
subcutaneously administered 10 μg of exenatide while those in the 
control group received 1 mL of phosphate-buffered saline (PBS) only. 
In our previous study, 10 μg of exenatide was administered 
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immediately after injury and on day seven. Considering that the 
main effects of exenatide in our previous study were observed in the 
first few days, and also considering that macrophage infiltration into 
the spinal cord begins immediately after SCI, we  decided to 
administer exenatide only once immediately after injury. The 
exenatide used in this study is Byetta® (purchased from AstraZeneca 
Pharmaceuticals LP, Cambridge, United States), which is a regulatory 
agency-approved exenatide for the treatment of type 2 diabetes to 
be administered at a dosage of 5 ug subcutaneously twice daily that 
can be elevated to 10 ug subcutaneously twice daily after a month. 
In the current rat study, the dosage of 10 ug was derived from past 
studies (Teramoto et al., 2011; Li H et al., 2015). Notably, this rat 
dose is considerably higher than the routine human dose, based on 
interspecies allometric scaling based on body surface area for dose 
conversion from animal to human studies in line with US FDA 
Guidelines (U.S. Department of Health and Human Services Food 
and Drug Administration Center for Drug Evaluation and Research 
(CDER), 2005). Although an equivalent dose to the one used in our 
rats could not be safely administered to humans, our selected rat 
dose provides a starting point for the evaluation of the efficacy of 
exenatide in SCI.

To address the dysuria that develops after SCI, each animal was 
given a bladder massage twice daily until voluntary urination was 
confirmed. Animals that developed cystitis or wound infection were 
excluded from the study. All animals were handled and housed 
according to a protocol approved by the Tokai University School of 
Medicine Life Science Support Center.

2.2 Sample collection

On days 1, 3, 7, and 14 after injury, animals were euthanized by 
inducing deep anesthesia using 4% isoflurane and then intracardially 
perfused with PBS before harvesting the spinal cords. Samples for 
histological investigation were perfused and fixed with 2% 
paraformaldehyde (PFA) and then dehydrated in a stepwise process 
that involved incubating at 4°C in 4% PFA, 10% sucrose solution, 15% 
sucrose solution, and 20% sucrose solution for 24 h each.

2.3 Quantitative RT-PCR

For quantitative reverse transcription polymerase chain reaction 
(RT-PCR), a 6 mm section centered on the injury epicenter was 
resected from the injured spinal cord. RNA was extracted and purified 
using the RNeasy Mini Kit (Qiagen, Japan), and the High-Capacity 
cDNA Reverse Transcription Kit (Applied Biosystems™ Thermo 
Fisher Scientific, Japan) was used to reverse-transcribe single-stranded 
cDNA from the isolated mRNA. Real-time PCR assays were 
performed on a LightCycler® 480 system (Roche Diagnostics, Japan) 
using the Fast SYBR™ Green Master Mix (Applied Biosystems™ 
Thermo Fisher Scientific, Japan).

Inducible nitric oxide synthase (iNOS), CD16, and CD86 mRNA 
levels were assessed as M1 macrophage markers and Arginase 1, 
CD163, and CD206 mRNA levels were assessed as M2 macrophage 
markers. We  also assayed for tumor necrosis factor α (TNFα), 
interleukin (IL)-1β, IL-4, and IL-10 mRNA levels. β-actin was used as 
the internal control. For each sample, the mean values of the assay 

measurements from two wells (n = 5) were used. The following primers 
designed for Rattus norvegicus genome were:

iNOS Forward; GCCCAGAGTCTCTAGACCTCAA

Reverse; CATGGTGAACACGTTCTTGG

CD16 Forward; CAGCTAGACGTCCATGCAGA

Reverse; TGGCATCTCAGACGAATGG

CD86 Forward; AGTGTTTGAAGATGCAGAACCA

Reverse; CTGTCCTGCTTGGACTCACA

Arginase1 Forward; CCGCAGCATTAAGGAAAGC

Reverse; CCCGTGGTCTCTCACATTG

CD163 Forward; ATGGGGAAGGCACAACTG

Reverse; TCAGATCCGCTCCGTCTAA

CD206 Forward; AACAACCAGGCAGGAGGACTG

Reverse; CAGTGGTTGCTCACAAGCTC

TNF-α Forward; CGTAGCCCACGTCGTAGC

Reverse; GGTTGTCTTTGAGATCCATGC

IL-1β Forward; AGCTTCAGGAAGGCAGTGTC

Reverse; TCCCACGAGTCACAGAGGA

IL-4 Forward; TCCTTACGGCAACAAGGAAC

Reverse; TCTTCAAGCACGGAGGTACA

IL-10 Forward; CAGATTCCTTACTGCAGGACTTTA

Reverse; CAAATGCTCCTTGATTTCTGG

βactin Forward; TAAAACGCAGCTCAGTAACA

Reverse; ATTGCTGACAGGATGCAGAA

2.4 Immunohistochemical staining

The spinal cords were embedded in Optimal Cutting Temperature 
compound (Sakura Finetek, Japan), frozen using liquid nitrogen, and 
sectioned on a cryostat microtome at a thickness of 10 μm. 
Considering the width of the tip of the IH Impactor (2 mm) as the 
width of the injury epicenter, spinal cord sample sections were 
prepared within 5 mm of the epicenter on the caudal side.

Sections were washed thrice in PBS for 10 min, blocked with 5% 
normal goat serum in PBS at 24°C for 60 min, and then washed again 
for 10 min before applying anti-macrophage marker antibodies 
(mouse anti-Iba1, Abcam, 1:100; rabbit anti-iNOS, Abcam, 1:200; goat 
anti-Arginase 1, Abcam, 1:200) and incubating the sections 
overnight at 4°C.

The following day, the sections were washed with PBS, the 
complementary fluorescent secondary antibodies were applied (Iba1: 
Alexa Fluor 594-conjugated, anti-mouse, 1:800; iNOS: Alexa Fluor 
488-conjugated, anti-rabbit, 1:800; Arginase 1: Alexa Fluor 
488-conjugated, anti-goat, 1:800), and the sections were incubated in 
a dark room at 24°C for 60 min. Nuclear staining and mounting were 
performed using VECTASHIELD Antifade Mounting Medium with 
DAPI (Vector Laboratories). Stained sections were viewed using a 
confocal laser microscope (LSM 700, Carl Zeiss) and analyzed using 
the ZEN 2009 software (Carl Zeiss). The dorsal funiculus was 
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examined in five consecutive sections, and the total number of Iba1+ 
iNOS+ M1 macrophages and Iba1+ Arginase 1+ M2 macrophages 
were manually quantified. For each animal, the mean values of 
measurements by three examiners (n = 5) were used.

2.5 Behavioral analysis

Hind limb motor function was assessed based on the Basso, 
Beattie, Bresnahan locomotor rating scale (BBB scale) (Basso et al., 
1995) scores on days 1, 3, 5, 7, 9, 11, 13, and 14 after injury (n = 5). 
Mean values of measurements by three examiners (n = 5) were used. 
Locomotion was observed for 5 min while rats ambulated freely in an 
open field.

2.6 Statistical analysis

Results are presented as the mean ± standard deviation values, and 
sample groups were compared using the Mann–Whitney U-test. IBM 
SPSS Statistics for Windows, version 23.0 (IBM Corp., Armonk, NY, 
United States) was used for all statistical analyses, and p < 0.05 was 
considered indicative of a statistically significant difference.

3 Results

The BBB motor score evaluates hindlimb motor function on a 
scale from 0 to 21, with higher scores indicating higher function, i.e., 
improved hindlimb movement. While the BBB scale scores of both the 
exenatide and the control groups started from 0 immediately after 
injury and gradually improved over time, there was significantly 
greater improvement in the exenatide group compared to the control 
group from day 7 after injury and onwards (p < 0.05; Figure 1).

RT-PCR of the spinal cord tissue was conducted in order to 
analyze changes in the characteristics of macrophage infiltrating the 
injured spinal cord. The pro-inflammatory M1 macrophage markers 
demonstrated significant reductions in the exenatide group 
compared to the control group, with the exenatide group showing 
significantly lower iNOS mRNA levels on day 3 after injury (p < 0.05; 
Figure 2A), significantly lower CD16 mRNA levels on day 1 after 
injury (p < 0.05; Figure 2B), and significantly lower CD86 mRNA 
levels on day 3 after injury (p < 0.01; Figure 2C). On the other hand, 
the anti-inflammatory M2 macrophage markers demonstrated 
significant increases in the exenatide group compared to the control 
group, with the exenatide group showing significantly higher 
Arginase 1 and CD163 mRNA levels on day 3 after injury (p < 0.01, 
Figure 3A and p < 0.05, Figure 3B, respectively), and significantly 
higher CD206 mRNA levels on days 1 and 3 after injury (p < 0.05 and 
p < 0.01, respectively) (Figure 3C).

In order to examine the effects that the change in macrophage 
profile had upon the inflammatory process within the injured spinal 
cord, RT-PCR of inflammatory markers were also performed. The 
mRNA levels of the pro-inflammatory markers were significantly 
lower in the exenatide group compared to the control group, with 
TNFα mRNA levels significantly lower on days 1 and 3 after injury 
(p < 0.05 and p < 0.01, respectively; Figure 4A), and IL-1β levels lower 
on day 3 after injury (p < 0.05; Figure 4B). Conversely, the mRNA 
levels of the anti-inflammatory markers IL-4 and IL-10 were 
significantly higher in the exenatide group compared to the control 
group on day 1 after injury (p < 0.05; Figures 4C,D).

The number of infiltrating macrophages were quantified by 
immunohistochemistry. Quantification of macrophages withing the 
dorsal funiculus showed no significant difference in the number of 
Iba1+ iNOS+ M1 macrophage cells between the exenatide group and 
control group up to day 14 after injury (Figure 5A), but the number 
of Iba1+ Arginase 1+ M2 macrophage cells was significantly higher in 
the exenatide group on day 3 after injury (p < 0.05; Figure 6A).

FIGURE 1

Change in BBB scale scores over time. BBB scale scores improved over time in both the exenatide and control groups, but there was significantly 
greater improvement in the exenatide group from day 7 after injury onwards. n  =  5; error bars: SDs; *p  <  0.05, **p  <  0.01.
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4 Discussion

The pathophysiology of spinal cord injury is complicated. 
Following the primary injury which results from the physical trauma, 
a delayed but arguably more significant secondary injury process 
occurs within the injured spinal cord. The complex vascular, cellular, 
and biochemical processes that ensue during the secondary injury 
results in the apoptosis of neurons, oligodendrocytes, microglia, and 
astrocytes (Tator, 1998; Ramer et al., 2005; Oyinbo, 2011; Katoh et al., 
2019). We  previously reported that endoplasmic reticulum (ER) 
stress is an integral component of the secondary injury process and 
demonstrated that enhancement of the ER stress response improves 
recovery of motor function after SCI (Suyama et al., 2011; Kuroiwa 
et al., 2014; Matsuyama et al., 2014; Imai et al., 2018; Yanagisawa 
et al., 2019; Nomura et al., 2023). We first examined the benefits of 
enhancing the ER stress response by administering amiloride, a 
sodium-channel blocker that lowers blood pressure by acting as a 
potassium-retaining diuretic. Amiloride administration decreased 
the apoptosis of oligodendrocyte precursors cells, enhanced 
remyelination by oligodendrocytes that differentiated from surviving 
precursor cells, and improved motor function (Imai et al., 2018). 
Although the results were promising, the autonomic nerve 
dysfunction that is brought about by SCI impairs hemodynamic 
homeostasis, and a diuretic is not an ideal drug to be administered in 
an acute patient suffering from SCI. Having noted how GLP-1 
receptor agonists enhanced the ER stress response in myocardial 
ischemia (Younce et al., 2013), kidney damage (Guo et al., 2017), 

cerebral infarction (Chien et al., 2015), and liver damage (Sharma 
et  al., 2011), we  decided to investigate the effects of exenatide, a 
GLP-1 receptor agonist capable of crossing the blood–brain barrier, 
in a rat model of SCI. We  found that exenatide administration 
enhanced the ER stress response without adverse hypoglycemic 
effects, leading to a significant decrease in tissue damage and 
increased survival of oligodendrocyte precursor cells that brought 
about a significant improvement in motor function recovery. 
Hyperglycemia in the acute phase of SCI is reported to activate 
microglia that exacerbate the inflammatory response, induce 
apoptosis and demyelination, and impair improvement of motor 
function (Kobayakawa et al., 2014). While our previous study did not 
observe hyperglycemia in control animals (Nomura et  al., 2023), 
hyperglycemia has often been observed in nondiabetic SCI patients 
(Kobayakawa et al., 2014), and GLP-1 receptor agonists may improve 
motor function by controlling hyperglycemia after SCI.

Although GLP-1 receptor agonists first came to prominence as a 
treatment for type-2 diabetes (Holst, 2004; Baggio and Drucker, 2007), 
similar protective effects have been confirmed on cells in the central 
nervous system, with reports describing the beneficial effects of GLP-1 
receptor agonists in neurodegenerative diseases such as Alzheimer’s 
disease and Parkinson’s disease (Perry and Greig, 2002; Greig et al., 
2004; Harkavyi et al., 2008; Aviles-Olmos et al., 2013; Ghasemi et al., 
2013; Qiu et al., 2016; Kong et al., 2023; Koshatwar et al., 2023), the 
reduction of ischemic damage and maintenance of the blood–brain 
barrier after cerebral infarction (Li et  al., 2009; Lee et  al., 2011; 
Darsalia et al., 2014; Shan et al., 2019), and the recovery of motor 

FIGURE 2

mRNA expression levels of M1 markers in the injured spinal cord. Compared to the control group, the exenatide group showed significantly lower iNOS 
mRNA levels on day 3 after injury (A), lower CD16 levels on day 1 after injury (B), and lower CD86 levels on day 3 after injury (C). β-actin was used as 
the control. n  =  5; error bars: SDs; *p  <  0.05, **p  <  0.01.

FIGURE 3

mRNA expression levels of M2 markers in the injured spinal cord. Compared to the control group, the exenatide group showed significantly higher 
Arginase 1 mRNA levels (A) and higher CD163 levels (B) on day 3 after injury, and significantly higher CD206 levels on days 1 and 3 after injury (C). 
β-actin was used as the control. n  =  5; error bars: SDs; *p  <  0.05, **p  <  0.01.
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function after SCI (Li H et al., 2015; Li Y et al., 2015; Li et al., 2016; 
Sun et al., 2018).

Many possible mechanisms for the neuroprotective effects of 
GLP-1 receptor agonists have been reported. In animal studies of 
stroke, exenatide has been shown to protect against ischemic stroke 
by upregulating GLP-1 receptors in neural cells (Lee et al., 2011), 
stimulating the ß-endorphin pathway (Jia et al., 2015), enhancing 
DNA repair efficiency (Yang et al., 2016), and promoting macrophage 
polarization toward the anti-inflammatory M2 phenotype among 
others (Kigerl et al., 2009; Darsalia et al., 2014). In animal studies of 
traumatic brain injury, exenatide and its analogs have been shown 
to attenuate hippocampal neuron loss (Heile et al., 2009), ameliorate 
H2O2-induced oxidative stress and glutamate toxicity (Rachmany 
et al., 2013), decrease Caspase-3 activity (Eakin et al., 2013), reduce 
reactive oxygen species (DellaValle et al., 2014), reduce pro-apoptotic 
signaling (Li H et al., 2015; Li Y et al., 2015), preserve the blood–
brain barrier (Hakon et al., 2015), upregulate neurodegenerative 
disorder-related genes (Tweedie et al., 2016), maintain synaptophysin 
reactivity (Rachmany et al., 2017), and decrease glial activation and 
improve cognitive impairment (Bader et al., 2019). GLP-1 receptor 
signaling in astrocytes have been reported to improve mitochondrial 
integrity (Timper et  al., 2020), reduce ER stress (Nomura et  al., 
2023), and reduce inflammatory cytokines produced by activated 
astrocytes (Iwai et al., 2006). Based on various reports noting that 
exenatide regulates inflammation through inflammatory cells such 
as macrophages and microglia (Kodera et al., 2011; Shiraishi et al., 
2012; Darsalia et al., 2014; Wu et al., 2018; Lu et al., 2022), this study 

was performed under the premise that SCI is an 
inflammatory condition.

Although a wide variety of mechanisms take part in SCI secondary 
injury, inflammation is the most important factor implicated in the 
sequelae after SCI. Macrophages are central to the inflammation 
reaction, and their polarization is a topic that has garnered wide 
interest in the studies of SCI secondary injury. Macrophages 
accumulate within the hematoma of the injury epicenter immediately 
after SCI, but depending on their phenotype and activation status, 
they may exacerbate injury or promote repair. Classically activated M1 
macrophages produce pro-inflammatory cytokines and cytotoxic 
mediators that increase their ability to kill pathogens within cells, 
while alternatively activated M2 macrophages produce large numbers 
of anti-inflammatory cytokines. Examining the polarization of 
macrophages in a mouse SCI model, Kigerl et al. reported that the 
biomarkers for both M1 and M2 macrophages increased after SCI 
with M1 macrophages being the majority during the early stage of 
SCI, but found that many biomarkers were transient and rapidly 
changed thereafter (Kigerl et al., 2009). Considering that treatments 
for SCI in the acute phase are limited, it is understandable that many 
trials are being conducted to modulate macrophage polarization 
towards benefitting the recovery process.

GLP-1 receptor agonists have been reported to affect macrophage 
polarization in a range of tissues, including the gastrointestinal tract 
(Werner, 2014), spinal cord (Qian et al., 2022), and peripheral blood 
(Buldak et  al., 2016). Exenatide has also been reported to 
predominantly induce the production of M2 cells in models of 

FIGURE 4

mRNA expression levels of various cytokines in SCI. Compared to the control group, the mRNA expression levels of pro-inflammatory cytokines were 
lower in the exenatide group, with TNFα significantly lower on days 1 and 3 after injury (A) and IL-1β significantly lower on day 1 after injury (B). 
Conversely, the mRNA expression levels of anti-inflammatory cytokines were higher in the exenatide group, with both IL-4 (C) and IL-10 
(D) significantly higher on day 1 after injury. β-actin was used as the control; n  =  5; error bars: SDs; *p  <  0.05, **p  <  0.01.

https://doi.org/10.3389/fnins.2024.1342944
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Noguchi et al. 10.3389/fnins.2024.1342944

Frontiers in Neuroscience 07 frontiersin.org

cerebral infarction and neurodegenerative diseases such as Parkinson’s 
disease (Yu et al., 2023). This study was conducted to examine the 
effect of exenatide on macrophage polarization in the acute 
phase of SCI.

RT-PCR revealed that exenatide administration increased the 
expression of the M2 markers Arginase 1, CD163, and CD206 in the 
exenatide group on days 1 and 3 after injury (Figures 3A–C) and 
decreased the expression of the M1 markers iNOS and CD86 on day 
3 and CD16 on day 1 after injury (Figures 2A–C), suggesting that 
exenatide shifts the polarization of macrophages infiltrating into the 
injured spinal cord to the anti-inflammatory M2 phenotype. This 
was accompanied by an increase in the expression of anti-
inflammatory cytokines IL-4 and IL-10 on day 1 after injury 
(Figures 4C,D), which are implicated in the alternative activation of 
M2 macrophages (Mosser and Edwards, 2008; Chavez-Gala et al., 
2015), and a decrease in the expression of inflammatory cytokines 
TNFα and IL-1β on days 1 and 3 after injury (Figures 4A,B), which 
are implicated in the classical activation of M1 macrophages 
(Chavez-Gala et al., 2015). The present study suggests that exenatide 
administration induces the production of M2 cells in the acute phase 
of SCI, and that motor function may be  improved by the anti-
inflammatory and tissue repair effects of these M2 macrophage cells. 
The fact that differences in macrophage markers as well as 
inflammatory and anti-inflammatory cytokines were only observed 
in the acute phase of the secondary injury (1–3 days post-injury) is 
most likely due to the fact that exenatide was only administered once 

immediately after injury, but also suggests that the beneficial effects 
of exenatide may be limited to the acute period following injury. 
Further studies employing multiple injections over the acute to 
subacute periods will be necessary to ascertain whether exenatide 
continues to provide anti-inflammatory or neuroprotective effects 
for a longer period.

Immunohistochemical staining was conducted to examine if this 
change was brought about mainly through a shift in the polarization 
or by a change in the numbers of macrophages with either polarity 
infiltrating into the injured spinal cord. Our results showed a 
significantly higher number of cells with the M2 expression profile in 
the exenatide group on day 3 after injury, but did not find a significant 
decrease in the number of cells with the M1 expression profile between 
the exenatide and control groups (Figures 5B, 6B). Taken at face value, 
this suggests that exenatide administration promotes the production 
or increases the infiltration of M2 phenotype macrophages, and that 
the increase of M2 cells with an anti-inflammatory/tissue repair effect 
is beneficial for the improvement of hindlimb motor function after 
SCI. However, the literature examining the effects of exenatide on 
macrophage polarity show that the promotion of microglial M2 
polarization as seen in the increase of M2 markers does not necessarily 
coincide with a decrease in M1 markers (Darsalia et al., 2014; Wu 
et  al., 2017). It is also possible that immunohistochemistry using 
another M1 antigen, for example CD86, may have shown a decrease 
because there have been reports in which exenatide significantly 
decrease CD86 but not iNOS (Darsalia et al., 2014).

FIGURE 5

M1 macrophages in the injured spinal cord. (A) Representative immunohistochemical staining results for the M1 profile. DAPI: blue, Iba1: red, iNOS: 
green. Scale bar: 10  μm. (B) The number of Iba1+ iNOS+ cells in the posterior funiculus showing no difference among exenatide and control groups. 
n  =  5; error bar: SD.
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This improvement in motor recovery brought about by one 
injection was also observed in our previous report (Nomura et al., 
2023), and we feel that this illustrates the significance of targeting the 
secondary injury process of SCI as a point of intervention. For 
treatments aiming to mitigate the deleterious effects of the secondary 
SCI process, the earlier the treatment and more robust the effect, the 
greater the benefits to motor function recovery. Our previous study 
revealed that exenatide decreases endoplasmic reticulum stress and 
this study revealed that exenatide induces macrophage polarization to 
the cytoprotective M2 phenotype, decreasing the inflammatory 
response. However, we  believe that the effects of exenatide 
administration after SCI are more wide-ranging, and we will continue 
to examine other facets of its effects.

There are several limitations of this study that need to be pointed 
out. One limitation is that we were unable to examine whether the 
observed effects were due to microglia endogenous to the spinal cord 
or monocytes derived from the blood and bone marrow. Furthermore, 
as all M2 cell subtypes were assessed together, the present study also 
could not clarify which M2 cell subtypes (from M2a through to M2d) 
were responsible for the observed effects. IL-4-activated M2a cells 
and IL-10-activated M2c cells are reported to have distinct 
phenotypes and functions (Mantovani et  al., 2002), and further 
research evaluating the M2 cell subtypes is necessary. The effect of 
exenatide on transcription factors that are typically responsible for 
controlling M2 activation, such as signal transducer and activator of 
transcription 3 (STAT3), STAT6, interferon regulatory factor 4 

(IRF4), and peroxisome proliferator activated receptor (PPAR) (Zhou 
et al., 2014; Chavez-Gala et al., 2015), is also a topic that requires 
future investigation. A second limitation of the study stems from the 
fact that these experiments were carried out with only female rats. 
This is a conscious choice based upon a long-standing belief that 
female rodents suffer less from bladder infection while their bladder 
function is impaired from spinal cord injury. We are aware of studies 
that have reported on gender differences in the recovery process from 
SCI (Datto et al., 2015), and so raise the possibility of gender bias as 
a limitation of this study. A third limitation concerns the immediate 
administration of exenatide after SCI as well as the dosage. While the 
results of this study demonstrate the beneficial effects of exenatide 
administration immediately after SCI, this is not feasible for human 
patients and the administered dose is significantly higher than the 
current clinical dosage for diabetes. Therefore, further studies will 
be necessary to determine the therapeutic time window of exenatide 
administration following SCI as well as its effect at clinical dosage. A 
fourth limitation stems from the fact that only changes in 
macrophages were investigated. Since GLP-1 receptors have been 
broadly found across most types of neuronal cells within the brain, 
spinal cord, and ganglion and peripheral nerve (Perry et al., 2007; Li 
et al., 2012; Salcedo et al., 2012), further studies will be necessary to 
glean the full scope of the effects brought about by 
exenatide administration.

Significant advances in post-trauma management and 
rehabilitation have improved the general prognosis of SCI, but the 

FIGURE 6

M2 macrophages in the injured spinal cord. (A) Representative immunohistochemical staining results for the M2 profile. DAPI: blue, Iba1: red, Arginase 
1: green. Scale bar: 10  μm. (B) The number of Iba1+ Arginase 1+ cells in the posterior funiculus showing significantly higher numbers of M2 
macrophages in the exenatide group on day 3 after injury. n  =  5; error bar: SD; *p  <  0.05.
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functional improvements brought about by current treatment 
options are unfortunately still limited. While cell replacement 
therapy utilizing engineered stem cells is anticipated to become a 
viable therapy in the near future, significant technical, financial, 
and geographical constraints are expected to limit stem cell 
treatments to a select few large clinical research facilities, denying 
access to many patients suffering from the debilitating effects of 
SCI. Furthermore, it seems more logical to try to prevent the loss 
of neurological tissue than to try to reconstruct that which 
we cannot create in the first place. This has been the impetus for 
developing treatments that protect the traumatically injured brain 
or spinal cord from the extremely destructive secondary injury 
process and to save as much neural function as possible. It is 
unfortunate that all of our collective research has not yielded on 
option to replace the decades-old corticosteroid protocol that is 
now mostly abandoned. Our group has been researching this field 
originally with a focus on increasing the endoplasmic reticulum 
stress response to enhance the cellular homeostasis mechanisms 
and provide the injured spinal cord with an increased capacity to 
weather the secondary injury storm. We stumbled upon GLP-1 
receptor agonists as an approved diabetes drug that had been 
shown to decrease endoplasmic reticulum stress within the 
pancreatic islet cells and other organs. We  did not expect that 
GLP-1 receptor agonists would turn out to have the numerous 
beneficial effects on degenerative or traumatic neurological 
conditions, or that it would garner such wide-spread societal 
interest as a weight-loss agent. The findings of this study along with 
the numerous studies that have been published in the field of 
traumatic brain injury raises hope that GLP-1 receptor agonists 
may very well be the drug that we have been searching for. While 
hopeful, there remains much to be studied before GLP-1 receptor 
agonists may be clinically used to treat SCI patients. For example, 
we  do not know the therapeutic time window or the optimal 
timing, dosage, or duration of GLP-1 receptor agonist 
administration that would bring about maximal effect in rodents 
or how to translate that into human trials. While the path forward 
may be treacherous, we hope that our efforts will play some part to 
advance the treatment options for patients that unfortunately suffer 
a spinal cord injury.
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