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Aiming to provide a feasible crawling motion analysis method for clinical 
application, this study introduced electromyography (EMG)-based motion 
intention recognition technology into the pattern recognition of inter-
limb coordination during human crawling for the first time. Eight inter-limb 
coordination modes (ILCMs) were defined. Ten adult participants were recruited, 
and each participant performed hands-knees crawling at low, medium, and fast 
speeds in self-selected ILCMs and the eight predefined ILCMs, respectively. EMG 
signals for pattern recognition were collected from 30 limbs and trunk muscles, 
and pressure signals for crawling cycle segmentation were collected from the 
left palm. The pattern recognition experiments were conducted in participant-
specific, multi-participant, and participant-independent ways, respectively, 
adopting three different classifiers, including bidirectional long short-term 
memory (BiLSTM) network, support vector machine (SVM), and k-nearest 
neighbor (KNN). The experimental results show that EMG-based pattern 
recognition schemes could classify the eight ILCMs with high recognition rates, 
thereby confirming the feasibility of providing an EMG-based crawling motion 
analysis method for clinical doctors. Furthermore, based on the classification 
results of self-selected ILCMs at different speeds and the statistical results 
of stance duration, swing duration, and the duty factors of stance phase, 
the possible reasons why humans chose various ILCMs at different crawling 
speeds were discussed. The research results have potential application value 
for evaluating crawling function, understanding abnormal crawling control 
mechanisms, and designing rehabilitation robots.
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1 Introduction

The acquisition of crawling skills is regarded as one of the most crucial developmental 
milestones in human motor skill development (Chen et al., 2017; Xiong et al., 2021). Various 
physical abilities can be promoted by crawling movement in infancy, including eye-hand 
coordination, balance, and spatial concepts (McEwan et al., 1991). Therefore, the evaluation 
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of the crawling function has great application value in the fields of 
disease diagnosis and rehabilitation treatment (Gao et al., 2018; Xiong 
et al., 2018a,b, 2021). In particular, as a typical quadruped movement 
(Cole et al., 2019), there are various kinds of inter-limb coordination 
modes (ILCMs) during crawling. Figuring out the ILCMs during 
crawling may help clinicians better evaluate patients’ motor 
dysfunction and then develop more precise rehabilitation 
treatment plans.

Early studies on ILCMs during crawling were mainly based on the 
subjective observation and judgment of observers (Hildebrand, 1967; 
Freedland and Bertenthal, 1994). In this century, various kinetics-
based sensing technologies, i.e., motion capture technology (Patrick 
et al., 2009, 2012; MacLellan et al., 2012, 2013, 2017; Righetti et al., 
2015; Gao et al., 2018; Xiong et al., 2018a,b), inertial measurement 
unit (IMU) (Vitali et al., 2019), and 3-axis accelerometers (Ma et al., 
2017), have been successfully introduced into motion analysis. Patrick 
et  al. (2009) defined ipsilateral phase lag (IPL) value to quantify 
ILCMs during human crawling. In their definition, when a represented 
the whole crawling cycle and b represented the phase difference 
between the moment when the left palm and the left leg contacted the 
ground, IPL can be calculated as (b/a) * 100%. IPL values closed to 
50% indicated trot gait, where diagonal limbs moved in coordination; 
IPL values closed to 0 or 100% indicated pace gait, where ipsilateral 
limbs moved in coordination; IPL values closed to 25% or 75% 
indicated no-limb-pairing gait, where all limbs moved at regular 
intervals (Patrick et al., 2009). Using a motion capture system, Patrick 
et al. carried out research on the ILCMs during human crawling and 
stated that infants would like to adopt trot gait (Patrick et al., 2009). 
Using 3-axis accelerometers and pressure sensors, Ma et  al. 
investigated hands-knees crawling in adult humans and found that, at 
low speeds, most adults crawled using trot or no-limb-pairing gait, 
while they tended to use trot or pace gait as their crawling speed 
increased (Ma et al., 2017).

In summary, current research on ILCMs was in the preliminary 
stage, and the research results had certain limitations. First, crawling 
is a full-body movement related to the coordinated contraction of a 
series of limbs and trunk muscles. It is universally acknowledged that 
motion capture systems have high light requirements in the 
experimental environment, which is usually a fixed experimental site 
and is easily affected by occlusion, resulting in data loss. Inertial 
sensors such as IMU and ACC will produce cumulative errors, 
affecting the accuracy of analysis. Specifically, neither subjective 
observation nor kinetics-based sensing technologies can reflect the 
motor control characteristics of the central nervous system (CNS) 
from the perspective of muscle contraction. Second, most of the 
existing studies divided the ILCMs into trot gait, pace gait, and 
no-limb pairing gait according to the IPL value (Patrick et al., 2009, 
2012; MacLellan et al., 2012, 2013; Righetti et al., 2015; Chen et al., 
2017; Ma et al., 2017; Vitali et al., 2019). However, the IPL was difficult 
to distinguish modes with subtle differences. For instance, during 
hands-knees crawling, the trot gait (diagonal limbs moving together) 
had the same IPL value (50%) as sequential gait (left palm → right 
knee → left knee → right palm). Third, although relevant studies have 
found that human beings have different choices for the ILCMs at 
different crawling speeds (Chen et al., 2017; Ma et al., 2017), there was 
a lack of exploration of the possible reasons for making the choice.

In view of the shortcomings of existing research, this study 
attempted to carry out research on the pattern recognition of ILCMs 

during crawling by means of electromyography (EMG) signals, which 
carry abundant muscle activation information and neuromuscular 
control information of the CNS. Compared to motion capture systems 
and inertial sensors, EMG signals do not require a specific 
experimental site and are not affected by cumulative errors. Therefore, 
it has been widely used for pattern recognition of human motion 
intention, such as ankle joint movements (Al-Quraishi et al., 2017), 
lower limb jump locomotion phases (Lu et al., 2021), hand gestures 
(Côté-Allard et al., 2019), and muscle forces (Mokri et al., 2022). The 
following benefits can be achieved by introducing EMG-based motion 
intention recognition technology into the inter-limb coordination 
pattern recognition. First, given the successful application of EMG in 
fine finger motion recognition (Côté-Allard et al., 2019), we believe 
that it can achieve better accuracy in coarse crawling motion 
recognition; Second, unlike roughly dividing the ILCMs into trot, 
pace, and no-limb-pairing gait, using EMG signals recorded from 
related muscles was expected to achieve more accurate classification; 
Third, the pattern recognition scheme for ILCMs based on EMG 
signals can provide a novel crawling motion analysis technology, 
which was helpful for clinicians to evaluate patients’ motor 
dysfunction status from the perspective of muscle function and also 
helped researchers understand the neuromuscular control mechanism 
during human crawling.

The fundamental purposes of this study are as follows: (1) first 
introduce EMG-based motion intention recognition technology into 
crawling motion classification; (2) explore the reasons for the choice 
of different ILCMs at various crawling speeds based on the 
classification results and kinetic parameters of self-selected ILCM 
under the pattern recognition scheme. The innovations and primary 
contributions can be  summarized as follows: (1) Unlike relevant 
research studies, which roughly divided the crawling modes into three 
gaits, this study targeted eight ILCMs defined by the sequence in 
which limbs contact the ground; (2) The feasibility of providing 
clinicians with an EMG-based ILCM pattern recognition scheme has 
been verified by pattern recognition experiments in participant-
specific way, multi-participant way, and participant-independent way 
respectively, with three classifiers including BiLSTM, SVM, and KNN; 
(3) By classifying the participants’ self-selected ILCM at different 
speeds using the best classification model, the possible reasons why 
the choice of the ILCM changed with crawling speed were discussed.

2 Materials and methodology

The research flowchart of this study is illustrated in Figure 1, and 
each step is described in detail below.

2.1 The experimental design and crawling 
data acquisition

Eight ILCMs were defined, as shown in Table 1. Each crawling 
cycle was initiated by the left palm touchdown and defined as the time 
interval between two consecutive left palm touchdowns (Patrick et al., 
2009; MacLellan et al., 2012; Chen et al., 2017).

The crawling data acquisition experiment involved the 
participation of 10 healthy adults, comprising three female subjects 
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and seven male subjects, with an average age of 23.90 ± 0.88 years. 
None of the participants had a previous diagnosis of neuromuscular 
disorders. This study was approved by the Ethics Review Committee 
of Anhui Medical University (No. PJ 2014-08-04). All participants 
were informed about the study details and provided written 
informed consent.

A laboratory-made multi-channel system with 30 EMG sensors 
and 1 pressure sensor was used to collect crawling data. As shown in 
Figure 2A, EMG electrodes contained bipolar separating silver wires 
23 mm in length and 20 mm in width, with a 10-mm interval between 
them (Li et  al., 2023). As shown in Figure 2B, EMG signals were 
recorded from 15 muscles on each side of the body and 30 muscles 
from the whole body in total, which were highly related to crawling, 
including anterior deltoid (AD), adductor longus (AL), biceps brachii 
(BB), biceps femoris (BF), brachioradialis (BR), extensor carpi radialis 
(ECR), flexor carpi radialis (FCR), latissimus dorsi (LD), rectus 
femoris (RF), sartorius (SA), semitendinosus (SE), triceps brachii 
(TB), trapezius (TR), vastus lateralis (VL), and vastus medialis (VM). 
The placement of EMG sensors was based on the guidelines of the 

SENIAM protocol (Hermens et al., 2000). Before placing the sensors, 
the target muscles were shaved and cleaned with alcohol swabs. To 
detect crawling cycles, a pressure sensor was affixed with kinesiology 
tape to the flexor pollicis brevis muscle of the left palm. The company 
WAAAX manufactured the RP-C18.3-ST thin-film piezoresistive 
pressure sensor, which has a diameter of 18.3 mm. The sampling rate 
of EMG electrodes and pressure sensor was set to 1,000 Hz.

Throughout the data acquisition experiment, participants crawled 
on a sponge pad measuring 11.2 m in length and 0.8 m in width. First, 
each participant crawled in self-selected ILCM at their self-
understanding slow, medium, and fast speeds. From the pressure 
signal on the left palm of the participants, the low, medium, and fast 
speeds in the self-selected ILCM were calculated to be approximately 
2 s/cycle, 1.5 s/cycle, and 1 s/cycle, respectively. Then, each participant 
was asked to crawl in the eight ILCMs (M1 to M8) at three different 
speeds, namely slow speed (approximately 3.5 s/cycle), medium speed 
(approximately 2.33 s/cycle), and fast speed (approximately 1.75 s/
cycle). To help participants complete crawling movements at specific 
speeds and ILCMs, a series of audio files prompting the landing order 
of each limb was generated for the eight ILCMs at three crawling 
speeds. Before data collection, the participants learned how to crawl 
under the alert of audio files until they became proficient. For any 
combination of speed (fast, medium, and slow) and ILCM (M1 to M8, 
self-selected), as a crawling trial, pressure signals and EMG signals for 
at least 15 consecutive crawling cycles were collected. To minimize 
muscle fatigue, participants were required to rest for about 10 min 
between each group of 6 crawling trials. Table 2 displays the total 
number of crawling cycles for each participant across all eight ILCMs 
(M1–M8) and their self-selected crawling mode.

It is worth noting that this study proposed the following 
countermeasures for the artifacts that may be introduced by data 
collection systems in different scenarios: (1) To avoid power 
frequency noise, lithium battery was used to power the data 
acquisition system; (2) The experimental operator checked the 
interface connection between each electrode and the data acquisition 
system to ensure that all sensor connections were normal before the 

FIGURE 1

Flowchart of the research route.

TABLE 1 The eight designed inter-limb coordination modes.

Modes Ideal IPL value Order of limbs 
touching land

M1 0(100%) LP, LK → RP, RK

M2 50% LP, RK → RP, LK

M3 50% LP → RP → LK → RK

M4 75% LP → RP → RK → LK

M5 25% LP → LK → RP → RK

M6 25% LP → LK → RK → RP

M7 75% LP → RK → RP → LK

M8 50% LP → RK → LK → RP

LP, left palm; RP, right palm; LK, left knee; RK, right knee.
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experiment begins; (3) The sensor connecting lines located on the 
same limb were fixed together with adhesive tape to reduce the 
disturbance; (4) During crawling data collection, the experimental 
operator observed the real-time signal on the laptop and 
independently stored the data of each crawling mode. Once the 
artifact was discovered, the experiment was suspended, and the 
current experimental data were discarded. Only after the cause of the 
artifact was found and the fault was eliminated can the experiment 
be restarted.

2.2 Data preprocessing

Figure  3A illustrates the pressure signal obtained during a 
consecutive crawling movement. When the left palm touched the 
land, the left palm entered into the stance phase and the pressure 
signal reached the maximum value; when the left palm left the 
land, the left palm entered into the swing phase and the pressure 
signal returned to zero. Figure 3B shows that the first derivative 
of the pressure signal during left-palm stance and swing phase was 
zero. When transitioning from the swing phase to the stance 

phase, the first derivative became greater than zero; when 
transitioning from the stance phase to the swing phase, it became 
less than zero. Therefore, this study utilized the aforementioned 
characteristics of the pressure signal’s first derivative to segment 
crawling cycles. In Figure 3, the red asterisks indicated crawling 
cycle starting points and the purple asterisks indicated swing 
phase starting points. The crawling cycle was segmented by two 
adjacent red asterisks.

Various EMG features can be  extracted for EMG-based 
motion intention pattern recognition, including (1) time-domain 
features, such as mean absolute value, slope sign changes, and 
waveform length (Hudgins et al., 1993); (2) frequency-domain 
features based on fast Fourier transform, i.e., intermediate 
frequency (MDF), average frequency (MNF), autoregressive 
coefficient (AR), etc. (Abdelouahad et al., 2018); and (3) time-
frequency-domain features based on Wigner-Ville transform 
(WVT), wavelet transform, etc. (Li et al., 2020). Given that the 
variation in muscle activation intensity can indicate the differences 
between ILCMs, this study opted to utilize an EMG signal 
envelope as a feature for pattern recognition. In particular, the 
EMG signals of each crawling cycle were high-pass filtered, 
demeaned, rectified, and low-pass filtered to extract the envelope 

FIGURE 2

(A) Illustration of the homemade data acquisition system; (B) placement of EMG sensors and pressure sensors.

TABLE 2 Number of crawling cycles.

Crawling 
mode

Participant ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

M1–M8

Low speed 95 66 85 93 81 92 86 88 104 109

Medium speed 105 77 90 96 85 95 98 90 91 109

Fast speed 102 63 96 97 85 86 91 82 87 112

Self-selected 

crawling mode

Low speed 10 9 8 9 8 10 9 10 10 11

Medium speed 11 11 10 10 8 9 9 10 11 10

Fast speed 10 8 10 9 10 9 9 10 10 10
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(Li et al., 2023). Then, the envelope amplitude was normalized to 
unit variance (Teruya et al., 2021), and each crawling cycle length 
was normalized to 1,000 points. As an example, Figures 3C, D 
present the original EMG signal fragment from the brachioradialis 

and its envelope, respectively, before cycle normalization and 
amplitude normalization. Figure 3E demonstrates the EMG signal 
envelopes of six muscles after undergoing cycle normalization and 
amplitude normalization.

FIGURE 3

(A) Illustration of the pressure signal collected from left palm; (B) the first derivative of the pressure signal. Red asterisks indicate cycle starting points, as 
the beginning point of the stance phase, and purple asterisks indicate the beginning point of the swing phase; (C) illustration of raw EMG signal from 
brachioradialis; (D) the envelope of EMG signal before cycle normalization and amplitude normalization; (E) the envelope of EMG signal of six muscles 
after cycle normalization and amplitude normalization.
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2.3 EMG-based crawling pattern 
recognition scheme

To verify the feasibility of providing clinicians with an 
EMG-based scheme for accurate recognition of ILCM, the pattern 
recognition experiments on the eight defined ILCMs were carried out 
in the participant-specific way, multi-participant way, and 
participant-independent way, respectively, at four crawling speeds, 
including low, medium, fast, and mixed speed (EMG data mixed 
from low, medium, and fast speeds), with three classifiers, namely 
BiLSTM network, SVM, and KNN.

2.3.1 Three classifiers
BiLSTM, SVM, and KNN were adopted to complete the pattern 

recognition task for crawling motion with different ILCMs based on 
the following considerations: (1) SVM model has kernel trick 
characteristic, KNN has non-parametric nature (Samuel et al., 2019), 
and these two classifiers have been widely adopted within the realm 
of EMG-based pattern recognition; (2) both KNN and SVM classifiers 
were characterized by their ease of implementation and efficient 
training (Samuel et al., 2019); and (3) LSTM model, which was good 
at memorizing the timing correlation, has been applied successfully in 
EMG-based gesture recognition (Chen et al., 2020). As a variation of 
LSTM, the BiLSTM network had better performance than the regular 
LSTM network. KNN and SVM were implemented by using Python’s 
sklearn toolkit. This section mainly introduced the implementation of 
the BiLSTM network.

 F W h W x bf fh t fx t f= + +( )−δ · ·1  (1)

 F W h W x bu uh t ux t u= + +( )−δ · ·1  (2)

 F W h W x bo oh t ox t o= + +( )−δ · ·1  (3)

 C W h W x bt ch t cx t c= + +( )−tanh · ·1  (4)

 C F C F Ct f t u t= +−· ·1  (5)

 h F Ct o t= ( )·tanh  (6)

To better understand how the BiLSTM network works, we first 
figured out its most important part, namely the LSTM unit (Choi 
et al., 2019; Marentakis et al., 2021). As shown in Figure 4A, an LSTM 
unit consisted of several main parts, including the input information 
xt  at step time t, memory cell state Ct, temporary memory cell state Ct
, hidden state ht , and three gates (forget gate Ff , update gate Fu , and 
output gate Fo). The previous memory cell Ct−1, previous hidden state 
ht−1, and current input xt  decided the output hidden state ht and 
memory cell Ct  together. The temporary memory cell state Ct  was 
decided by a tanh layer based on the previous hidden state ht−1 and 
current input xt . The functions of the three gates can be summarized 
as follows: the forget gate Ff  decided the information to be thrown 
away by a sigmoid layer, the update gate Fu  decided that the 
information should be stored in the next LSTM unit and the output 
gate Fo  decided what should be  ultimately output. The specific 
calculation process of the LSTM unit can be seen from formula (1)–
(6), where σ (·) was the sigmoid function, W represented weight 
matrices, and b denoted biases.

The BiLSTM network structure adopted in this study is presented 
in Figure 4B. The working principle of the BiLSTM network was that 
the input data sequence X X X Xt= …( )1 2, ,  was not only fed to a 
LSTM network named the forward layer but also was simultaneously 
fed to another LSTM network named the backward layer by reversing 
the order of the input sequence of data. In other words, the first 
sequence X1 was the input of the first unit of the forward layer and also 
the input of the last unit of the backward layer. The output of the 
forward layer and the output of the backward layer jointly decided the 
final output Y1. After the BiLSTM layer, four dense layers were 
adopted. Python’s Keras toolbox was adopted to implement this 
network. The adaptive moment estimation (Adam) was used to avoid 
overfitting. The hyperparameters were listed as follows: learning 
rate = 0.001, batch size = one-tenth of the training samples, beta_1 = 0.9, 

FIGURE 4

(A) Structure of long short-term memory (LSTM) unit (Hermens et al., 2000; Cole et al., 2019), (B) crawling pattern recognition based on EMG and 
bidirectional LSTM (BiLSTM).
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beta_2 = 0.999, epsilon = 1e-08, LSTM hidden units = 128, and training 
epochs = 60.

2.3.2 Three pattern recognition ways
In the participant-specific way, the test data and training data were 

from the same participant. For each participant, a three-fold cross-
validation was performed, where two-thirds of the data were used for 
training and the remaining one-third was used for testing.

In the multi-participant way, the data from all 10 participants were 
combined, and three-fold cross-validation was adopted, where 
two-thirds of the data were used for training and the remaining 
one-third was used for testing.

In the participant-independent way, the leave-one-out strategy 
was adopted. Classifiers were trained using crawling data obtained 
from nine participants, and the well-trained classifiers were applied to 
test the remaining crawling data.

2.3.3 Performance evaluation and statistical 
analysis

The pattern recognition accuracy was determined by calculating 
the ratio of correctly identified samples to the total number of samples. 
To investigate the effects of the independent variables (pattern 
recognition way, classifier, and crawling speed) on the recognition 
accuracy, a one-way ANOVA and univariate ANOVA were conducted 
using IBM SPSS Statistics 26. The significance level was set at 0.05.

2.4 Analysis scheme for the possible 
reasons for the choice of self-selected 
crawling mode

As shown in Figure 1, the analysis of the possible reasons why 
participants’ choice of ILCM varied with crawling speed was based on 
the classification results of self-selected ILCM and the statistical 
results of the stance duration, swing duration, and duty factor of the 
stance phase.

The classification model, performing the best in the pattern 
recognition experiment on the eight defined ILCMs, was used to 
classify the participants’ self-selected crawling mode at different 
speeds. The stance phase durations and swing phase durations for the 
left palm were calculated according to the pressure signal, as shown in 
Figure  3A. The duty factor of the stance phase was calculated 
according to the following formula (7):

 
Duty factor Stance phase

Stance phase Swing phase
 

 

  
=

+
∗100%

 
(7)

3 Results

3.1 The pattern recognition results for the 
eight defined ILCMs

To demonstrate the feasibility of the EMG envelope feature in 
distinguishing different ILCMs, the t-SNE dimensionality reduction 
algorithm (Van der Maaten and Hinton, 2008) was carried out on all 
the 2,736 crawling cycles of M1 ~ M8, and Figure  5 shows the 

visualization results. It can be observed that the eight defined ILCMs 
can be clearly distinguished from each other.

Figure 6 shows the classification accuracies averaged across all 10 
participants in the participant-specific way. BiLSTM obtained average 
accuracies of 99.23, 99.09, 99.66, and 98.71% at low, medium, fast, and 
mixed speeds, respectively. KNN achieved average accuracies of 99.23, 
99.69, 99.29, and 99.65% at low, medium, fast, and mixed speeds, 
respectively. SVM obtained average accuracies of 99.55, 99.69, 99.36, 
and 98.75% at low, medium, fast, and mixed speeds, respectively.

Figure  7 shows the classification accuracies in the multi-
participant way, and BiLSTM obtained the average accuracies of 98.78, 
98.91, 98.56, and 99.08% at low, medium, fast, and mixed speeds, 
respectively. KNN obtained the average accuracies of 99.44, 99.67, 
99.78, and 99.78% at low, medium, fast, and mixed speeds, respectively. 
SVM obtained average accuracies of 99.44, 99.56, 99.67, and 99.60% 
at low, medium, fast, and mixed speeds, respectively.

Figure 8 shows the classification accuracies in the participant-
independent way, and BiLSTM obtained the average accuracies of 
95.76, 95.51, 88.56, and 95.42% at low, medium, fast, and mixed 
speeds, respectively. KNN obtained the average accuracies of 96.21, 
97.54, 94.43, and 96.89% at low, medium, fast, and mixed speeds, 
respectively. SVM obtained average accuracies of 98.31, 98.89, 95.60, 
and 98.31% at low, medium, fast, and mixed speeds, respectively.

Considering that the SVM classifier achieved the best performance 
in the participant-independent way, taking the 302 crawling samples 
from participant P1 as test data, the confusion matrix for the SVM 
classifier at mixed speed was given in Figure 9. Only one sample of M1 
and one sample of M2 were misclassified as M5, and one sample of M7 
was misclassified as M6. The recognition accuracy of some ILCMs, 
such as M3, M4, M5, M6, and M8, was 100%.

Table 3 presents the results of the statistical analysis examining the 
effects of pattern recognition way, classifier, and crawling speed on 
recognition accuracy. Based on the findings, the following conclusions 
can be drawn: (1) Pattern recognition way had a considerable effect 
on the recognition accuracy. More precisely, the recognition accuracy 
in the participant-independent way was notably inferior to that in the 
participant-specific way (p = 0.000**) and multi-participant way 
(p = 0.000**). Nonetheless, no significant distinction was found 
(p = 0.938) between the participant-specific way and the multi-
participant way; (2) Crawling speed had a significant impact on 
recognition accuracy. However, only fast speed had a significant 
difference with other speeds (low speed, p = 0.015*; medium speed, 
p = 0.003*; mixed speed, p = 0.008*); (3) Classifier employed had a 
marked effect on recognition accuracy. BiLSTM obtained significantly 
lower recognition accuracy than KNN (p = 0.021*) and SVM 
(p = 0.001*). Nonetheless, no significant difference (p = 0.236) was 
found between the recognition accuracy achieved using KNN 
and SVM.

3.2 Statistical results of stance duration, 
swing duration, and duty factor of stance 
phase

Figure  10 illustrates the statistical results of swing durations, 
stance durations, and the duty factors of the stance phase of the left 
palm. The results show that, as crawling speed increased, there was a 
substantial decrease in the duration of the stance phase (Low: 
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1.437 ± 0.255 s; Medium: 1.009 ± 0.220 s; High: 0.717 ± 0.135 s), while 
the duration of swing phase remained unchanged or slightly shortened 
(Low: 0.601 ± 0.149 s; Medium: 0.531 ± 0.078 s; High: 0.496 ± 0.089 s). 
On the whole, the duty factor of the stance phase decreased with the 
crawling speed (Low: 70.40 ± 6.54%; Medium: 64.97 ± 5.32%; High: 
58.98 ± 4.81%).

3.3 Classification results of self-selected 
ILCM

To figure out the possible reasons why the participants’ self-
selected ILCM changes with crawling speed, the self-selected ILCM 
was classified using the KNN classifier, which was trained in the 

FIGURE 5

The t-SNE dimensionality reduction of EMG envelope samples of the eight inter-limb coordination modes.

FIGURE 6

Classification accuracies were averaged across all 10 participants in the participant-specific way.
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multi-participant way at mixed speed, and the results were shown in 
Figure 11.

Regardless of the crawling speed, M2 accounted for the largest 
proportion. At low, medium, and fast speeds, 87, 92, and 68 cycles 
were classified as M2, respectively. Meanwhile, the proportion of M3 
changed with the crawling speed. Concretely, the crawling cycle 
number of M3 was 9, 0, and 23 at low, medium, and fast speeds, 
respectively. That is to say, when participants crawled at low speed or 
fast speed, although the trot gait M2 was the most adopted one, some 
participants preferred to choose M3 instead of M2, especially at fast 
speed. In addition, some ILCMs, such as M4, M6, M7, and M8, were 
adopted by nobody at any speed.

4 Discussion

4.1 The clinical application value of the 
EMG-based crawling pattern recognition 
scheme

Humans or quadruped animals have multiple ILCMs. Hildebrand 
divided the ILCMs of quadruped into two categories: symmetrical 
gaits and asymmetrical gaits (Hildebrand, 1976). Furthermore, 
symmetrical gaits were divided into four ILCMs in general: pace, 
lateral sequence, trot, and diagonal sequence (Hildebrand, 1976). 
Owaki et al. concluded that there were nine ILCMs in quadruped 

FIGURE 7

Classification accuracies in the multi-participant way.

FIGURE 8

Classification accuracies were averaged across all 10 participants in the participant-independent way.
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animals, i.e., lateral-sequence walk, diagonal-sequence walk, trot, 
pace, pronk, canter, bound, transverse gallop, and rotary gallop 
(Owaki and Ishiguro, 2017). Bellardita et al. found that wild-type mice 
had four ILCMs, namely, walk, trot, bound, and gallop (Bellardita and 
Kiehn, 2015). As for human crawling motion, IPL value has usually 
been used to classify ILCM into pace, trot, and no-limb-pairing modes 
in most studies adopting observation method or kinetics-based 
sensing technologies (Patrick et al., 2009, 2012; MacLellan et al., 2012, 
2013; Righetti et al., 2015; Chen et al., 2017; Ma et al., 2017; Vitali 
et al., 2019). However, when ILCMs were simply considered as these 
three modes, many details of human crawling motion were ignored.

Unlike relevant research studies, eight ILCMs were defined in this 
study, and the EMG-based pattern recognition scheme was first 
introduced into the classification of crawling ILCMs. The experimental 
results demonstrated that the eight defined ILCMs could 
be distinguished with relatively high accuracies at different crawling 

speeds using three classifiers. Additionally, the classification 
performance of the EMG-based crawling pattern recognition scheme 
is very robust and less affected by crawling speed. Even in the 
participant-independent way, the SVM classifier achieves above 98% 
recognition accuracy at low, medium, and mixed speeds. In contrast 
to the rough classification based on IPL value, the EMG-based pattern 
recognition scheme could classify more detailed ILCMs during 
human crawling. As shown in Table 1, M2, M3, and M8 were usually 
classified into the trot mode according to IPL value; however, as 
shown in Figure 9, these three modes can be completely distinguished 
by utilizing the EMG-based pattern recognition scheme. The research 
results in this study verify the feasibility of providing an EMG-based 
crawling motion analysis method for clinical doctors. Specifically, 
we  believe that the EMG-based pattern recognition scheme has 
potential application value in the fields of crawling function 
evaluation, understanding abnormal crawling control mechanisms 
and designing rehabilitation robots.

4.1.1 Crawling ability assessment
Crawling is an important component of the Gross Motor Function 

Classification System (GMFCS) for children with cerebral palsy 
(Palisano et al., 2000). For example, for children under 2 years of age, 
children classified as GMFCS Level I should be able to crawl, stand up, 
grab furniture, and take a few steps, while children classified as 
GMFCS Level II can crawl on all fours or on both hands and feet. 
However, the evaluation based on subjective judgment lacks 
objectivity when clinicians use the GMFCS scale in the clinic. Instead, 
the proposed EMG-based pattern recognition scheme can provide a 
relatively objective evaluation of the crawling function of patients with 
cerebral palsy, stroke, or muscle atrophy. For instance, the patients 
could be asked to crawl using one or several ILCMs defined in this 
study, and the accuracy of completing specific ILCM modes can 
be obtained through the EMG-based pattern recognition scheme and 
serve as a basis for evaluating the patients’ crawling function.

4.1.2 Understanding abnormal crawling control 
mechanisms

The EMG-based crawling pattern recognition scheme can help 
clinicians understand the abnormal crawling motion control 
mechanism of patients. The neuromuscular control mechanism of the 

FIGURE 9

Confusion matrix for SVM classifier at mixed speed in the participant-
independent way.

TABLE 3 The results of multi-variable statistical analysis for crawling pattern recognition.

Factors Sig. for Accuracy Multiple comparisons (speed) Sig. for accuracy

Main

Way 0.000**

Low

Medium 0.572

Speed 0.011* Fast 0.015*

Classifier 0.002* Mixed 0.832

Medium
Fast 0.003*

Mixed 0.724

Fast Mixed 0.008*

Multiple comparisons (way) Sig. for accuracy Multiple comparisons (classifier) Sig. for accuracy

Participant-specific
Multi-Participant 0.938

KNN
BiLSTM 0.021*

Participant-independent 0.000** SVM 0.236

Multi-participant Participant-independent 0.000** BiLSTM SVM 0.001*

(*p < 0.05, **p < 0.001).
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central nervous system can be explained by the muscle synergy theory, 
which holds that when completing a specific motion, muscles are 
recruited and activated in groups rather than individually. By using 
the blind source separation algorithm to decompose the 

electromyographic signal envelope data, the synergy structure matrix 
that represents the group activation of muscles and the synergy 
recruitment curve matrix that represents the moment when the 
synergy structure matrix is recruited can be obtained. In our previous 

FIGURE 10

Illustration for swing durations, stance durations, and the duty factors of the stance phase of the left palm in self-selected crawling mode.

FIGURE 11

Classification result of self-selected crawling mode.
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study (Li et al., 2023), the common synergy structure and common 
recruitment curve characteristics of 10 healthy adults when crawling 
on their hands and knees to complete different ILCMs were depicted. 
It was discovered that the CNS achieves crawling modes M3 ~ M8 by 
recruiting four inter-mode shared synergy structures associated with 
the swing function of each limb and achieves crawling modes M1 ~ M2 
by synchronously recruiting two intra-mode shared synergy 
structures. Using similar research ideas, it is possible to obtain the 
common synergy structure and common synergy recruitment curve 
characteristics of healthy children. Clinicians can evaluate abnormal 
neuromuscular activation in children with cerebral palsy by 
comparing the similarities and differences in the synergy structure 
and synergy recruitment curves of children with cerebral palsy and 
the common synergy structure and common synergy recruitment 
curves of healthy children of the same age under the same 
ILCM. However, it is difficult to accurately label the ILCMs of multiple 
consecutive crawling cycles of children with cerebral palsy and their 
electromyographic signals through conventional observation and 
recording. Using the pattern recognition scheme proposed in this 
study, the crawling data of children with cerebral palsy can be more 
easily labeled to facilitate subsequent muscle synergy analysis.

4.1.3 Rehabilitation robots design
Although crawling machines for physical exercise in healthy 

adults have been manufactured by FITCRAWL, an Australian 
company (FitCrawl, 2023), research on crawling robots for 
rehabilitation training of motor dysfunction was still in its early stages. 
Ghazi et al. designed an assistive crawling device to assist children 
with cerebral palsy in acquiring crawling skills. They mentioned their 
utilization of EEG-based neuro-imaging and a self-developed 
wearable motion-capture system (kinematic suit) alongside traditional 
methods for monitoring infant development (Ghazi et al., 2016). EMG 
signals not only carry motion control information from CNS such as 
EEG signals but also exhibit excellent performance in motion 
intention recognition, especially fine finger movement recognition 
(Chen et al., 2020). Therefore, we believe that the EMG-based crawling 
pattern recognition scheme has the potential to be  applied in 
rehabilitation robot design to assist patients during crawling 
rehabilitation training with different inter-limb coordination modes.

4.2 The exploration of why humans choose 
various ILCMs at different crawling speeds

Researchers have conducted extensive studies on ILCMs of 
crawling motion. Freedland and colleagues observed that after 2 weeks 
of crawling on hands-knees, a convergence in inter-limb coordination 
among six infants toward a trot gait (Freedland and Bertenthal, 1994). 
Patrick et al. (2012) noted that all 22 infants demonstrated organized 
and rhythmic inter-limb coordination, with a predominance of trot 
gait and no instances of pace gait observed. Chen et al. (2017) claimed 
that participants utilized no-limb-pairing gait at low-speed crawling 
but switched to pace or trot gait at high speed. McElroy et al. (2008) 
declared that lizards preferred to adopt trot gait at high speeds. 
Although trot gait was a commonly adopted crawling gait, other gaits 
were also reported in the literature. In the report of Cole et al., trot gait 

was predominant not only during crawling on hands-knees but also 
during crawling on hands-feet. They also observed other gaits such as 
pace, single foot, gallop, and bound (Cole et al., 2019). Righetti et al. 
(2015) asserted that human infants would like to choose the lateral 
sequence walking gait (left knee, left palm, right knee, and right palm). 
Hildebrand’s research indicated that trot gait was more common in 
short-legged animals, while pace gait was more prevalent in long-
legged animals (Hildebrand, 1976). In addition, diagonal sequence 
gait was found to generally appear in primates (Shapiro and Raichlen, 
2006), and lateral sequence gait generally appeared in non-primate 
quadrupeds (Hildebrand, 1965, 1967; Vilensky, 1987).

Owaki et al. (2013) thought that trot coordination was the most 
energy-efficient gait for quadruped robots and had great potential 
for the design of controllers for quadruped robots (Owaki and 
Ishiguro, 2017). Their viewpoint can, to some extent, explain the 
reason why most humans and quadrupeds choose contralateral gait. 
As for the eight ILCMs defined in this study, their energy-saving 
efficiency can be  analyzed using the central pattern generators 
(CPGs) model. CPG circuits are well known for their efficiency by 
requiring less reliance on higher brain center commands once 
activated. In our previous study (Li et al., 2023), a two-level CPG 
model was utilized to elucidate the role of CPG in facilitating cyclic 
locomotion during crawling. The model consists of a half-center 
rhythm generator (RG), which can be represented by the synergistic 
recruitment curve, and a pattern formation (PF) circuit, which can 
be represented by the synergistic structure. The RG facilitated the 
recruitment of synergies associated with the swing phase, enabling 
the control of a specific limb. In crawling modes M3 ~ M8, the 
crawling task was accomplished by sequentially recruiting four 
limbs, while crawling modes M1 and M2 involved the simultaneous 
recruitment of two limbs. Therefore, M1 and M2 seemed to be more 
energy-efficient than M3 ~ M8.

In this study, the classification results of the self-selected 
crawling mode showed that trot gait (M2) was the most adopted, 
which was consistent with previous studies. Meanwhile, the ILCM 
chosen by the participants has been found to change with crawling 
speed. As shown in Figure 11, when participants crawled at medium 
speed, there were no crawling cycles classified into M3. However, 
when participants crawled at low speed or fast speed, the proportion 
of M3 increased. Especially when participants crawled at a fast 
speed, M3 accounted for 24.2%. According to the definitions, the 
landing sequence of the limbs for M2 was left palm, right knee→ 
right palm, left knee→ left palm, right knee and the landing 
sequence of the limbs for M3 was left palm→ right palm→ left 
knee→ right knee→ left palm. Therefore, the main difference 
between trot gait M2 and diagonal sequence gait M3 was whether 
the left palm and right knee or right palm and left knee landed 
simultaneously or separately. In other words, M3 worked in a three-
limb support mode, while M2 worked in a two-limb support mode. 
In theory, the three-limb support mode can offer higher stability 
than the two-limb support mode. That is to mean that M3 may 
provide higher stability than M2. On the other hand, as shown in 
Figure 10, the statistical results of crawling cycles demonstrated that 
humans mainly achieved an increase in crawling speed by reducing 
the duty factor of the stance phase. According to common sense, 
the longer the support time, the more stable the body was. 
Therefore, increasing crawling speed leads to a decrease in the duty 
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factor of the stance phase, which can result in reduced 
physical stability.

Based on the above analysis, the reasons why humans chose 
various ILCMs at different crawling speeds can be explained from the 
perspectives of energy consumption and body stability. First, as the 
most energy-efficient gait, trot mode accounted for the vast majority 
at various speeds. Specifically, the proportion of trot gait at medium 
speed was the highest, at 92.9%. Therefore, energy conservation 
should be the main consideration when humans crawl; Second, at fast 
crawling speed, although energy consumption was still the main 
consideration, some participants who were more concerned about 
physical stability will choose the more stable crawling mode M3 
instead of M2. As for the presence of a small amount of M3 gait at low 
speed, it should be the free choice made by the participants without 
considering energy conservation and physical stability.

4.3 Limitations

First, the design of the classifiers, such as BiLSTM, KNN, and 
SVM, was relatively simple, and there was a need to explore more 
innovative pattern recognition algorithms in the future; Second, only 
hands-knees crawling was targeted in this study, and future research 
should focus on more crawling postures; Third, it was necessary to 
recruit participants from different age groups to further validate the 
feasibility of the proposed EMG-based crawling pattern recognition 
scheme; Fourth, when applying the proposed scheme to clinical 
analysis, the data acquisition system should meet the requirements of 
miniaturization and wearability. A more feasible solution is to change 
the data transmission method from the existing wired transmission to 
a wireless transmission. Additionally, in clinical practice, collecting up 
to 30 channels of EMG data from patients will be a time-consuming 
and labor-intensive task. How to ensure that the recognition rate does 
not drop significantly while reducing the number of EMG electrodes 
as many as possible needs to be explored.

5 Conclusion

This study first introduced the EMG-based motion intention 
recognition technology into the classification of ILCMs during 
human crawling. Through experiments using different classifiers to 
classify the eight defined ILCMs at different speeds, it was verified 
that the EMG-based pattern recognition schemes can provide a 
more detailed classification of ILCMs, thereby confirming the 
feasibility of providing an EMG-based crawling motion analysis 
technology for clinicians. Furthermore, based on the classification 
results of self-selected crawling mode and the statistical results of 
stance duration, swing duration, and duty factor of stance duration, 
the exploration of why humans chose various ILCMs at different 
crawling speeds was approached from perspectives including 
energy consumption and body stability. The research results of this 
study have the potential application value for crawling function 
evaluation, understanding abnormal crawling control mechanisms, 
and designing rehabilitation robots.
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