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Background: Transcutaneous auricular vagus nerve stimulation (taVNS) has 
emerged as a promising brain stimulation modality in poststroke upper extremity 
rehabilitation. Although several studies have examined the safety and reliability 
of taVNS, the mechanisms underlying motor recovery in stroke patients remain 
unclear.

Objectives: This study aimed to investigate the effects of taVNS paired with task-
oriented training (TOT) on upper extremity function in patients with subacute 
stroke and explore the potential underlying mechanisms.

Methods: In this double-blinded, randomized, controlled pilot trial, 40 patients 
with subacute stroke were randomly assigned to two groups: the VNS group 
(VG), receiving taVNS during TOT, and the Sham group (SG), receiving sham 
taVNS during TOT. The intervention was delivered 5  days per week for 4  weeks. 
Upper extremity function was measured using the Fugl-Meyer Assessment-
Upper Extremity (FMA-UE), the Action Research Arm Test (ARAT). Activities of 
daily living were measured by the modified Barthel Index (MBI). Motor-evoked 
potentials (MEPs) were measured to evaluate cortical excitability. Assessments 
were administered at baseline and post-intervention. Additionally, the immediate 
effect of taVNS was detected using functional near-infrared spectroscopy 
(fNIRS) and heart rate variability (HRV) before intervention.

Results: The VG showed significant improvements in upper extremity function 
(FMA-UE, ARAT) and activities of daily living (MBI) compared to the SG at 
post-intervention. Furthermore, the VG demonstrated a higher rate of elicited 
ipsilesional MEPs and a shorter latency of MEPs in the contralesional M1. In the 
VG, improvements in FMA-UE were significantly associated with reduced latency 
of contralesional MEPs. Additionally, fNIRS revealed increased activation in the 
contralesional prefrontal cortex and ipsilesional sensorimotor cortex in the VG 
in contrast to the SG. However, no significant between-group differences were 
found in HRV.

Conclusion: The combination of taVNS with TOT effectively improves upper 
extremity function in patients with subacute stroke, potentially through 
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modulating the bilateral cortex excitability to facilitate task-specific functional 
recovery.
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transcutaneous auricular vagus nerve stimulation, task-oriented training, motor 
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rehabilitation

1 Introduction

A cerebrovascular accident (CVA), often referred to as a stroke, 
arises from an interruption of blood flow or bleeding in a region of the 
brain, resulting in impaired brain function. According to the Global 
Burden of Disease (GBD) study, stroke is the primary cause of 
mortality among Chinese adults and the second leading cause of death 
worldwide (Zhou et al., 2019; GBD 2019 Stroke Collaborators, 2021). 
Reports indicate that 55–75% of stroke patients continue to experience 
upper extremity motor dysfunction within 3–6 months of onset 
(Kwakkel et al., 2003). Upper extremity motor dysfunction markedly 
influences the prognosis of patients, impacting their mobility, daily 
activities, and overall quality of life (Lai et al., 2002; Nichols-Larsen 
et al., 2005). For poststroke upper extremity rehabilitation, the task-
oriented training (TOT) involves structured movement training based 
on daily activities to engage patients actively, thereby promoting 
motor function during the targeted task practice (Yoo and Park, 2015). 
Motor priming, a type of implicit learning wherein external 
stimulation prompts changes in the motor cortex and behavior, has 
been reported in motor skill learning recently (Jin et  al., 2019). 
Previous research demonstrated that stimulation-based priming 
combined with TOT could facilitate brain reorganization and enhance 
upper extremity dexterity (Higgins et  al., 2013; Alsubiheen et  al., 
2022). The most commonly used non-invasive brain stimulation 
techniques include transcranial magnetic stimulation (TMS) and 
transcranial direct current stimulation (tDCS) (Chhatbar et al., 2017; 
Bai et al., 2022; Zhang et al., 2022). However, the application of TMS 
and tDCS is limited by the need for high precision requirements and 
complex operations.

Vagus nerve stimulation (VNS) acts as a promising brain 
stimulation-based priming technique involving various forms of 
stimulation applied to the vagus nerve network. By regulating the 
balance of the autonomic nervous system and targeting 
neuroprotective and neuroplasticity pathways, VNS holds potential as 
a therapeutic tool in various neurological and psychiatric conditions 
(Ma et  al., 2019). A multicenter, randomized, double-blind trial 
(VNS-REHAB) conducted by Dawson et al. (2021) confirmed the 
effectiveness of implanted VNS (iVNS) paired with upper extremity 
training in patients with ischemic stroke. However, the application 
process of iVNS may carry a high rate of potential complications due 
to its invasiveness (Ma et al., 2019). Recently, transcutaneous auricular 
VNS (taVNS), as a safe and easy-to-use neuromodulation technique, 
has been proposed, which utilizes transcutaneous stimulation of the 
cymba conchae and tragus innervated by fibers of the auricular branch 
of the vagus nerve (ABVN). Neuroimaging studies have demonstrated 
that taVNS can elicit brain activation effects similar to iVNS (Badran 
et al., 2018). Several studies (Capone et al., 2017; Redgrave et al., 2018; 

Wu et al., 2020; Chang et al., 2021; Li et al., 2022) have combined 
taVNS with regular rehabilitation training or robot-assisted arm 
training to improve upper extremity function in hemiplegic patients. 
To ensure consistency in taVNS research, an international consensus 
has been established for minimum reporting standards, which 
reported that a signal with a pulse width between 200 and 300 μs at 
25 Hz, and a duty cycle of 30 s on, 30 s off has often been adopted in 
studies (Farmer et al., 2021). Nonetheless, the mechanism by which 
taVNS achieves task-specific benefits in upper extremity function 
remains unclear. In this study, we hypothesized that combining taVNS 
with TOT simultaneously would present a novel approach to enhance 
upper extremity function recovery in stroke patients. To assess the 
immediate and long-term effects of taVNS on hemodynamics and 
cortical excitability, we  employed functional near-infrared 
spectroscopy (fNIRS) and single-pulse transcranial magnetic 
stimulation (TMS), respectively. The primary objective of this study 
was to investigate the effects and potential mechanisms of taVNS 
paired with TOT in facilitating the recovery of upper extremity 
function in patients with subacute stroke.

2 Materials and methods

2.1 Participants

The stroke patients with upper extremity motor dysfunction were 
recruited from the Department of Rehabilitation Medicine at Sir Run 
Run Hospital of Nanjing Medical University between February 2020 
and December 2022. The inclusion criteria were as follows: (1) first-
time occurrence of a unilateral supratentorial stroke confirmed by 
computed tomography (CT) or magnetic resonance imaging (MRI) 
within 6 months of onset; (2) presence of unilateral hemiplegia of the 
upper extremity; (3) upper extremity impairment ≥ third level in the 
Functional Test for the Hemiparetic Upper Extremity (FTHUE), and 
FMA-UE scores ranged from 20 ~ 50; and (4) normal cognitive 
function with the ability to follow instructions and complete the study. 
The exclusion criteria were as follows: (1) presence of implanted 
electronic devices, intracerebral vascular clips, or other electrically 
activated or sensitive support systems; (2) presence of abnormal skin 
conditions that may interfere with the stimulation or the stimulation 
device, such as scar tissue, broken skin; (3) presence of severe 
cardiovascular, pulmonary, or advanced diseases affecting other 
systems; (4) previous impairment of the vagus nerve; (5) upper 
extremity dysfunction caused by reasons other than stroke; (6) use of 
neuropsychotropic drugs such as antidepressants or benzodiazepines; 
(7) Botox injection within the past 3 months; (8) resting heart rate 
below 60 beats per minute; and (9) presence of asthma, tumors, or 
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severe dysphagia. The trial was performed in accordance with the 
principles of the Declaration of Helsinki and received approval from 
the Ethics Committee of Sir Run Run Hospital, Nanjing Medical 
University (No. 2020-SR-001). All participants signed informed 
consent. Further details regarding the subjects can be found in Table 1.

2.2 Study design

This pilot study was designed as a randomized, double-blind, 
sham-controlled clinical trial, which followed the CONSORT checklist 
(Supplementary material S1). The patients were randomly assigned 
(1:1) to either the VNS group (VG) or the Sham group (SG) using a 
random number table. The patients in the VG received real taVNS 
during 1 h of task-oriented training, while the patients in the SG 
received sham taVNS during task-oriented training. The treatment 
was delivered 5 ays per week for 4 weeks. To minimize subjective bias, 
different individuals performed the roles of the TOT therapist, taVNS 
operator, and outcome assessor. To explore the immediate effect of 
taVNS, an fNIRS examination with HRV assessment was conducted 
before the first treatment session. The study flow is shown in Figure 1.

2.3 Intervention

2.3.1 Transcutaneous auricular vagus nerve 
stimulation (taVNS)

The taVNS treatment was delivered simultaneously with TOT for 
1 h in accordance with Zhang et al. (2023), using the Auricular Vagus 
Nerve Stimulator (tVNS501, RISHENA Co., Ltd., Changzhou, China). 
A specialized earphone with two dot-like electrodes delivered electric 
stimulation to the left auricular cymba concha of patients in the 
VG. Conversely, patients in the SG wore the same earphones without 
electrodes. Although they could observe the current reading on the 
stimulator, no actual current was delivered, resulting in ineffective 
stimulation. Before stimulation, the left auricular concha of each 
patient was cleaned using alcohol wipes. According to the international 
consensus for minimum reporting standards (Farmer et al., 2021), the 
stimulation parameters were configured as follows: 500 μs square 
pulses at 25 Hz for 30 s, with a duty cycle of 1:1. The current intensity 
was individually adjusted to a tolerable level for each patient, ensuring 
that it did not exceed 10 mA (with an average of 6.55 ± 1.57 mA in the 
VG) (Capone et al., 2017; Redgrave et al., 2018; Wu et al., 2020; Li 
et al., 2022).

2.3.2 Task-oriented training (TOT)
Both groups of patients underwent TOT practice, which was 

supervised or assisted by a well-trained occupational therapist. The 
TOT practice involved eight exercises, requiring patients to perform 
as many trials as possible in each session. Each session of task-oriented 
training lasted for 1 h. The occupational therapist was allowed to 
adjust the intensity of each exercise based on the patient’s training 
objectives and functional performance. The detailed steps of the TOT 
were as follows (Kim et  al., 2013; Tang et  al., 2014): (1) instruct 
patients to place their hand on a table with adjustable height; (2) 
instruct patients to touch the tip of their nose; (3) instruct patients to 
rotate their forearm and alternate the palm upwards and downwards; 
(4) instruct patients to bend the elbow to a 90-degree angle, position 

the forearm neutrally, and extend the wrist joint to touch a designated 
object on the table as far as possible; (5) while maintaining the same 
position as in step (4), instruct patients to grip and release a water 
bottle placed on the table; (6) instruct patients to pick up a cup from 
the table, simulating a drinking motion, then return it to its original 
position; (7) instruct patients to pour peanuts from a cup onto a plate 
on the table without using compensatory trunk movements; (8) 
instruct patients to manipulate objects with the assistant of a hand-
function robot (Gloreha Professional 2, Idrogenet, Italy).

2.4 Outcome measurements

The long-term outcomes were assessed using clinical scales and 
motor-evoked potentials (MEPs) elicited by single-pulse TMS. The 
Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and the Action 
Research Arm Test (ARAT) were employed to evaluate the function 
of the hemiplegic upper extremity, and the modified Barthel Index 
(MBI) was used to evaluate the activity of daily living (Chen et al., 
2021). The MEPs were applied to evaluate the cortico-spinal 
excitability. The primary outcome measure was the change score of the 
Upper Extremity Fugl-Meyer Assessment (UE-FMA). All outcomes 
were evaluated before the first treatment and after the final treatment. 
Additionally, in order to explore the feasibility of the current study and 
assess the immediate effect of taVNS during grasp tasks with the 
hemiplegic hand, an fNIRS examination was conducted before the 
first treatment session. HRV data were collected before and after the 

TABLE 1 Demographics and baseline clinical characteristic.

Characteristics Groups

VNS group 
(n  =  20)

Sham 
group 

(n  =  20)

p-value

Age (years) 55 (11) 57 (11) 0.515a

Gender

male 18 (90) 15 (75)
0.407b

female 2 (10) 5 (25)

Stroke onset (months) 3.20 (2.04) 4.15 (1.60) 0.074a

Hemiparetic side

left 9 (45) 8 (40)
0.749c

right 11 (55) 12 (60)

Stroke type

ischemic 13 (65) 14 (70)
0.736c

hemorrhagic 7 (35) 6 (30)

FMA-UE 31 (9) 30 (9) 0.665d

ARAT 16 (11) 15 (11) 0.968d

FTHUE 5.85 (2.06) 6.05 (2.76) 0.945a

MBI 72 (17) 69 (15) 0.543a

HR 83 (11) 79 (12) 0.271a

aWelch two sample t-test; bFisher’s exact test; cPearson’s Chi-squared test; dWilcoxon rank 
sum test. FMA-UE,Fugl-Meyer assessment-upper extremity; ARAT, Action Research Arm 
Test; FTHUE, Functional Test for the Hemiparetic Upper Extremity; MBI, Modified Barthel 
Index; HR, average heart rate.
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fNIRS examination (T0, T1) and after the last treatment (T2) to assess 
the effectiveness of taVNS on the vagus nerve network.

2.4.1 Upper extremity function assessment
The Fugl-Meyer Assessment-Upper Extremity (FMA-UE) is a 

widely used tool for evaluating upper extremity impairment and 
coordination/speed in stroke patients. The FMA-UE comprises 33 
items, each scored on a scale ranging from 0 to 2, culminating in a 
total score of 66 points (Gladstone et al., 2002; Rech et al., 2020).

The Action Research Arm Test (ARAT) is a standardized 
observational scale extensively used to assess the functional abilities 
of the upper extremity in stroke survivors, closely reflecting their daily 
activities. The ARAT consists of 19 items categorized into four 
subtests: grasping, gripping, pinching, and gross movement. Each item 
is scored on a scale from 0 to 3, with a maximum possible score of 57 
(Hsieh et al., 1998; Zhao et al., 2019a, b).

The Modified Barthel Index (MBI) is a frequently used outcome 
measure to evaluate performance in activities of daily living (ADL) 
among stroke patients. The MBI comprises 10 items, with a total score 
of 100 (Shah et al., 1989).

2.4.2 Motor-evoked potentials examination
Motor-evoked potentials (MEPs) refer to the action potentials 

elicited by single-pulse TMS of the primary motor cortex (M1), 
providing insight into cortico-spinal excitability. MEP latency refers 
to the time taken for the motor response to occur after the stimulation 
of the motor cortex. It is calculated by measuring the time interval 
between the onset of stimulation and the onset of the MEP waveform 
(Rossi et al., 2021; Vucic et al., 2023). In certain research, the MEPs 
have been considered as indicators of motor cortical excitability in 
stroke patients (Mäkelä et  al., 2015; Jo et  al., 2016). Therefore, 
we utilized MEPs to evaluate the long-term effects of the intervention 

FIGURE 1

Study flow diagram. VNS: vagus nerve stimulation; UE, Upper extremity; fNIRS, Functional near-infrared spectroscopy.
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on motor cortical excitability. The examination procedure in this study 
adhered to established practice guidelines (Fried et al., 2021). A figure-
eight coil (Xiangyu Medical Co., Ltd., Henan, China) was placed over 
the M1 to elicit the MEPs, while surface electromyography (sEMG) 
was recorded from the first dorsal interosseous (FDI) muscle. The 
initial intensity was set at 30% of the maximum stimulator output 
(MSO). Then the intensity was increased by 5% until the minimum 
stimulus produced minimal motor-evoked responses (≥50 μV in at 
least 5 out of 10 trials) in the FDI. The average latency and amplitude 
of the bilateral MEPs were recorded. The detailed information can 
be found in Supplementary material S2. If MEPs could not be elicited 
even at 100% MSO, it was recorded as “NA.” The examination was well 
tolerated by the patient without any adverse events.

2.4.3 Heart rate variability examination
HRV refers to the fluctuation in the time intervals between 

adjacent heartbeats. The link between vagus nerve activity and HRV 
has been established, as the heart is innervated by the vagus motor 
fibers (Shaffer and Ginsberg, 2017; Capilupi et al., 2020). In our study, 
we  conducted HRV examination to determine whether taVNS 
effectively targeted the vagus nerve. The average heart rate (HR), the 
standard deviation of the normal-to-normal (NN) intervals (SDNN), 
and the square root of the mean squared differences of successive NN 
intervals (RMSSD) were recorded as time-domain measures of 
HRV. Additionally, the ratio of low-frequency to high-frequency 
power (LF/HF ratio) was recorded as a frequency-domain measure of 
HRV. The detailed processing pipelines for HRV can be  found in 
Supplementary material S2. An increase in parasympathetic activity 
induced by taVNS correlates with increases in SDNN and RMSSD, 
and decreases in HR and LF/HF ratio (Marek, 1996). We compared 
the data collected at T0 with that at T1 and T2 to examine the 
immediate and long-term effectiveness of taVNS. All the patients 
completed the examination.

2.4.4 Functional near-infrared spectroscopy 
(fNIRS) examination

fNIRS is a non-invasive brain imaging technique that detects 
variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) 
within the regional cortex. Increased cortical neural activity leads to 
escalated metabolic demand, resulting in augmented blood flow in the 
surrounding vasculature, consequently elevating HbO2 concentrations 
and reducing HbR concentrations (Huppert et  al., 2006; Buxton, 
2009). Applying specific near-infrared light, fNIRS can measure brain 
metabolic alterations associated with neuronal activity (Buxton, 2013; 
Pinti et al., 2020). Studies have shown strong consistency between 
fNIRS and functional magnetic resonance imaging (fMRI) (Sasai 
et al., 2012).

This study used a continuous-wave near-infrared imaging device 
(NIRSmart II-3000A, Huichuang Medical Co., Ltd., China) consisting 
of 14 light sources (λ1|2 = 730|850 nm) with an average power of 
<1 mW and 14 avalanche photodiode detectors operating at 11 Hz 
sampling rate. The sources and detectors were distributed over the 
bilateral prefrontal cortex (PFC) and sensorimotor cortex (SMC) 
according to the 10–20 international standard electrode placement 
system, constituting 35 channels. The montage of the probes and 
channels is detailed in Figure 2A. The Patriot localization system was 
employed to determine the Montreal Neurological Institute (MNI) 
spatial coordinates for each channel and to annotate the corresponding 

Brodmann areas. The corresponding brain areas for each fNIRS 
channel are shown in Figure 2B, Supplementary material S3.

The fNIRS examination was conducted in a quiet room with 
subdued lighting. To investigate the immediate effect on task-related 
cortical responses in the patients during the treatment, we simulated 
a scenario in which patients received taVNS while performing 
TOT. Initially, a 10-min resting state was recorded, during which 
patients were instructed to keep their eyes closed, maintain restfulness, 
and minimize head movements. Subsequently, patients were 
instructed to perform the grasp task using their hemiplegic hands 
during the examination, which was practicable and related to the 
procedure of TOT. The task adopted a block design comprising 20 
blocks, each consisting of 15 s of repetitive grasp trials followed by 20 s 
of rest. Computer-generated auditory cues were provided to guide the 
patients during the task performance. Patients in the VG received 
concurrent taVNS, whereas patients in the SG received sham taVNS 
(Figure 2C).

2.5 Data analysis

2.5.1 fNIRS signal processing
The fNIRS signal was processed using MATLAB R2013b 

(MathWorks, USA), and the Homer2 package was employed for 
preprocessing the raw data. The following steps were performed: (1) 
conversion of light intensity to optical density; (2) detection and 
correction of motion artifacts; (3) application of a bandpass filter 
(0.01–0.08 Hz) to the signal; (4) conversion of optical density to 
concentrations of (de)oxygenated hemoglobin based on the modified 
Beer–Lambert law. Subsequently, the mean concentration of HbO2 
during the resting state was calculated to conduct inter-group baseline 
comparisons. Additionally, the MATLAB-based NIRS-SPM toolkit 
was utilized to detect brain area activation. To align the data, patients’ 
hemispheres were flipped, considering the left hemisphere as the 
ipsilesional hemisphere. Beta values (β) for each channel were 
calculated using the general linear model (GLM) analysis. Group-level 
comparison was conducted using an independent t test with a false 
discovery rate (FDR) correction. Detailed procedures for data 
processing were shown in Supplementary material S2. BrainNet 
Viewer (Xia et al., 2013) was employed for 3D visualization of brain 
activation, and space registration was performed using the NFRI 
method to convert the channel space into Montreal Neurological 
Institute (MNI) space.

2.5.2 Clinical data analysis
The statistical analysis was conducted using the open-source 

statistical software Jamovi (Version 2.4.8) (JAMOVI, 2023). The 
Shapiro-Wilks test was performed to assess the normality of the data. 
For baseline demographic and clinical characteristics, the Chi-square 
test or Fisher’s exact test was used for categorical variables. The 
two-sample t-test and the Mann–Whitney test were used for 
continuous variables. A 2 × 2 analysis of covariance (ANCOVA) was 
used to determine the effects of the treatment on the FMA-UE, ARAT, 
MBI, and contralesional MEPs parameters, considering time (baseline, 
post-treatment) as the within-subject factor, group (VNS, Sham) as 
the between-subjects factor, and baseline data as a covariate. Due to 
the impairment of cortico-spinal tract integrity after stroke (Yarossi 
et  al., 2019), the statistical analysis for ipsilesional MEP was 
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determined based on the number of MEPs collected. A 3 × 2 repeated 
measures analysis of variance (RMANOVA) was conducted to 
determine the effects on the HRV, considering time (T0, T1, T2) as the 
between-subjects factor and group (VNS, Sham) as the between-
subjects factor. A linear regression analysis was used to analyze the 
correlation between the recovery of upper extremity function and 
changes in MEPs. A significance level of p  < 0.05 was considered 
statistically significant for all tests.

3 Results

Forty-three patients were recruited, with 21 allocated to the VG 
and 21 to the SG. The flow chart can be  found in Figure  1. Two 
participants (one from the VG and another from the SG) dropped out 
of the study due to unwillingness. In addition, eight participants in the 
VG and nine participants in the SG were excluded from the fNIRS 
data analysis. Detailed reasons for participants’ exclusion are shown 
in Figure 1.

3.1 Demographics and clinical 
characteristics

Table 1 presents a summary of the demographics and clinical 
characteristics of the patients. There were no statistically significant 
differences in any of the variables between the two groups. 
Furthermore, no adverse events were reported throughout the entire 
duration of the study.

3.2 Outcomes for upper extremity function

The ANCOVA revealed that patients in both groups showed 
significant improvements in FMA-UE, ARAT, MBI compared to 
baseline. Regarding the inter-group comparison, there were 
statistically greater improvements in FMA-UE, ARAT, and MBI in the 
VG (Figure 3, Table 2).

3.3 Outcomes for MEPs

In our study, only 4 patients were able to elicit ipsilesional MEPs 
at baseline (VG, n = 3; SG, n = 1). After 20 sessions of treatment, the 
number of patients who could elicit ipsilesional MEPs increased to 12 
cases (VG, n = 9; SG, n = 3). To determine the effects on the elicitation 
rate of ipsilesional MEPs, we employed the Chi-square test or Fisher’s 
exact test for between-group comparison and the McNemar test for 
within-group comparison. The Fisher’s exact test indicated that the 
baseline elicited ipsilesional MEPs were comparable across groups. 
After treatment, the VG showed significantly higher elicitation rates 
of ipsilesional MEPs than baseline and SG (Figure 3, Table 3).

The contralesional MEPs were collected from all included patients. 
The ANCOVA found that the contralesional latency of MEPs in the 
VG significantly shortened compared with baseline. While no 
significant change in the SG was detected. There was a statistically 
significant reduction in contralesional latency of MEPs in the VG 
(Figure 3, Table 4). However, no significant difference was found in 
contralesional amplitude of MEPs within or between groups (Figure 3, 
Table 4). Additionally, the univariable regression revealed that there 

FIGURE 2

Procedure of the fNIRS examination. (A) Channel arrangements with numbers marked on a 2D brain template. (B) The regions of interest based on the 
Brodmann area of each channel. (C) Pipeline of the fNIRS examination.
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were significant correlations between the improvements in FMA-UE 
and the changes in the contralesional latency of MEPs (Figure 4).

3.4 Outcomes for fNIRS

The resting state fNIRS data showed there were no significant 
differences in baseline. As for task fNIRS data, group-level comparison 
revealed that the channels in the ipsilesional postcentral gyrus 
(PoCGipsi, CH14), precentral gyrus (PreCGipsi, CH32), supplementary 
motor area (SMAipsi, CH34), middle frontal gyrus orbital part 
(ORBmidipsi, CH9), contralesional orbital middle frontal gyrus 

(ORBmidcontr, CH5, CH7, CH23), and dorsolateral superior frontal 
gyrus (SFGdorcontr, CH21) showed significantly larger activation in the 
VG compared to the SG (pFDR < 0.05). The specific coordination of 
activated channels is shown in Figure 5.

3.5 Outcomes for HRV

The 3 × 2 RMANOVA revealed significant group*time interactions 
for HR, SDNN, and LF/HF, but not for RMSSD. We  also found 
significant group main effects in HR and LF/HF. For the interaction 
effect, Bonferroni post hoc tests showed that patients in the VG 

FIGURE 3

Effects of taVNS on upper extremity function and MEPs. FMA-UE, Fugl-Meyer Assessment-Upper Extremity; ARAT, Action Research Arm Test; MBI, 
modified Barthel Index; MEPs, motor-evoked potentials; VNS, taVNS group; Sham: Sham group; *, p  <  0.05; **, p  <  0.01; ***, p  <  0.001; #, a significant 
time × intervention interaction in ANCOVA.

TABLE 2 Within-group and between-group comparisons for clinical scales.

Variable Groups Within-group differences Between-group 
differences

Pre-treatment Post-treatment Mean (SD) LS Mean (95% CI) Difference in 
LS Mean 
(95% CI)

p value

VNS Sham VNS Sham VNS Sham VNS Sham

FMA-UE# 30.5 (8.9) 29.6 (8.7) 41.1 (12) 33.2 (8.3) 10.7 (5.7) 3.6 (2.5) 10.61 (8.63, 12.6) 3.64 (1.65, 5.62) 6.98 (4.26, 9.70) <0.001

ARAT# 15.7 (11) 15.4 (11) 27.5 (15) 18.8 (11) 11.8 (7.9) 3.4 (2.9) 11.84 (9.16, 14.5) 3.36 (0.69, 6.04) 8.47 (4.82, 12.1) <0.001

MBI# 72.2 (17) 69.1 (15) 84.4 (11) 74.8 (14) 12.3 (9.7) 5.7 (4.4) 12.77 (10.2, 15.3) 5.18 (2.61, 7.75) 7.59 (4.07, 11.1) <0.001

Based on an ANCOVA model after adjusting baseline value. ANCOVA, Analysis of Covariance; CI, Confidence Interval; LS, Least Squares; SD, Standard Deviation. FMA-UE, Fugl-Meyer 
assessment-upper extremity; ARAT, Action Research Arm Test; MBI, Modified Barthel Index; #significant time × intervention interaction.
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FIGURE 4

Correlations between Upper extremity function and contralesional 
MEPs latency. FMA-UE, the Fugl-Meyer Assessment-Upper Extremity.

presented significantly decreased HR at T1, T2 compared with T0, 
increased SDNN at T2 compared with T0, and decreased LF/HF at T1, 
T2 compared with T0. However, no between-group difference was 
found after Bonferroni correction (Figure 6, Table 5).

4 Discussion

In recent years, non-invasive VNS has garnered increasing 
attention due to its potential to improve upper extremity motor 
function in stroke patients, although its underlying neural mechanisms 
are not fully understood. In order to explore the feasibility of the 
current study, we conducted HRV and fNIRS examinations prior to 
the initiation of the treatment. The effectiveness of taVNS was assessed 
using HRV examination. Our current results demonstrated significant 
decreases in HR, LF/HF ratio, and a marked increase in SDNN in the 
VG, whereas no changes were observed in the SG. These results 

indicated that taVNS indeed modulated the vagus nerve network. 
Subsequently, using fNIRS, we  observed greater hemodynamic 
responses in the bilateral PFC and the ipsilesional SMC during the 
grasp task with taVNS, suggesting an enhancement of cortical 
activation. In the fNIRS study conducted by Kunii et al. (2021), the 
effects of iVNS on cerebral blood flow (CBF) during a resting state and 
a verbal fluency task were investigated. They found that no changes in 
CBF were observed during the resting state, while the verbal fluency 
task led to a significant increase in CBF. Wang et al. (2023) found that 
a single session of taVNS could significantly bolster the activation 
within damaged cerebral territories in stroke patients without 
destabilizing cerebral lateralization. These findings provide evidence 
that taVNS can effectively activate the task-specific cortex during 
motor task performance, supporting the immediate effect of taVNS.

The TOT approach aims to teach stroke patients specific task 
strategies and improve their ability to adapt to the environment 
through functional tasks related to daily life. Previous fMRI studies 
(Jang et al., 2003; McCombe Waller et al., 2014) have reported that 
TOT could improve upper extremity function in post-stroke patients. 
These studies found that activity in the related motor cortex increased 
with the recovery of upper extremity motor function. In our study, 
we  observed improvements in the motor capacity of the upper 
extremity (FMA-UE), arm-hand capacity (ARAT), and activities of 
daily living (MBI) in both groups. However, patients in the taVNS 
group demonstrated greater improvements in upper extremity 
function, which is consistent with previous research (Hoonhorst et al., 
2015; Capone et al., 2017; Redgrave et al., 2018; Chang et al., 2021; Li 
et  al., 2022). Notably, the improvement observed in the VG was 
clinically significant, surpassing the minimal clinically important 
difference (MCID) of 9–10 points for the FMA-UE in individuals with 
subacute stroke (Singer and Garcia-Vega, 2017). Khodaparast et al. 
(2016) observed that the rate of forelimb strength recovery (86%) in 
ischemic stroke rats was significantly higher after receiving VNS with 
rehabilitation training compared to the simple rehabilitation group 
(47%) and the delayed VNS group (42%). Morrison et al. (2019, 2020) 
reported that intracortical microstimulation with VNS can improve 

TABLE 3 Outcomes for ipsilesional motor-evoked potentials.

Ipsilesional MEPs Pre-treatment p value Post-treatment p value

VNS n (%) Sham n (%) VNS n (%) Sham n (%)

Elicited 3 (15) 1 (5)
0.605a

9 (45)b* 3 (15)
0.038c*

Unelicited 17 (85) 19 (95) 11 (55) 17 (85)

MEP, motor evoked potential; aFisher’s exact test; bMcNemar test; cChi square test; *p < 0.05.

TABLE 4 Outcomes for contralesional motor-evoked potentials.

Variable Groups Within-group differences Between-group 
differences

Pre-treatment Post-treatment Mean (SD) LS Mean (95% CI) Difference in 
LS Mean (95% 

CI)

p 
value

VNS sham VNS sham VNS sham VNS sham

MEP (μV) 247.5 (143.5) 202.3 (125) 288.8 (180.5) 279.7 (277) 41.4 (202.6) 77.3 (313.9) 62.1 (−45.9, 

170.1)

56.6 (−51.4, 

164.6)

5.5 (−143.3, 154.3,) 0.943

Latency (ms) # 19.1 (6.7) 17.3 (4.8) 13.1 (6.3) 19.9 (11.3) −6.0 (4.1) 2.6 (11.7) −5.7 (−9.6, 

−1.8)

2.2 (−1.7, 

6.1)

−7.9 (−13.3, −2.5) 0.007

Based on an ANCOVA model after adjusting baseline value. ANCOVA, Analysis of Covariance, CI, Confidence Interval, LS, Least Squares, SD, Standard Deviation; MEP, motor-evoked 
potential amplitude; #significant time × intervention interaction.
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motor cortical plasticity in mice. In this study, significant 
improvements were observed in upper extremity motor function, 
indicating that taVNS paired with task-specific activities may promote 
neuroplastic changes.

Neuroanatomy research has provided insights into the 
mechanisms underlying the activation of the locus ceruleus-
noradrenaline (LC-NE) release system by taVNS. Norepinephrine 
(NE) is an excitatory neurotransmitter, while the locus coeruleus (LC) 

FIGURE 5

Brain activation map and hemodynamics response for task state. (A) Cortical activation map marked on a three-dimensional template (Colin 27 version 
2019, using the interpolated mapping algorithm) in ipsilesional and contralesional vision. (B) Results from the independent t-test of beta values 
between the VG and the SG. Channels with a significant difference were listed. (C) Hemodynamic curve in PoCGipsi. (D) Hemodynamic curve in 
MFGcontr.

FIGURE 6

Effects of taVNS on heart rate variability. HR, averaged heart rate; SDNN, the standard deviation of the normal-to-normal intervals; RMSSD, the square 
root of the mean squared differences of successive normal-to-normal intervals; LF/HF, the ratio of low-frequency to high-frequency power; * in 
orange color: p  <  0.05 compared with T0 in VNS group; ** in orange color: p  <  0.01 compared with T0 in VNS group; *** in orange color: p  <  0.001 
compared with T0 in VNS group; #: a significant time × intervention interaction in repeated-measures ANOVA.
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TABLE 5 Repeated-measures ANOVA for HRV outcomes.

Variable Group Descriptive analysis Within-group differences Repeated-measures ANOVA

T0 T1 T2 T1-T0 in LS 
Mean (95% 

CI)

T2-T0 in LS 
Mean (95% CI)

Effect F p η2P

HRa VNS 82.5 (11) 77.8 (9.96) 73 (9.56) −6.47 (−9.8, −3.2) −10.77 (−15.6, −6.0) Time 0.866 0.402 0.024

Sham 78.5 (11.6) 78 (11.4) 77.2 (12.1) −1.57 (−4.5, 1.4) −2.16 (−6.5, 2.1) Time*Group 7.795 0.002 0.178

Group 10.043 0.003 0.218

SDNN VNS 29.9 (12.8) 31.2 (11.3) 39.2 (10.8) 4.28 (−1.9, 10.5) 10.84 (5.0, 16.7) Time 2.190 0.119 0.057

Sham 28.3 (13) 31.8 (12.7) 27.8 (10.5) 4.90 (−0.7, 10.5) 0.97 (−4.3, 6.2) Time*Group 6.180 0.003 0.147

Group 2.370 0.132 0.062

RMSSD VNS 23.3 (9.92) 23.7 (8.99) 29.3 (9.85) 4.44 (−2.4, 11.3) 7.94 (2.4, 13.5) Time 0.660 0.520 0.018

Sham 24.3 (11.7) 26.6 (13.6) 26.8 (7.74) 4.51 (−1.6, 10.6) 3.78 (−1.2, 8.8) Time*Group 0.865 0.425 0.023

Group 0.498 0.485 0.014

LF/HF VNS 2.32 (1.42) 1.39 (0.908) 1.23 (0.849) −0.60 (−1.3, 0.1) −0.74 (−1.4, −0.1) Time 0.328 0.721 0.009

Sham 1.82 (1.02) 1.96 (1.28) 1.45 (1.02) 0.33 (−0.3, 0.9) −0.14 (−0.7, 0.4) Time*Group 3.270 0.044 0.083

Group 5.732 0.022 0.137

SD, Standard Deviation; LS, Least Squares; CI, Confidence Interval; HR, average heart rate; SDNN, standard deviation of the NN intervals; RMSSD, square root of the mean squared 
differences of successive NN intervals; LF/HF, low-to-high frequency power ratio; aThe Greenhouse–Geisser correction was used for not obeying the sphericity assumption.

is the primary source of the norepinephrine-producing neurons in the 
brain. Studies indicated that both short-term and long-term VNS can 
increase neuronal firing rates of the LC, leading to increased NE 
concentrations in the amygdala, hippocampus, and prefrontal cortex. 
The VNS-induced NE could maintain long-term activity (Groves 
et al., 2005; Hulsey et al., 2017). NE can enhance cortical excitability 
and plasticity, which are associated with daytime vigilance, attention, 
and motor learning (Duffau, 2006; Ciampa et al., 2022). The fMRI 
studies by Kraus et al. (2007) and Dietrich et al. (2008) have detected 
blood oxygenation level-dependent (BOLD) signal activations in the 
bilateral sensorimotor cortex and prefrontal cortex during 
taVNS. Furthermore, Frangos and Komisaruk (2017) observed 
sustained activation of the bilateral precentral gyrus for nearly 10 min 
(9 min, in fact) following taVNS. Combining these findings with the 
results of fNIRS in our trial, it is plausible to speculate that taVNS can 
induce bilateral hemisphere activation during the treatment, which 
may be attributable to the related neurotransmitter release.

In this study, we utilized single-pulse TMS to assess long-term 
changes in motor cortex excitability by measuring MEPs in both 
hemispheres. The study found a relatively low elicitation rate of 
ipsilesional MEPs in patients at baseline. However, the elicitation rate 
of ipsilesional MEPs increased significantly from 15% before treatment 
to 45% after treatment in the VG, which is consistent with previous 
studies (Escudero et al., 1998; Powell et al., 2019; Yarossi et al., 2019). 
Moreover, the average latency of ipsilesional MEPs in the VG 
decreased from 63.53 ms to 55.36 ms, while the amplitude increased 
from 87.60 μV to 140.18 μV, suggesting a trend toward increased 
cortical excitability in the ipsilesional M1. Cakar et al. (2016) reported 
a positive correlation between shorter MEP latency, increased 
amplitude, and improved motor function in stroke patients. 
Additionally, we observed a reduction in the latency of contralesional 
MEPs, indicating the modulation of the contralesional M1. Increased 

intracortical excitability of contralesional M1 has been observed in 
subacute and chronic stroke patients (Bütefisch, 2003; Bütefisch et al., 
2008), with suggestions that the increased excitability is associated 
with better recovery of upper extremity function (Bütefisch, 2015). 
Bi-hemispheric transcranial direct current stimulation (tDCS) studies 
using fMRI have supported this notion, proposing a cooperative role 
of contralesional M1 rather than competition (Waters et al., 2017). 
Furthermore, a randomized controlled trial conducted by Hsu et al. 
(2023) demonstrated that improvements in FMA-UE scores in 
subacute stroke patients correlated with changes in functional 
connectivity within the bilateral intra-hemisphere networks. In our 
study, we  found a significant correlation between the decrease in 
latency of contralesional MEPs and improvements in FMA-UE scores, 
which is consistent with previous literature (Wang et al., 2020). Based 
on these findings, the long-term combined intervention may modulate 
bilateral motor cortical excitability and facilitate training-specific 
motor performance.

5 Limitations

This study has several limitations that need to be addressed in 
future research. First, the small sample size and the high dropout rate 
of the fNIRS examination in this study might result in insufficient 
statistical power, potentially increasing the chance of a type I error. A 
larger sample size is needed to confirm these findings and achieve 
more reliable results. Second, it is worth noting that, due to the limited 
number of positive events (elicited ipsilesional MEPs), the significance 
and generalizability of this result should be  carefully considered. 
Finally, follow-up assessments were not conducted to investigate the 
sustained effects of taVNS in this study, which should be considered 
in future studies.
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6 Conclusion

In conclusion, our study provides evidence that the combined 
intervention of taVNS with TOT is effective in enhancing upper 
extremity motor function in patients with post-stroke hemiplegia. 
This improvement can be attributed to the modulation of cortical 
excitability in both hemispheres, which facilitates the remodeling of 
motor function.
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