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Time-To-First-Spike (TTFS) coding in Spiking Neural Networks (SNNs) o�ers

significant advantages in terms of energy e�ciency, closely mimicking the

behavior of biological neurons. In this work, we delve into the role of skip

connections, a widely used concept in Artificial Neural Networks (ANNs), within

the domain of SNNs with TTFS coding. Our focus is on two distinct types

of skip connection architectures: (1) addition-based skip connections, and

(2) concatenation-based skip connections. We find that addition-based skip

connections introduce an additional delay in terms of spike timing. On the other

hand, concatenation-based skip connections circumvent this delay but produce

time gaps between after-convolution and skip connection paths, thereby

restricting the e�ective mixing of information from these two paths. To mitigate

these issues, we propose a novel approach involving a learnable delay for

skip connections in the concatenation-based skip connection architecture. This

approach successfully bridges the time gap between the convolutional and skip

branches, facilitating improved information mixing. We conduct experiments on

public datasets includingMNIST and Fashion-MNIST, illustrating the advantage of

the skip connection in TTFS coding architectures. Additionally, we demonstrate

the applicability of TTFS coding on beyond image recognition tasks and extend

it to scientific machine-learning tasks, broadening the potential uses of SNNs.

KEYWORDS

Spiking Neural Network, temporal coding, image recognition, event-based processing,

energy-e�cient deep learning

1 Introduction

The communication between spiking neurons in the brain, characterized by its binary,

event-driven, and sparse nature, offers significant potential for creating flexible and energy-

efficient artificial intelligence (AI) systems (Roy et al., 2019; Christensen et al., 2022).

Spiking Neural Networks (SNNs), unlike traditional Artificial Neural Networks (ANNs),

leverage binary spikes, thereby offering a unique dimension of time in their operation.

Recent studies have shown promising results with SNNs, making them suitable for

competitive and energy-efficient applications in neuromorphic hardware (Cao et al., 2015;

Diehl and Cook, 2015; Roy et al., 2019; Comsa et al., 2020; Panda et al., 2020).

A primary application of SNNs lies in image recognition (Roy et al., 2019; Christensen

et al., 2022). In order to transform a static image into binary spike trains, a range of coding

schemes have been introduced (Park et al., 2019; Comsa et al., 2020; Guo et al., 2021). Rate
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coding conveys information through the firing rate of spikes

(Wu et al., 2019; Fang et al., 2020; Lee et al., 2020; Zhang and

Li, 2020; Zheng et al., 2020). Phase coding, meanwhile, embeds

temporal information in spike patterns utilizing a global oscillator

(Montemurro et al., 2008). In contrast, burst coding transmits spike

bursts within brief time periods, which boosts the reliability of

synaptic communication between neurons (Park et al., 2019).While

these coding schemes have proven successful in training SNNs, they

generate a large number of spikes, which presents challenges when

applied to ultra-low power devices.

To leverage temporal spike information in ultra-low power

environments, researchers have increasingly focused on Time-

To-First-Spike (TTFS) coding (Rueckauer and Liu, 2018; Zhang

et al., 2019). The core concept involves representing information

through spike timing, with each neuron generating a single spike

during the forward process. A line of work focuses on training

temporal-coded SNNs with backpropagation (Bohte et al., 2000; Xu

et al., 2013; Mostafa, 2017; Shrestha and Song, 2017; Comsa et al.,

2020; Zhang et al., 2021), which highlights biological plausibility

and efficiency of temporal coding. Much of the previous work

has centered on developing improved synaptic models capable of

effectively processing temporal information. For instance, Mostafa

(2017) employed non-leaky integrate-and-fire neurons to compute

locally exact gradients for backpropagation, while Comsa et al.

(2020) introduced the alpha-synaptic function to enhance SNNs’

accuracy. Recently, Zhang et al. (2021) proposed a ReLU-like spike

dynamics that effectively mitigates the dead neuron issue caused by

the leaky nature of spike functions.

While advances in synaptic modeling have illuminated the

understanding of neuronal dynamics, the exploration of network

architecture in temporal SNNs has been relatively limited. In this

paper, we explore architectural improvements of TTFS coding,

focusing on the role of skip connections in neural networks.

Skip connections are a widely employed technique in ANNs,

facilitating training and enhancing performance by allowing

information to bypass certain layers. We examine two types of

skip connection architectures: (1) addition-based skip connections,

as proposed in ResNet (He et al., 2016), and (2) concatenation-

based skip connections utilized in the ShuffleNetV2 architecture

(Ma et al., 2018). We find that, when implemented in temporal

SNN architectures, addition-based skip connections can introduce

extra delays in the time dimension. Conversely, concatenation-

based skip connections substantially reduce inference latency, but

yield limited performance improvements due to discrepancies

between the distributions from the convolution and skip branches.

To augment the performance of concatenation-based skip

connections, we propose a learnable delay for skip connections,

which diminishes the distribution gap between the skip and

convolutional branches, allowing for more effective information

mixing between the two distributions.

In addition to our exploration of a new architecture for TTFS

SNNs, we also investigate applications outside of image recognition,

specifically in the realm of scientific machine-learning tasks.

We venture into the domain of time-reversal wave localization

problems, a significant challenge in physics and engineering. This

problem aims to trace back a wave’s source given the wave

shape at a later time (Bardos and Fink, 2002; Givoli and Turkel,

2012; Kahana et al., 2022). Through these experiments, we aim

to demonstrate the versatility and potential of SNNs in various

complex tasks, significantly expanding their applicability beyond

traditional domains.

In summary, our contributions in this paper are three-

fold. (1) First, we explore the network architecture of temporal

SNNs, with a particular emphasis on skip connections, examining

both addition-based residual connections and concatenation-based

skip connections in the context of temporal SNNs. (2) Second,

we propose a learnable delay for skip connections to improve

the performance of concatenation-based skip connections by

reducing the distribution gap between skip and convolutional

branches, enabling more effective information mixing. (3) Lastly,

we extend the application of Time-To-First-Spike (TTFS) coding

beyond image recognition to the time-reversal problem for source

localization using wave signal. These contributions not only

advance our understanding of network architecture in temporal

SNNs but also broaden the potential applications of TTFS coding

in various domains.

2 Related work

2.1 Spiking Neural Networks

SNNs, unlike traditional ANNs, operate using temporal spikes,

thereby offering a unique dimension of time in their operation (Roy

et al., 2019; Christensen et al., 2022). Among their components,

the Leaky-Integrate-and-Fire (LIF) neuron is key as it functions

as a non-linear activation unit. The LIF neurons stand out due

to the “memory” held within their membrane potential, where

spikes are incrementally gathered. Once this potential exceeds

a certain threshold, the neurons fire output spikes and the

potential resets.

Training algorithms have been a primary focus of SNN

research. Several methods proposed to address this involve

transforming pre-trained ANNs into SNNs using weight or

threshold balancing strategies (Diehl et al., 2015; Rueckauer et al.,

2017; Sengupta et al., 2019; Han et al., 2020; Li et al., 2021a). While

these techniques are generally effective, they require a multitude

of timesteps to emulate float activations using binary spikes. A

set of recent studies have suggested the use of surrogate functions

to circumvent this non-differentiable backpropagation issue (Lee

et al., 2016, 2020; Shrestha and Orchard, 2018; Wu et al., 2018,

2020, 2021; Neftci et al., 2019; Li et al., 2021b; Kim et al., 2022a).

These methods, accounting for temporal dynamics during weight

training, exhibit high performance and short latency.

Recent literature goes beyond enhancing the performance of

SNNmodels, focusing on improving their generalization capability

and robustness. The utilization of the information bottleneck

theory is a common thread in these efforts. Yang and Chen (2023a)

introduce a novel and flexible learning framework called high-order

spike-based information bottleneck (HOSIB), making use of the

surrogate gradient technique. Yang and Chen (2023b) put forward a

spike-based non-linear IB (SNIB) framework with varying orders,

resulting in improved performance and robustness. Additionally,

Yang et al. (2023) delves into the design space of the information
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bottleneck framework, utilizing the membrane potential state for

the representation of hidden information.

Another significant aspect of SNN research pertains to the

coding scheme. Several schemes have been proposed for image

classification with SNNs. Burst coding, for example, communicates

a burst of spikes within a short duration, enhancing synaptic

communication reliability (Park et al., 2019). Phase coding encodes

temporal information into spike patterns based on a global

oscillator (Montemurro et al., 2008). Furthermore, rate coding

has been applied to large-scale settings and is currently used by

state-of-the-art methods (Diehl and Cook, 2015; Lee et al., 2016,

2020). This scheme generates a spike train over T timesteps,

where the total spike count reflects the magnitude of the input

values. However, this generation of numerous spikes can pose

issues for ultra-low power devices. To address this, Time-To-

First-Spike (TTFS) coding has gained interest (Mostafa, 2017;

Zhang et al., 2019; Comsa et al., 2020), as it generates a

single spike per neuron, with spike latency inversely related to

information importance. Despite progress in synaptic modeling,

the architectural exploration of temporal SNNs remains limited.

In this paper, we delve into the architectural enhancement of

TTFS coding, specifically emphasizing the significance of skip

connections in neural networks.

2.2 Skip connection architecture

The concept of skip connections or shortcut connections

has been a cornerstone in the development of deep learning

architectures, contributing significantly to the performance

enhancement of various models. He et al. (2016) proposed the

ResNet architecture that employs skip connections to allow signals

to bypass layers, directly flowing from one layer to a layer further

into the network. This design helps to alleviate the problem of

vanishing gradients in deep networks, thereby enabling the training

of networks that are significantly deeper than those previously

possible. Furthermore, introduced by Srivastava et al. (2015),

Highway Networks utilize gated skip connections, where the data

flow is regulated by learned gating functions. This allows the

network to learn to control the information flow dynamically.

Also, Huang et al. (2017) proposed DenseNet, where each layer

receives direct inputs from all preceding layers and passes down its

own feature maps to all subsequent layers. This dense connectivity

promotes feature reuse and substantially reduces the number of

parameters. In the ShuffleNetV2 architectures (Ma et al., 2018),

channel shuffle operations and pointwise group convolutions are

combined with skip connections to create highly efficient network

architectures suitable for mobile devices. The aforementioned

architectures have shown the importance of skip connections in

enhancing the performance of neural networks. However, most of

these architectures have been designed for traditional ANNs, and

their application and efficacy in the context of SNNs remain to be

thoroughly investigated.

In the SNN domain, a line of work has introduced the

residual connection architecture (Fang et al., 2021; Hu et al.,

2021), demonstrating state-of-the-art performance. Zhang et al.

(2023) propose a Highway Connection module designed for

use with residual membrane potential neurons, enhancing the

responsiveness of neurons in deep layers to input spikes.

Benmeziane et al. (2023) investigates the correlation between the

number of skip connections and accuracy in SNN architectures,

proposing an algorithm for selecting the optimal number of skip

connections. Additionally, Ikegawa et al. (2022) analyzes the impact

of batch normalization and residual connection, achieving very

deep SNNs (more than 100 layers) with pre-activation residual

blocks. While the residual architecture has been explored with rate-

coded SNNs, the impact of the residual architecture with temporal

considerations has not been thoroughly investigated.

3 Methodology

3.1 Temporal neuron

Our neuron model is based on the non-leaky integrate-and-

fire neurons proposed in Mostafa (2017). The neuron employs

exponentially decaying synaptic current kernels denoted as ǫ. The

influence of a spike occurring at time tk on the membrane potential

can be expressed as

dV j(t)

dt
=

∑

i

wji

∑

k

ǫ(t − tk). (1)

Here, V j(t) represents the membrane potential of neuron j at

time t, and wji is the weight connection between neuron j and

neuron i in the preceding layer. The synaptic current kernels,

denoted by ǫ, are defined as

ǫ(x) = U(x)exp(−x), (2)

where U(x) is the step function. U(x) = 1 when x ≥ 0

and U(x) = 0 otherwise, which ensures that the synaptic

kernel accounts for the time subsequent to the input spike.

By considering both Equations (1, 2), we can derive the equation of

the membrane potential. We assume one neuron generates at most

one spike, so the membrane potential V(t) increases until there is

an output spike. Then, we can write the membrane potential with

N input spikes

V(t) =

N
∑

k=1

U(t − tk)wk(1− exp(−(t − tk))). (3)

Here, tk is the spike timing of k-th spike and wk is the

corresponding weight.

The neuron generates an output spike whenever the membrane

potential has a higher value than 1, thus, V(tout) ≥ 1, where tout
means the output spike timing. For all spike tk < tout , we refer to

the set of input spike index as a casual setC, following the definition

from the previous work (Mostafa, 2017).

1 =
∑

k∈C

wk(1− exp(−(tout − tk))). (4)

Then, we reorganize Equation (4) for the spike timing.

exp(tout) =

∑

k∈C wkexp(tk)
∑

k∈C wk − 1
. (5)
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A B

FIGURE 1

Illustration of a spike timing delay through layers. (A) Change of membrane potential when there are input spikes at times 1, 2, and 3. (B) We visualize

the histogram of spike timing after Conv3, Conv4, and Conv5 layers.

For simplicity, we transform exp(ti) → zi, i.e., z-transformation

(Weisstein, 2002). Then, Equation (5) can be rewritten as:

zout =

∑

k∈C wkzk
∑

k∈C wk − 1
. (6)

With TTFS coding, the networks determine the class of an

image based on the neuron in the final layer that fires the

earliest spike. For example, consider a scenario involving a 10-class

classification problem. If the neuron corresponding to the “dog”

category emits the earliest spike in the final layer, the network

immediately classifies the given image as a “dog”. This allows

neural networks to have faster predictions, as the classification is

determined as soon as the first spike is generated, without the need

to wait for spikes from other neurons.

3.2 Observation: two types of skip
connections

3.2.1 Temporal delay in a layer
Our objective is to accelerate the first spike timing in the final

layer, without compromising on the accuracy of the model. In

this context, one might wonder: what factors contribute to the

delay in temporal coding? The delay is induced by spiking neurons

where each neuron requires time to charge the membrane potential

to generate the output spike, as demonstrated in Figure 1A.

Figure 1B presents a histogram of spike timings, illustrating that

the distribution shifts toward a later time as the layer goes deeper.

We aim to reduce this inherent temporal delay by bypassing the

convolutional layers.

3.2.2 Architectures
We focus on the skip connection design in the temporal

coding. We examine two types of skip connection architectures:

(1) addition-based skip connections, as seen in ResNet (He et al.,

2016), and (2) concatenation-based skip connections utilized in

the ShuffleNetV2 architecture (Ma et al., 2018). Addition-based

skip connection architecture adds a skip connection to the main

convolutional branch. Let Xl represent the input to l-th block,

and F(Xl) represent the non-linear transformation operations (i.e.,

convolution, batch normalization, and non-linearity) within a

residual block. The operation of a residual block can be written as

follows:

Xl+1 = F(Xl)+ Xl. (7)

The overall operation of addition-based skip connection is

illustrated in Figure 2A. The major problem with this scheme

is that adding two branches (i.e., the skip connection and the

convolutional branch) induces a significant delay in spike timing.

For example, adding a spike from a skip connection at time tA and

a spike after convolutional operation at time tB results in the output

at time tA+tB. Therefore, the addition-based skip connection is not

appropriate for TTFS coding.

On the other hand, a concatenation-based skip connection

utilizes the channel split operation, where an input tensor is

split into two parts along the channel dimension. One part is

transformed through a series of operations while the other part

passes a skip connection. These two parts are then concatenated

and shuffled to ensure equal information sharing among channels.

Mathematically, for the input activation Xl in l-th block, the

operation of a concatenation-based skip connection can be

represented as follows:

Xl = [Xl,1;Xl,2]. (8)

Xl+1 = Shuffle(F(Xl,1)||Xl,2), (9)

where F(Xl) represents the non-linear transformation operation,

and Xl,1,Xl,2 stand for two input tensors divided through

channel dimension, respectively. The overall illustration of the

concatenation-based skip connection is shown in Figure 2B.

Different from the addition-based skip connection, the

concatenation-based skip connection allows spikes to pass directly

through, thereby expediting the timing of spikes. However,

this method does come with a notable disadvantage: a timing

discrepancy between the spikes in the convolutional branch and

those in the skip connection branch. Specifically, we observe the

distributions from the convolutional and skip connection branches

have less overlap. This lack of overlap can make it difficult to

integrate information effectively between the two distributions

in the later layers. This is because of the inherent property of

temporal neurons in TTFS coding. After a neuron spikes, there is

no further activity, which implies a TTFS neuron will not consider

any later input after it has output a spike. Consequently, these
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A

B

FIGURE 2

Illustration of a spike timing delay of two skip connection architectures. We visualize the histogram of spike timing for 1© skip branch, 2©

convolutional branch, and 3© after combining the two branches. (A) Addition-based skip connection. (B) Concatenation-based skip connection.

neurons tend to prioritize the earlier input, usually coming from

the skip connection. This skewed consideration can potentially

lead to a drop in accuracy, as vital information from later

inputs could be overlooked. This observation underscores the

importance of appropriately managing the timing of inputs in

temporal SNNs to ensure effective information integration and high

network performance.

To summarize, addition-based skip connections introduce

additional timing delays in temporal SNNs. On the other hand,

concatenation-based skip connections, despite speeding up the

latency during inference, may overlook crucial information from

the convolutional branch.

3.3 Adding learnable delay with a skip
connection

Hence, a question naturally arises: how can we improve the

accuracy while reducing latency in TTFS? We focus on the problem

of concatenation-based skip connections, i.e., timing discrepancy

between the convolutional branch and the skip branch. To address

this problem, we introduce a delay to the skip connection,

which is designed to minimize the timing disparity between

the two branches. Figure 3 provides an illustration of the delay

implementation within the skip connection, where a delay is

added across each channel. This introduces a slight adjustment

to the original concatenation-based skip connection architecture.

Initially, we partition the feature map across the channel dimension

as follows:

Xl = [Xl,1;Xl,2]. (10)

Subsequently, we apply a convolution layer F(·) to Xl,1 and a

delay block D(·) to Xl,2. Then we concatenate the outputs from

those branches:

Xl+1 = Shuffle(F(Xl,1)||D(Xl,2|θl)), (11)

where the delay block can be written as follows:

D(X|θl) = X + θl. (12)

Here, θl ∈ R
D represents the parameters within the delay block

in l-th layer, where D is the channel dimension. This delay block

applies distinct delays across each channel. We train the parameter

θl alongside the other weight parameters within the neural network.

To further align the distributions from the convolutional layer and

the skip connection, we introduce an additional loss constraint

during optimization:

Loverlap =
∑

l

||Mean(F(Xl,1))−Mean(D(Xl,2|θl))||
2
2. (13)

This loss function encourages the two distributions to converge,

enhancing the efficacy of the information mixing between the

convolutional and skip branches.

3.4 Overall optimization

For the given image X, we convert the float input to the spike

timing. Similar to rate coding (Wu et al., 2018, 2019; Kim et al.,

2022b), we add one convolutional layer at the first layer, i.e., Conv-

BN-ReLU. Then we directly utilize the output of the ReLU layer

to the spike timing (t = ReLU(BN(Conv(X)))) as the output of

the ReLU layer is always higher than zero. We pass through the

multiple temporal neuron layers as described in Section 3.1. In

the output layer, the class probability is computed from the spike

timing. The objective is to train the network such that the neuron

associated with the correct class is the first to fire among all neurons.

This can be done by applying the cross-entropy loss to the output

spike timing O ∈ R
C of the last layer:

Lce =
∑

c

−ycln
exp(−Oc)

∑

i exp(−Oi)
. (14)
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FIGURE 3

Illustration of the concatenation-based skip connection architecture with a delay block.

Here, yc is a one-hot encoding of a class index, and Oc denotes

the c-th index of output neurons. Multiplying −1 with the output

neuron is for assigning higher probability weighting for the early

spike.

With a cross-entropy loss for classification, following the prior

research (Mostafa, 2017), we introduce an additional term to the

cost function that penalizes the input weight vectors of neurons

whose sum is below 1 (denominator of Equation 6).

Lweight =
∑

l

∑

i

max(0, 1−
∑

j

wij,l). (15)

Here, i is the neuron index of layer l, and j is the input neuron

index from the previous layer to neuron i. Overall, the total loss

function is defined as follows.

Ltotal = Lce + λ1Lweight + λ2Loverlap, (16)

where λ1 and λ2 are the hyperparameters for a trade-off between

the losses.

4 Experiments

4.1 Implementation details

We evaluate our method on MNIST (LeCun, 1998) and

Fashion-MNIST (Xiao et al., 2017). We train the model with 128

batch samples using Adam optimizer with weight decay 1e-3.

The initial learning rate is set to 6e-4 and decayed with cosine

learning rate scheduling (Loshchilov and Hutter, 2016). We set the

total number of epochs to 100. We set λ1 and λ2 to 1 and 1e-6,

respectively. We use PyTorch for implementation.

4.2 Experiments on image recognition

Here, we compare the accuracy and latency across standard

convolutional networks, addition-based skip connection

architecture, and concatenation-based skip connection

architecture. More concretely, we construct baseline CNN

architecture as follows: Conv(3,32)-Maxpool(2)-Conv(32,32, stride

2)-Conv(32,32)-Conv(32,64, stride 2)-Conv(64,64)-FC(10). For

addition-based skip connection architecture, we add a residual

connection for Conv(32,32, stride 2)-Conv(32,32) block and

Conv(32,64, stride 2)-Conv(64,64). In the skip connection, we apply

a pooling layer to align the resolution between the skip connection

and the convolutional branch. For a concatenation-based skip

connection architecture, we also use a similar baseline CNN

architecture. Figure 4 shows the details of the architectures.

To compare these architectures, we introduce latency as an

additional metric, along with accuracy. In this context, latency is

defined as the average time taken for the first spike to occur in the

final layer. This is a particularly relevant measure for TTFS coding,

as operations can be terminated as soon as the first spike occurs

in the last layer. As such, we present both latency and accuracy in

our results, offering a comprehensive understanding of the trade-off

between speed and precision in these varying architectural designs.

In Tables 1, 2, we present the accuracy and latency results

for the MNIST and Fashion-MNIST datasets, respectively. Several

key observations can be made from these results: (1) The

addition of skip connections significantly improves model accuracy

compared to the baseline model. Specifically, the skip connection

model improves performance by approximately 4% for both the

MNIST and Fashion-MNIST datasets. (2) While the addition-

based skip connection enhances accuracy, it also results in

increased latency. This additional latency stems from the additive

operation between the skip and convolutional branches, as

discussed in Section 3.2.2. (3) The concatenation-based skip

connection model, without a delay block, achieves a reduction

in latency. However, its performance is comparatively lower

than that of the addition-based skip connection architecture. (4)

Incorporating a delay block into the concatenation-based skip

connection model leads to improved performance. Notably, the

addition of the delay block does not significantly increase latency

for either dataset. In summary, among the tested architectures,

the concatenation-based skip connection model with a delay

block provides the optimal balance of high performance and

low latency.

4.3 Comparison with previous methods

To establish the effectiveness of our proposed architecture,

we draw comparisons between our model, Concat-based Skip

Connection with Delay, and previous models. We focus on

models that have been applied to the MNIST and Fashion-

MNIST datasets. Table 3 shows results for the MNIST dataset.
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FIGURE 4

Illustration of the architectures of Baseline CNN, Addition-based skip connection, and Concatenation-based skip connection. (A) Baseline CNN. (B)

Addition-based skip connection architecture. (C) Concatenation-based skip connection architecture.

TABLE 1 Classification accuracy (%) and latency of skip connection

architectures on the MNIST dataset.

Method Accuracy (%) Latency

Baseline (Convolution layers

without skip connection)

97.9 3.53

Addition-based skip connection 98.4 4.57

Concatenation-based skip

connection

98.4 2.16

Concatenation-based skip

connection + Delay Block

98.5 1.88

Our model achieves an accuracy of 98.5%, which is competitive

with prior work. For the Fashion-MNIST dataset, Table 4 illustrates

the superior performance of our model, which achieves an

accuracy of 91.4%. The model by Zhang et al. (2021) is

the next best performer with an accuracy of 90.1%. In both

cases, our Concat-based Skip Connection with Delay architecture

outperforms previous models, indicating its effectiveness in

enhancing the performance of Spiking Neural Networks. This

is particularly noteworthy for tasks that involve Time-To-First-

Spike (TTFS) coding. The success of the Concat-based Skip

Connection with Delay model may be attributed to its ability to

address the timing discrepancy between convolutional and skip

branches, thus maintaining high performance while achieving

low latency.

TABLE 2 Classification accuracy (%) and latency of skip connection

architectures on the Fashion-MNIST dataset.

Method Accuracy (%) Latency

Baseline (Convolution layers

without skip connection)

90.7 3.71

Addition-based skip connection 91.1 4.89

Concatenation-based skip

connection

90.6 2.28

Concatenation-based skip

connection + Delay Block

91.4 2.29

4.4 Experimental analysis

4.4.1 Energy e�ciency: spike rate comparison
As highlighted in an earlier section, the ability to terminate

operation within the networks as soon as the first spike

at the last layer occurs is an inherent advantage of TTFS

coding. To fully leverage this characteristic, we assess the

number of spikes present in each layer when we implement

an early exit strategy. In Figure 5, we visualize the spike rate

of the baseline, addition-based skip connection architecture,

and concatenation-based skip connection architecture. Here,

we use the concatenation-based skip connection results with

the added delay. In this context, the spike rate refers to the

proportion of firing neurons in a given layer. This metric is
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instrumental in understanding the speed and efficiency of each

model, and consequently, its suitability for real-time or latency-

sensitive applications.

The experimental results showcased in Figure 5 provide a

clear comparison between the baseline model, the addition-

based skip connection model, and the concatenation-based skip

connection model in terms of spike rate at different layers of

the network. In the baseline model, the spike rates for conv2,

conv3, conv4, and conv5 layers are 74.49, 53.45, 64.37, and

26.99% respectively. For the addition-based skip connectionmodel,

the spike rates significantly increase, recorded at 85.5, 83.12,

90.61, and 86.02% for conv2, conv3, conv4, and conv5 layers,

respectively. These high spike rates demonstrate the model’s

heightened activity during the computation process. On the other

TABLE 3 Accuracy (%) comparison among the previous work on the

MNIST dataset.

Method Coding Accuracy (%)

Mostafa (2017) Temporal 97.5

Comsa et al. (2020) Temporal 97.9

Kheradpisheh and Masquelier

(2020)

Temporal 97.4

Kheradpisheh et al. (2022) Temporal 97.0

Sakemi et al. (2021) Temporal 98.0

Ours (Concat-based Skip + Delay) Temporal 98.5

TABLE 4 Accuracy (%) comparison among the previous work on the

Fashion-MNIST dataset.

Method Coding Accuracy (%)

Hao et al. (2020) Rate 85.3

Zhang and Li (2020) Rate 89.5

Ranjan et al. (2020) Rate 89.0

Kheradpisheh and Masquelier

(2020)

Temporal 88.0

Kheradpisheh et al. (2022) Temporal 87.3

Zhang et al. (2021) Temporal 90.1

Ours (Concat-based Skip + Delay) Temporal 91.4

hand, the concatenation-based skip connection model exhibits

considerably lower spike rates. Specifically, the rates for conv2,

conv3, conv4, and conv5 layers are 61.59, 49.43, 30.67, and 7.59%,

respectively. This indicates that fewer neurons are active during

computation, thereby leading to lower latency and potentially faster

computation times.

In summary, while the addition-based skip connection

model tends to enhance activity across the network, the

concatenation-based model successfully reduces the spike rate,

potentially improving the efficiency of the network, particularly

in latency-sensitive scenarios. These results further establish the

importance of an appropriate skip connection strategy in designing

efficient SNNs.

4.4.2 Comparison with ANN
SNNs are renowned for their energy efficiency in comparison to

traditional ANNs. To demonstrate this, we undertake a comparison

of the approximate energy consumption between SNNs and ANNs,

assuming that both are built using the same architecture. Due to

their event-driven nature and binary 1, 0 spike processing, SNNs

are characterized by a reduced complexity of computations. More

specifically, a multiply-accumulate (MAC) operation reduces in an

SNN to a simple floating-point (FP) addition, thus necessitating

only an accumulation (AC) operation. In contrast, traditional

ANNs still require full MAC operations. In line with previous

studies such as Lee et al. (2016) and Park et al. (2020), we

estimate the energy consumption for SNNs by quantifying the

total MAC operations involved. Using the standard 45 nm CMOS

technology as a reference point (Horowitz, 2014), we assign the

energy for MAC and AC operations as EMAC = 4.6pJ and EAC =

0.9pJ, respectively. This shows that MAC operations consume

approximately 5.11 times more energy than AC operations. Since

neurons in SNNs only consume energy whenever a neuron spikes,

we multiply the spiking rate Rs(l) at layer l with FLOPs to

obtain the SNN FLOPs count. The total inference energy of

ANNs (EANN) and SNNs (ESNN) are calculated by: EANN =
∑

l FLOPs(l) × EMAC and ESNN =
∑

l FLOPs(l) × Rs(l) ×

EAC , respectively. FLOPs(l) represents the number of FLOPs in

layer l.

The energy consumption comparison between our method

and a conventional ANN is presented in Table 5. Notably,

while maintaining competitive performance, our method—

which combines concatenation-based skip connections with

FIGURE 5

Spike rate in di�erent architectures. We use the Fashion-MNIST dataset and measure the spike rate in Conv2-Conv5 layers.
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TABLE 5 Energy-e�ciency comparison between ANN and SNN (with

concatenation-based skip + delay) at inference.

Method Relative energy cost Accuracy (%)

ANN 1 92.27

Concat-based Skip + Delay 0.13 91.41

We use the Fashion-MNIST dataset for the experiments.

TABLE 6 Accuracy (%) comparison among the di�erent delay block

designs.

Method Accuracy (%) Latency

Layer-wise delay 90.71 3.5

Channel-wise delay 91.41 2.29

Pixel-wise delay 91.11 2.39

We use the Fashion-MNIST dataset for the experiments.

a delay block—significantly reduces the relative energy

cost. In contrast to the ANN’s relative energy cost of 1,

our method operates at just 13% of the ANN’s energy

expenditure, thus demonstrating the superior energy efficiency of

our approach.

4.4.3 Delay design
There are several design variants for delay blocks. Here,

we propose three types for comparison: (1) Layer-wise delay

applies the same delay across all neurons in one layer. (2)

Channel-wise delay adds a timing delay for each channel,

which is used in our method. (3) Pixel-wise delay adds

a timing delay for each spatial location. For intermediate

layers where the feature tensor size is C × H × W, we

apply delay for each H × W location. Table 6 presents the

comparative performance of these three delay block design

variants, specifically evaluating their impact on accuracy and

latency using the Fashion-MNIST dataset. The results suggest

that the application of delay varies significantly in effect

depending on its implementation level. Specifically, channel-wise

delay, as employed in our method, demonstrated the highest

accuracy and the lowest latency, indicating its effectiveness for

the integration into concatenation-based skip connections. This

demonstrates the potential benefits of applying unique delays to

each channel, providing an effective balance between performance

and computational efficiency.

4.4.4 Analysis on delay value
In this section, we investigate the impact of different initial

values within the delay block. For this purpose, we set the

initial delay values (θl in Equation 12) to [0, 0.25, 0.5, 0.75, 1.0]

and train the model accordingly. As depicted in Figure 6 (left),

we present the performance corresponding to each initialization

time. It is observed that when initialized with a small delay, the

resulting latency remains small. Conversely, when the delay value

is initialized to be higher, the resultant latency increases, but this

also leads to an enhancement in accuracy. Figure 6 (right) visualizes

how these delay values fluctuate across epochs. We note that

regardless of the initial value, all cases tend to gravitate toward a

middle value over time. This results in high initial values decreasing

over time, while lower initial values witness an increase.

4.4.5 Advantage of skip connection: improving
model stability

Our analysis further explores the benefits of incorporating skip

connections within the temporal SNN architecture. Prior research

in the field of ANNs suggests that the inclusion of skip connections

enhances training stability and accelerates convergence speed (He

et al., 2016). We scrutinize this premise in our current context by

tracking and visualizing the evolution of training loss and accuracy

over successive epochs, as depicted in Figure 7. Our findings

corroborate the aforementioned assertions, demonstrating that

our optimized SNN architectures foster swift convergence while

maintaining high test accuracy. This reinforces the value of skip

connections as a significant contribution to the performance and

efficiency of temporal SNNs. We also perform a robustness analysis

on the temporal skip connection by adding Gaussian noise to the

input image. Figure 8 illustrates the accuracy change with respect to

different noise levels. As the noise increases, the performance gap

between the two models goes larger. Specifically, the two models

exhibit an accuracy gap of ≤ 1% without noise, which increases

to approximately ∼ 12% in the case of σ = 0.2. This observation

aligns with prior literature in ANN (Huang et al., 2023), where they

demonstrate that the residual connection enhances the robustness

of the model. Overall, our results suggest that adding a skip

connection in temporal SNN significantly improves the robustness

of the model.

4.5 Experiments on wave equation

In broadening the scope of our investigation, we extend the

application of TTFS coding to tasks within the domain of scientific

machine learning (SciML). An important topic in this field is

how to approximate accurately solutions of partial differential

equations. In particular, we are interested in solving the inverse

(time-reversal) problem of locating sources in an underwater

acoustic domain from measurements at a later time. There has

been a lot of research in this domain, with or without machine

learning, as shown in this survey (Grumiaux et al., 2022). The

recent developments of Transformer-based architectures have

recently been used for this task as well (Ovadia et al., 2023).

Another proposed method refers to using the Time-Reversal

method incorporated with Machine learning based inference

system (Bardos and Fink, 2002; Givoli and Turkel, 2012; Kahana

et al., 2022). Most methods still rely on ANNs that can be expensive

to train.

The challenge herein is formulating this problem as

a classification problem which aligns with the current

implementation of the TTFS. The mathematical formulation

of the wave problem we will investigate in this work is given by:
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FIGURE 6

Left: Accuracy and latency trade-o� with respect to the time initialization in delay block. Right: Change of delay as training goes on. We train and

test the model on Fashion-MNIST.

FIGURE 7

Comparison of the (A) training loss and (B) training accuracy across di�erent architectures on Fashion-MNIST.
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ü(x, y, t) = c21u(x, y, t) (x, y) ∈ � = [xmin, xmax]×

[ymin, ymax], t ∈ (0,T],

u(x, y, 0) = u0(x, y) (x, y) ∈ �,

u̇(x, y, 0) ≡ 0 (x, y) ∈ �,

u(x, y, t) = 0 (x, y) ∈ ∂�, t ∈ [0,T],

(17)

where u(x, y, t) is the acoustic wave pressure, and c is the wave

propagation velocity (assumed constant in this work and equal to

1484m
s ). A single dot over u denotes a first derivative with respect

to time. A double dot denotes a second derivative. The function u0
is the initial condition for the wave propagation, determined by the

source. This initial condition is taken as a small Gaussian eruption

(f (x) = e−(x−x
0.05 )

2
, x = xmax−xmin

2 ) that mimics a localized source

(point source that has been smoothed to avoid numerical artifacts).

The goal is, from measurements of the wave pressure at some time

t, to recover the location of the small initial eruption. This location

is defined as a grid point. To turn it into a classification problem,

we split the grid into zones, and infer the zone where the source

is located. The more zones we use, the more precise localization

we can achieve. However, more zones create a harder classification

task, with growing computational demands.

4.5.1 Dataset configuration
We generate a synthetic dataset based on the wave equation for

a domain of Nx × Ny locations. We use a finite-difference central

differences numerical scheme, preserving up to second order

accuracy.We choose the ratio between the spatial discretization and

FIGURE 8

Robustness analysis of baseline CNN and our Concatenation-based

skip + Delay architecture. We add Gaussian noise to the input image.

The experiments are conducted on the Fashion-MNIST dataset.

the temporal discretization to satisfy the Courant–Freidrichs–Lewy

condition (so that the scheme is stable). To create the synthetic

dataset, for each sample, we choose a location for the source, use

the solver to march in time and compute the wave pressure across

the domain at the 100-th time step. Then we create a label based

on the location of the source, so the pairs consisting of an image

of the pressure at the 100-th time step and its corresponding label

(source) form the dataset.

In detail, we posit the existence of a wave source at all locations

within the domain, excluding a 10 pixels border around the outer

boundary, thus resulting in (Nx − 10) × (Ny − 10) data samples.

As mentioned above, for each wave source location, we compute
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FIGURE 9

The figure on the left illustrates an example of zone-based labeling for the source localization problem for the wave equation. The image is divided

into 3× 3 zones, with each zone assigned a distinct label. On the right, nine di�erent wave images corresponding to each of the nine labels are

displayed. Each image represents the wave shape at the 100-th time step, originating from a wave source located at the center of the respective zone.

TABLE 7 Classification accuracy (%) and latency on time-reversal source localization problem for the wave equation.

Method Labeling strategy Accuracy (%) Latency

Baseline (Convolution layers without skip connection) 3× 3 99.48 4.13

Addition-based skip connection 3× 3 99.50 4.94

Concatenation-based skip connection 3× 3 96.36 1.06

Concatenation-based skip connection + Delay Block 3× 3 99.74 2.83

Baseline (Convolution layers without skip connection) 6× 6 97.93 4.57

Addition-based skip connection 6× 6 97.94 4.87

Concatenation-based skip connection 6× 6 97.68 2.42

Concatenation-based skip connection + Delay Block 6× 6 98.19 3.45

Labeling strategy means we useM ×M zones for assigning a label to each source location. Figure 9 shows an example of 3× 3 zone-based labeling.

the wave pressure at the 100-th time step. To create the labels, we

segment the domain into M × M zones and assign each source

location a label from 0− (M2 − 1), as shown in Figure 9 for a 3× 3

zone-based labeling. The labeling process is the basic quantization

of the domain into smaller segments, and the assigning label for

each source according to the region it belongs to. For the 3 × 3

labeling, we have nine zones, meaning a total of nine classes. To get

a more precise localization one can use 6×6 zones (as shown later),

thus having 36 classes for the classification mechanism. Finally, we

partition these data samples randomly into training and testing sets

at an 80:20 ratio, respectively.

In Table 7, we report the accuracy and latency of the wave

equation problem. We use the architecture shown in Figure 4.

Note that 6 × 6 zone-based labeling is a more difficult task than

3 × 3 zone-based labeling as the model requires classifying a

larger number of zones. We make the following observations:

(1) The general performance trend aligns with what we observed

for image recognition tasks. Concatenation-based skip connection

architectures, especially when paired with a delay block, show

superior performance in terms of balancing high accuracy with

lower latency. This supports the effectiveness of our proposed

architecture for not only static image datasets but also for SciML

tasks such as solving time-reversal problems for wave equations. (2)

The table also reveals that as we change the labeling strategy from

3 × 3 zones to 6 × 6 zones, we see an increase in latency across

all models. This is intuitively right as a higher number of zones

(classes) involves more computations and hence results in a longer

latency. In addition to the increased latency, a larger zone number

also results in slightly reduced accuracy for all methods. This could

be due to the increased complexity of the task with more zones,

potentially requiring a more sophisticated model or additional

training to achieve similar levels of accuracy as those observed

for the smaller number of zones. In Table 8, we compare the

energy efficiency of SNN with ANN. Similar to image classification,

our SNN consumes only 14% of ANN energy, while sacrificing

≤ 1% accuracy.

5 Conclusion

In conclusion, this study has made significant strides in

the exploration of TTFS coding and the optimization of skip

connection architectures for improving the efficiency and accuracy

of SNNs.We discovered that while addition-based skip connections
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TABLE 8 Energy-e�ciency comparison between ANN and SNN (with

concatenation-based skip + delay) at inference on the wave equation

problem.

Method Relative energy cost Accuracy (%)

ANN 1 98.92

Concat-based skip

+ Delay

0.14 98.19

We use the 6× 6 zone-based labeling for the experiments.

introduce temporal delays, concatenation-based skip connections

tend to miss crucial information from the non-linear operation

branch. To address these challenges, we proposed a novel

approach that introduces a learnable delay for skip connections,

bridging the gap between the spike timing discrepancies of the

convolution and skip branches. We demonstrated that this method

not only accelerates the first spike’s timing but also maintains

accuracy, offering an effective solution for faster prediction in

TTFS coding. We also extended our exploration to SciML tasks,

unveiling the potential of TTFS coding beyond image recognition

applications. Our findings suggest that there is room for further

research in optimizing the network architecture of temporal SNNs,

and we hope that our work will inspire new approaches and

applications in this exciting field. In the future, we aim to further

improve the effectiveness of our proposed method and explore its

applicability to even larger and more complex tasks. We believe

that the continuing evolution of SNN architectures will significantly

contribute to the advancement of low-power, efficient, and highly

accurate artificial intelligence systems.
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