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Introduction: Multimodal evidence indicates Alzheimer’s disease (AD) is 
characterized by early white matter (WM) changes that precede overt cognitive 
impairment. WM changes have overwhelmingly been investigated in typical, 
amnestic mild cognitive impairment and AD; fewer studies have addressed 
WM change in atypical, non-amnestic syndromes. We hypothesized each non-
amnestic AD syndrome would exhibit WM differences from amnestic and other 
non-amnestic syndromes.

Materials and methods: Participants included 45 cognitively normal (CN) 
individuals; 41 amnestic AD patients; and 67 patients with non-amnestic AD 
syndromes including logopenic-variant primary progressive aphasia (lvPPA, 
n =  32), posterior cortical atrophy (PCA, n =  17), behavioral variant AD (bvAD, 
n =  10), and corticobasal syndrome (CBS, n =  8). All had T1-weighted MRI and 
30-direction diffusion-weighted imaging (DWI). We  performed whole-brain 
deterministic tractography between 148 cortical and subcortical regions; 
connection strength was quantified by tractwise mean generalized fractional 
anisotropy. Regression models assessed effects of group and phenotype as 
well as associations with grey matter volume. Topological analyses assessed 
differences in persistent homology (numbers of graph components and cycles). 
Additionally, we tested associations of topological metrics with global cognition, 
disease duration, and DWI microstructural metrics.

Results: Both amnestic and non-amnestic patients exhibited lower WM 
connection strength than CN participants in corpus callosum, cingulum, and 
inferior and superior longitudinal fasciculi. Overall, non-amnestic patients had 
more WM disease than amnestic patients. LvPPA patients had left-lateralized WM 
degeneration; PCA patients had reductions in connections to bilateral posterior 
parietal, occipital, and temporal areas. Topological analysis showed the non-
amnestic but not the amnestic group had more connected components than 
controls, indicating persistently lower connectivity. Longer disease duration and 
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cognitive impairment were associated with more connected components and 
fewer cycles in individuals’ brain graphs.

Discussion: We have previously reported syndromic differences in GM 
degeneration and tau accumulation between AD syndromes; here we  find 
corresponding differences in WM tracts connecting syndrome-specific 
epicenters. Determining the reasons for selective WM degeneration in non-
amnestic AD is a research priority that will require integration of knowledge from 
neuroimaging, biomarker, autopsy, and functional genetic studies. Furthermore, 
longitudinal studies to determine the chronology of WM vs. GM degeneration 
will be key to assessing evidence for WM-mediated tau spread.

KEYWORDS

diffusion MRI (dMRI), non-amnestic Alzheimer’s disease, logopenic variant of primary 
progressive aphasia (lvPPA), posterior cortical atrophy (PCA), corticobasal syndrome 
(CBS), behavioral variant Alzheimer’s disease, network topology analysis

Introduction

Alzheimer’s disease (AD) has classically been interpreted as a 
disease of the grey matter (GM). However, early postmortem studies 
of AD (Kowall and Kosik, 1987) noted significant changes in the white 
matter (WM), and human imaging studies have consistently reported 
alterations in WM diffusivity and microstructure. WM changes in AD 
have often been dismissed as consequences of independent but 
co-occurring microvascular disease (Brun and Englund, 1986). 
However, neuroimaging investigations of WM change have provided 
additional perspective on the timecourse of WM changes and their 
associations with AD biomarkers, indicating that WM changes at least 
partially reflect demyelination (Fornari et al., 2012) or axonal loss 
(Scheltens et  al., 1995; McAleese et  al., 2017; Strain et  al., 2018; 
Desmarais et al., 2021) as a result of AD pathologic change. Diffusion 
weighted MRI (DWI) studies have shown that WM changes in 
amnestic AD correspond to the topography of GM disease (Pichet 
Binette et al., 2021; Wen et al., 2021). Furthermore, positron emission 
tomography (PET) imaging using ligands for amyloid-β  and tau have 
shown that WM changes are statistically associated with GM 
accumulation of the two hallmark proteins in AD (Jacobs et al., 2018; 
Shigemoto et al., 2018; Pichet Binette et al., 2021).

In typical, amnestic AD, WM changes have demonstrated utility 
as both diagnostic and prognostic features. Distinct patterns of WM 
degeneration discriminate clinically similar patients who are positive 
vs. negative for cerebrospinal fluid markers of AD (McMillan et al., 
2012). Decreases in the integrity of the cingulum, fornix, and 
precuneus and parahippocampal WM have predicted future 
conversion from normal cognition to mild cognitive impairment 
(MCI) (Zhuang et al., 2012). WM hyperintensities—which typically 
reflect ischemic vascular disease in cognitively normal individuals, but 
are associated with AD pathophysiology in people with clinically-
diagnosed amnestic AD (McAleese et al., 2017)—predicted 1-year 
cognitive decline in the Alzheimer’s Disease Neuroimaging Initiative 
dataset (Carmichael et al., 2010).

One lens for interpreting WM changes in AD is the hypothesis of 
prion-like tau spread, which posits a key role of the WM as the avenue 
for interneuronal spread of tau pathology (Ahmed et al., 2014). Tau 
may spread intra-axonally, diffuse through the interstitial fluid, or 

be spread by glial cells (Guo and Lee, 2014; Mudher et al., 2017; Amro 
et al., 2021). In the case of intra-axonal propagation, seed-competent 
soluble tau may interact with healthy tau to produce creeping spread 
of toxic proteins along the length of axons, destabilizing microtubules 
in the process and affecting both axonal transport and the structural 
integrity of the axon (Ozcelik et al., 2016; Mudher et al., 2017). Axonal 
degeneration, in turn, could affect multiple DWI metrics: for example, 
it may produce reductions in neurite density metrics (Colgan et al., 
2016), fiber dispersion (Veale et al., 2021), fractional anisotropy, and 
mean or radial diffusivity (Wells et  al., 2015; Wen et  al., 2021). 
Transneuronal spread of tau is supported by in vitro studies 
demonstrating that tau antibodies prevent the spread of tau pathology 
(Mudher et al., 2017; Nobuhara et al., 2017).

We thus posit that the spread of tau along WM tracts connecting 
one region to another is likely be associated with degeneration of the 
tract. However, investigations of WM changes in typical, amnestic AD 
involve a limited set of anatomical hypotheses: canonical Braak 
staging forms the expected topography of GM disease spread, and by 
extension the WM projections that are most likely to exhibit disease-
related changes. Individualized approaches to disease progression 
modeling (Franzmeier et  al., 2020) mitigate this limitation by 
acknowledging person-to-person variability in disease anatomy, 
though study selection criteria may still bias results to representing 
typical, late-onset AD anatomy.

Rare non-amnestic AD syndromes with focal cortical disease 
represent an opportunity for repeated tests of the axonal spread 
hypothesis with syndrome-specific GM regions and WM tracts of 
interest. However, WM change in non-amnestic AD is understudied. 
Patterns of GM atrophy and tau accumulation are known to differ 
between non-amnestic AD clinical syndromes and amnestic AD 
(Ossenkoppele et al., 2015a; Phillips et al., 2018a), but there is less 
evidence regarding whether patterns of WM degeneration exhibit 
corresponding phenotypic differences, and whether those WM 
degeneration patterns reflect the topography of GM disease in each 
clinical syndrome. Early-onset amnestic AD cases—who are more 
likely to have atypical, non-amnestic clinical presentations (Balasa 
et  al., 2011; Mendez et  al., 2012)—have larger reductions in WM 
integrity on diffusion MRI than late-onset cases, suggesting an 
underappreciated role for WM in atypical AD (Sirkis et al., 2022). 
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Previous studies of WM degeneration in early-onset and atypical AD 
include Caso et al. (2015), who found that non-amnestic AD patients 
had WM degeneration out of proportion with their GM atrophy; 
however, they did not find differences in WM degeneration between 
non-amnestic AD syndromes. Additionally, Singh et  al. (2023) 
reported that patients with logopenic-variant primary progressive 
aphasia (lvPPA) and posterior cortical atrophy (PCA) had both shared 
and syndrome-specific patterns of WM degeneration relative to 
cognitively unimpaired participants; however, this study did not assess 
differences relative to amnestic AD. Finally, Gatto et  al. (2022) 
reported increased mean diffusivity of right superior longitudinal 
fasciculus among lvPPA patients relative to healthy controls and 
individuals with progressive supranuclear palsy, demonstrating both 
the pathological and anatomical specificity of diffusion MRI measures.

The current study thus aimed to test two hypotheses derived from 
transneuronal disease spread models: (1) that WM degeneration 
patterns differ in syndrome-specific fashion; and (2) that these WM 
changes are quantitatively associated with GM atrophy. Additionally, 
we aimed to assess global differences in network topology between the 
cognitively normal, amnestic AD, and non-amnestic AD groups. In 
contrast to studies that have used voxelwise or regional averages of 
diffusion microstructure metrics, we adopted a connectomic approach 
that allowed us to localize between-group differences to WM fiber 
tracts connecting specific regions. This connectomic approach also 
allowed us to perform topological analyses on participants’ brain 
graphs and contrast persistent homology between groups. Persistent 
homology—i.e., the study of similar shapes and structures that persist 
over a range of scales—is an algebraic topology method for extracting 
geometrically invariant signals from brain networks (Chung et al., 
2017). It captures the evolution of connectivity structures (such as 
connected components, cliques, loops, and cavities) as edges are 
progressively removed from the graph, from the smallest to largest 
edge weight (a process formally known as graph filtration), thereby 
revealing connectivity features that persist over many sub-networks 
(Figure 1). The two main features typically formulated in persistent 
homology of brain networks are the number of connected 
components, also formally known as Betti-0 numbers, and the 
number of loops (cycles), formally known as Betti-1 numbers. 
Connected components and loops as well as more complex structures 
like cliques form an important basis for a network’s functionality and 
efficiency in propagating information or even disease-causing agents 
(Sizemore et al., 2018).

Based on our prior studies of GM atrophy and tau accumulation 
in non-amnestic AD, as well as relevant prior work (Caso et al., 2015; 
Singh et al., 2023), we hypothesized syndrome-specific patterns of 
WM degeneration in non-amnestic AD. In amnestic AD, 
we  hypothesized that patients would have degeneration of WM 
projections from limbic and default-mode network regions, 
particularly the parahippocampal cingulum (Pichet Binette et  al., 
2021; Raghavan et al., 2022). In lvPPA, we predicted patients would 
have left-lateralized WM degeneration affecting projections from 
posterior temporal and inferior parietal cortex, an established 
epicenter of disease in this form of aphasia (Conca et  al., 2022; 
Mandelli et al., 2023). In contrast, we predicted that PCA patients 
would exhibit a posterior-to-anterior gradient of bilateral WM 
degeneration, reflecting early degeneration of occipital and parietal 
areas along with their WM projections (Migliaccio et al., 2012, 2019; 
Phillips et al., 2019). Corticobasal syndrome (CBS) due to AD displays 

a similar distribution of GM disease as in PCA (Phillips et al., 2018a); 
we thus again anticipated degeneration of projections from parietal 
and posterior temporal cortex. In behavioral variant AD (bvAD), 
we and others have found both prefrontal and tempoparietal GM 
atrophy (Ossenkoppele et al., 2015b; Phillips et al., 2018a; Dominguez 
Perez et  al., 2022); accordingly, we  predicted that bvAD would 
be  characterized by degeneration of projections from bilateral 
dorsolateral prefrontal and orbitofrontal cortex; middle and superior 
temporal gyri; and medial parietal cortex.

Materials and methods

Participants

Participants were retrospectively selected for availability of 
T1-weighted MRI and DWI as well as a relevant clinical diagnosis. 
Cognitively impaired patients were recruited from the Cognitive 
Neurology Clinic at the University of Pennsylvania’s Perelman School 
of Medicine; cognitively normal (CN) participants were recruited 
from among patients’ families and from the surrounding community. 
All participants and/or caregivers gave informed consent to research 
in accordance with the standards of the University of Pennsylvania 
Institutional Review Board. CN participants (n = 45) were required to 
have a Mini-Mental Status Exam (MMSE) total score > = 27 or normal 
cognitive function per clinician judgment. Patients were required to 
have a clinical diagnosis of amnestic mild cognitive impairment 
(aMCI) or amnestic AD (collectively, amnestic AD; n  = 41); or a 
non-amnestic AD syndrome, including lvPPA (n = 32), PCA (n = 17), 
CBS (n = 8), or bvAD (n = 10). All patients were diagnosed through 
consensus by expert clinicians from the Penn Frontotemporal 
Degeneration Center (FTDC) and Alzheimer’s Disease Research 
Center (ADRC) per published diagnostic criteria (Gorno-Tempini 
et al., 2011; Lee et al., 2011; McKhann et al., 2011; Rascovsky et al., 
2011; Armstrong et al., 2013; Crutch et al., 2017). Evidence of AD 
neuropathologic change was available for 64 of 67 non-amnestic AD 
and 30 of 41 amnestic AD patients. Sources of evidence included an 
amyloid-β  concentration < 192 pg/mL in cerebrospinal fluid (amnestic 
AD, n = 19; non-amnestic AD, n = 34) using INNOTEST reagent kits 
and enzyme-linked immunosorbent assay or the INNO-BIA AlzBio3 
kit on the xMAP Luminex platform (Shaw et al., 2009; Irwin et al., 
2012); an amyloid-β  42/40 ratio < 0.065 (amnestic AD, n  = 6; 
non-amnestic AD, n  = 19), using the Fujirebio Lumipulse 
immunoassay (Leitão et  al., 2019); an amyloid PET scan read as 
positive by an expert reader (non-amnestic AD, n = 1); or a primary 
postmortem diagnosis of intermediate–high AD neuropathologic 
change (Montine et al., 2012) (amnestic AD, n = 5; non-amnestic AD, 
n  = 10). Data from 3 lvPPA and 11 amnestic AD cases without 
available biomarkers were included based on the strong association of 
these clinical phenotypes with AD neuropathologic change. In 
addition to analyses of the full n = 153 dataset, we performed subset 
analyses omitting participants without biomarker results (see Subset 
analyses and Supplementary Tables 5–7). APOE genotype was 
available for 12 controls, 30 amnestic AD cases, and 62 individuals 
with non-amnestic AD syndromes. Analyses of MRI-based atrophy 
(Phillips et al., 2018a, 2019) and AV-1451 tau PET (Phillips et al., 
2018b, 2021) have been previously published for a subset 
of participants.
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Neuroimaging data acquisition

MRI data were acquired between May 2007 and April 2017 on a 
Siemens 3-Tesla TIM Trio scanner at the Hospital of the University 
of Pennsylvania. All participants had T1-weighted MRI and 
diffusion-weighted imaging (DWI). T1 images for 150 participants 
were acquired axially with 1 mm isotropic voxels, flip angle of 15 
degrees, repetition time (TR) of 1.62 s, and an echo time (TE) of 
either 3.09 ms (n = 100) or 3.87 ms (n = 50). For the 3 remaining 

participants (1 lvPPA, 2 bvAD), T1 images were acquired were 
acquired sagittally with a slice thickness of 1.2 mm, in-plane 
resolution of 1×1 mm, flip angle of 9 degrees, TR =  2.3 s, and 
TE = 2.95 ms. For DWI, participants underwent one (n = 34), two 
(n = 4), or three (n = 115) runs of DWI with 1–5 b = 0 images and 30 
volumes at b = 1,000. DWI repetition times ranged from 5 s to 11.4 s; 
while echo times ranged from 80 to 100 ms, and voxel sizes were 
1.9×1.9×2 mm (n  = 103), 2.2 mm isotropic (n  = 48), or 2.5 mm 
isotropic (n = 2).

FIGURE 1

Schematic illustration of network topology analysis. Top: at a given graph threshold, we can quantify the number of nodes, edges, distinct graph 
components, and cycles (i.e., closed loops). If there is a path from each node to all other nodes, the graph has a single connected component. Middle: 
analysis of persistent homology requires assessing graph features over a range of thresholds. Increasing graph thresholds cause fragmentation of the 
graph into more components (differentiated from each other by red, blue, and green colors). Bottom: numbers of components and cycles at a given 
threshold are captured by Betti-0 and Betti-1 numbers, respectively.
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Neuroimaging data processing

T1-weighted MRIs were processed using the Advanced 
Normalization Tools (ANTs) package as previously described (Phillips 
et al., 2019; Shen et al., 2023). For all images, intracranial volume was 
computed by using SynthStrip (Hoopes et al., 2022) to remove the 
skull, then taking the volume of the resulting brain and surrounding 
cerebrospinal fluid. T1-weighted MRI and B  = 0 images for all 
participants’ DWI series were visually inspected by JSP to assess data 
quality and registration to the T1 space. Because fieldmap data had 
been inconsistently acquired over time, we used the Synthesized b0 
for diffusion DIStortion COrrection (Synb0-DISCO)1 package 
(Schilling et al., 2019, 2020) to infer undistorted DWI maps. These 
synthetic maps and the original diffusion-weighted images were given 
as inputs to QSIPrep 0.18.0 (Cieslak et al., 2021), which is based on 
Nipype 1.8.6 (Gorgolewski et  al., 2011; Esteban et  al., 2022) 
(RRID:SCR_002502).

Per the request of the QSIPrep developers, we  include the 
following auto-generated methods description, with appropriate edits: 
T1 images were corrected for intensity non-uniformity using N4 bias 
field correction from ANTs version 2.4.3 (Tustison et al., 2010). A 
T1-weighted reference map was computed after registration of T1 
images using antsRegistration. The anatomical reference image was 
reoriented into AC-PC alignment via a 6 degree-of-freedom transform 
extracted from a full affine registration to the MNI152NLin2009cAsym 
template. A full nonlinear registration to the template from AC-PC 
space was estimated via symmetric nonlinear registration (SyN) using 
antsRegistration. Brain extraction was performed on the T1 image 
using SynthStrip (Hoopes et al., 2022), and automated segmentation 
was performed using SynthSeg (Billot et al., 2023) from FreeSurfer 
version 7.3.1. Any images with a b-value less than 100 s/mm2 were 
treated as a b  = 0 image. MP-PCA denoising as implemented in 
MRtrix3’s dwidenoise (Veraart et al., 2016) was applied with a 5-voxel 
window. After MP-PCA, Gibbs unringing was performed using 
MRtrix3’s mrdegibbs (Kellner et al., 2016). Following unringing, the 
mean intensity of the DWI series was adjusted so all the mean 
intensity of the b  = 0 images matched across each separate DWI 
scanning sequence. B1 field inhomogeneity was corrected using 
dwibiascorrect from MRtrix3 with the N4 algorithm after corrected 
images were resampled.

FSL (version 6.0.5.1:57b01774)’s eddy was used for head motion 
and eddy-current correction (Andersson et  al., 2016). Eddy was 
configured with a q-space smoothing factor of 10, a total of 5 
iterations, and 1,000 voxels used to estimate hyperparameters. A 
quadratic first level model and a linear second level model were used 
to characterize eddy current-related spatial distortion. Q-space 
coordinates were forcefully assigned to shells, and eddy attempted to 
separate field offset from subject movement. Shells were aligned post-
eddy. Eddy’s outlier replacement was run (Andersson et al., 2016). 
Data were grouped by slice, only including values from slices 
determined to contain at least 250 intracerebral voxels. Groups 
deviating by more than 4 standard deviations from the prediction had 
their data replaced with imputed values. Data was collected with 
reversed phase-encode blips, resulting in pairs of images with 

1 https://github.com/MASILab/Synb0-DISCO

distortions going in opposite directions. The synthetic, undistorted 
b  = 0 image computed with Synb0-DISCO was paired with b  = 0 
images extracted from the DWI scans. From these pairs the 
susceptibility-induced off-resonance field was estimated using a 
method similar to that described by Andersson et al. (2003). The 
fieldmaps were ultimately incorporated into the eddy current and 
head motion correction interpolation. Final interpolation was 
performed using the jacobian method (Andersson and 
Sotiropoulos, 2016).

Several confounding time-series were calculated based on the 
preprocessed DWI: framewise displacement (FD) using the 
implementation in Nipype (Power et  al., 2014). The head-motion 
estimates calculated in the correction step were also placed within the 
corresponding confounds file. Slicewise cross correlation was also 
calculated. The DWI time-series were resampled to AC-PC alignment, 
generating a preprocessed DWI run in AC-PC space with 1.5 mm 
isotropic voxels. Many internal operations of QSIPrep use Nilearn 
0.10.1 (Abraham et  al., 2014) (RRID:SCR_001362) and Dipy 
(Garyfallidis et al., 2014). For more details of the pipeline, see the 
section corresponding to workflows in QSIPrep’s documentation.

Diffusion orientation distribution functions (ODFs) were 
reconstructed using generalized q-sampling imaging (GQI) (Yeh et al., 
2010) with a ratio of mean diffusion distance of 1.25 in DSI Studio 
(version 94b9c79).2 GQI belongs to a family of diffusion MRI 
reconstruction techniques that produce a voxelwise orientation 
distribution function (ODF) ODF-based reconstruction methods 
such as GQI allow superior resolution of WM tracts in areas of 
crossing fibers and edema than classical diffusion tensor imaging (Yeh 
et al., 2010; Jin et al., 2019; Ye et al., 2021). Whole-brain deterministic 
tractography was performed per published methods (Yeh et al., 2013); 
for each participant, we  generated 5 million streamlines with a 
maximum length of 250 mm, minimum length of 30 mm, random 
seeding, a step size of 1 mm, a turning angle of 35°, and an 
automatically calculated quantitative anisotropy threshold. No 
smoothing or topology-informed pruning was used. Generalized 
fractional anisotropy (GFA) was averaged over the length of 
streamlines as a measure of WM connection strength. Regions of 
interest were defined by a composite atlas space comprising the 
100-label, 7-network cortical parcellation of Schaefer et al. (2018) and 
Yeo et al. (2011); the CIT-168 subcortical atlas (Pauli et al., 2018), 
comprising the basal ganglia and midbrain nuclei; the thalamic atlas 
of Najdenovska et al. (2018), based on Human Connectome Project 
(HCP) data; and the cerebellar atlas of King et al. (2019). GM volume 
was similarly quanitified for all regions of interest from ANTs-
processed T1 MRI.

As a quality control measure, we quantified the frequency with 
which atlas regions occurred as “islands” in participants’ DWI 
connectivity matrices (i.e., regions unconnected to any other regions). 
Because the bilateral habenular and mammillary nuclei constituted 
islands in more than 25% of scans, they were excluded, yielding 
symmetric 148 × 148 matrices for analysis. Because GFA-based 
connectivity matrices are sparse, and the presence of individual 
connections varied between participants, we adopted a “50% rule” to 
exclude tracts with low coverage in the dataset: only those present in 

2 https://dsi-studio.labsolver.org
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at least 50% of the participants of each phenotype (CN, lvPPA, PCA, 
bvAD, and CBS) were included in further analysis. This conservative 
approach was intended both to reduce the likelihood of testing false-
positive connections between brain areas and of conducting 
low-powered tests based on only a few participants.

As a further quality-control measure, we additionally restricted 
analysis to connections present in the HCP1065 diffusion template 
available on the DSI Studio website3, which was derived by averaging 
voxelwise ODFs for 1,065 young adult participants in the Human 
Connectome Project study (Yeh, 2022). We performed deterministic 
tractography on this group-average template using the same tracking 
parameters described above, then used the same composite atlas to 
create a 152 × 152 connection matrix. Zero-valued connections in this 
population-average connectivity matrix were excluded from 
further analysis.

These rules resulted in retention of 497 tracts for analysis, out of 
a possible 11,476 pairwise connections. Retained tracts were present 
in a mean of 80.5% (SD = 11.9) of participants’ connectomes. Cases 
with missing values for retained tracts were excluded on a tract-by-
tract basis. Tract labels were defined in DSI Studio by performing 
tractography on the HCP1065 template between the corresponding 
GM endpoint labels, then using atlas-based tract recognition (Yeh, 
2022) to derive the most probable label for each tract. Tract labels are 
reported for statistically significant findings in 
Supplementary Tables 1, 2. A minority of tracts detected in the current 
dataset were not present in atlas-based tracking. These connections 
may reflect sample-specific anatomical variations, or they may 
represent false positive connections, despite the quality control 
procedures described above.

Additionally, the DSI Studio generalized q-sampling imaging 
(GQI) pipeline from QSIPrep output voxelwise maps for diffusion 
microstructure metrics including fractional anisotropy (FA; based on 
a diffusion tensor fit); mean diffusivity (MD), which is typically 
hypothesized to increase when WM tracts degenerate, allowing less 
restricted diffusion; and isotropic water diffusion (i.e., a “free water” 
component), which may represent the presence of cerebrospinal fluid 
or edema in a voxel. We computed a global mean for each component 
within each participant’s WM by eroding the WM tissue mask by 2 
voxels in all directions to reduce risk of partial volume effects from 
adjacent GM or CSF, then averaging each metric over all voxels in the 
resulting mask.

Statistical methods

Missing or imputed data
MMSE scores were unavailable for 4 CN and 2 amnestic AD 

participants. For the 4 CN cases, MMSE scores were imputed as the 
mean of the remaining CN sample; and for the 2 amnestic AD cases, 
scores were imputed as the mean MMSE among all amnestic AD and 
non-amnestic AD patients. Additionally, disease duration was 
unavailable for one lvPPA patient (male, 67 years old) and was 
imputed as the mean disease duration among all other patients. To 
address potential bias introduced by these imputations, we omitted 

3 https://brain.labsolver.org/hcp_trk_atlas.html

cases with imputed data from subset analyses reported below (Subset 
analyses, Supplementary Tables 5–7). To prevent extreme outlier 
values from influencing regression-based analyses, we  truncated 
w-scores for both tractwise GFA and regional volume at 0.1 and 99.9% 
of their respective distributions.

Neuropsychological assessments
Cognitive and behavioral performance was assessed using 

available data from a number of standardized assessments (Table 1). 
For each assessment, we  used linear regression models to assess 
phenotypic differences, covarying for age, sex, and education. Post-hoc 
tests were performed for tasks that exhibited a significant main effect 
of phenotype [α=0.05, adjusted for false discovery rate (Benjamini 
and Hochberg, 1995)]; post-hoc Tukey’s tests were performed with a 
criterion of α=0.05.

W-score transformations
GM volumes were pre-adjusted for associations with intracranial 

volume, age at MRI, and sex by conversion to w-scores (La Joie et al., 
2013) based on regression models computed in CN participants. 
Similarly, mean GFA scores for WM tracts of interest were converted 
to w-scores, adjusting for age at MRI and sex effects. While w-scores 
were correlated with the untransformed GM volumes and tractwise 
GFA values, their interpretation differs: higher scores indicated greater 
volume or GFA than expected for a cognitively normal individual of 
the same age and sex, while lower scores indicated greater atrophy or 
WM degeneration than expected.

Tractwise contrasts
We aimed to identify both patterns of WM degeneration that 

characterized non-amnestic AD generally as well as those specific to 
lvPPA, PCA, CBS, and bvAD. We thus performed contrasted tractwise 
GFA values both by group (CN, amnestic AD, or non-amnestic AD) 
and by phenotype (CN, amnestic AD, lvPPA, PCA, CBS, or bvAD) 
using linear regression to perform mass univariate analyses of all 497 
retained tracts. For each, we computed a model with w-scores for 
tractwise mean GFA as the dependent variable; group or phenotype 
as a fixed effect of interest; and MMSE score to adjust for within-group 
variation in disease progression. Post-hoc tests of group and 
phenotype were performed for tracts that exhibited a significant effect 
of either factor based on analysis of variance (ANOVA). Significance 
for ANOVAs was determined by a criterion of α=0.05, FDR-adjusted; 
post-hoc tests used α=0.05 after Tukey’s adjustment.

Associations between grey and white matter 
degeneration

To determine whether GM and WM degeneration were mutually 
associated, we first computed a mean WM w-score over all tracts 
projecting from a given region in each participant. This mean WM 
score served as the outcome variable in a linear mixed effects model 
with fixed effects of group, GM w-score, and the group × GM w-score 
interaction; and a second, parallel model with fixed effects of 
phenotype, GM w-score, and the phenotype × GM w-score interaction. 
Both models included a random intercept per participant to account 
for correlation due to within-subject repeated measures (i.e., multiple 
regions). Significance of model effects was assessed at α=0.05, 
uncorrected.

https://doi.org/10.3389/fnins.2024.1353306
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Global differences in WM microstructural metrics
GM atrophy could influence tractography results by making it 

more difficult to trace continuous diffusion pathways between brain 
areas. Additionally, in individuals with lower GM and WM volume, 
we  reasoned that tractwise GFA could be  underestimated due to 
partial-volume effects at the GM/WM border. To provide converging 
tests of group differences in WM degeneration, we thus used linear 
regression and analyses of variance to test for effects of group on mean 
FA, MD, and isotropic diffusion. Regression models included 
covariates of age, sex, and MMSE score; significance was assessed at α
=0.05, FDR-corrected. Post-hoc Tukey’s tests were performed for 
metrics that indicated significant effects of group.

Topological features of brain networks using 
persistent homology

Topological analysis was performed on graphs defined both from 
untransformed tractwise GFA values and their corresponding 
w-scores. To simplify interpretation of tractwise connection strength, 
we performed a min/max normalization of WM w-scores, setting the 
global minimum value in the dataset equal to zero and the global 
maximum equal to one. Tracts with missing values were represented 
as zeros. Topological metrics included Betti-0 numbers, representing 
the number of components at a given threshold; Betti-1 numbers, 
indicating the number of cycles (i.e., loops) at that threshold; and the 
ratio of Betti-1 to Betti-0 (i.e., the ratio of cycles to components), 
where a large ratio indicates that a network is not maximally dense 
(Kartun-Giles and Bianconi, 2019), suggesting more efficient 
network architecture.

Next, graph filtration thresholds were computed using the sorted 
sequence of weights from the minimum spanning tree of each 
participant’s network (Lee et  al., 2012) and 100 linearly spaced 
thresholds between the min and max weights across the participants. 
Betti-0 numbers were computed using the Dulmage-Mendelsohn 
decomposition (Dulmage and Mendelsohn, 1958; Pothen and Fan, 
1990) of each sub-network. Betti-1 numbers were computed 
analytically using the Euler characteristic by considering only the 
algebraically independent loops (Lee et al., 2014) (i.e., Betti-1 = Betti-0 
– # parcellations + # edges). The Betti curves are monotone over the 
graph filtrations, i.e., they are increasing for number of components 
and decreasing for number of loops.

The statistical significance of the difference between the mean 
Betti curves of groups was estimated using the Kolmogorov–Smirnov 
(KS) distance between them, which is the maximum distance between 
two Betti curves (Chung et  al., 2019). P-values were computed 
similarly to the KS test (Kolmogorov, 1933; Smirnov, 1948) by 
mapping the Betti curves as walks on a Cartesian grid and enumerating 
every possible walk on the grids combinatorially (Chung et al., 2017). 
The size of the Cartesian grid is (q + 1) x (q + 1), where q is the 
maximum number of connected components (i.e., the number of 
nodes) for Betti-0 and the maximum number of cycles (estimated 
from Euler’s formula is proportional to the number of edges) for 
Betti-1.

We selected the max distance filtration threshold between the CN 
and non-amnestic AD groups and calculated the Betti numbers of the 
corresponding sub-network for all participants. Additionally, 
we  investigated the clinical relevance of Betti-0, Betti-1, and the 
Betti-1/Betti-0 ratio through multiple regression models with MMSE 
score and disease duration as outcome variables. Predictors included T
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each Betti metric plus age at MRI and sex as covariates. Significance 
was assessed at α=0.05, uncorrected. Supplementary Table 3 reports 
simple Pearson’s correlations of Betti numbers with WM 
microstructure metrics (FA, MD, and isotropic diffusion).

Statistical software

R version 4.3.1 and the R packages lmerTest (Kuznetsova et al., 
2017), emmeans (Lenth, 2024), and stats (Wilkinson and Rogers, 
1973; Chambers and Hastie, 1992) were used to perform tractwise 
contrasts, test associations between GM and WM degeneration, and 
correlate Betti numbers with clinical and microstructural variables. 
MATLAB was used to contrast the Kolmogorov–Smirnov distance 
between Betti profiles for different groups. Tractwise contrast results 
(Figures 2, 3) were created using the brainconn2 R package (Orchard 
et al., 2020; Mahzarnia et al., 2022). Source code used to generate 
figures and statistical calculations will be released on JSP’s GitHub.4

Results

Participant characteristics

An ANOVA indicated that age at MRI varied significantly by 
group [F(2,150) = 4.69, p  = 0.01]: consistent with prior reports, 
non-amnestic AD cases were significantly younger at MRI than 
amnestic AD cases (t = −2.93, p = 0.004) and marginally younger than 
controls (t = −1.96, p = 0.05). The amnestic AD and control groups did 
not differ in age at MRI (t = −0.94, p = 0.35). MMSE score also differed 
by group [F(2,150) = 33.84, p = 7.42e-13]: both amnestic (t = 6.83, 

4 https://github.com/jeffrey-phillips

p = 2.03e-10) and non-amnestic patients (t = −7.53, p = 4.44e-12) had 
lower scores than controls but did not differ from each other (t = 0.11, 
p = 0.91). The amnestic and non-amnestic groups also did not differ 
in disease duration [F(1,106) = 0.01, p = 0.92]. We observed no group 
difference in sex distribution [χ 2=0.72, p  = 0.72]; however, the 
number of APOE  alleles varied significantly [χ 2=15.49, p = 0.004], 
reflecting group differences in the prevalence of risk allele carriers: 
33.3% of controls and 41.9% of non-amnestic AD patients with 
available genotypes carried the  allele, compared to 80.0% of 
amnestic AD cases.

Age also differed by phenotype (Table 2). Post-hoc Tukey’s tests 
showed that the CN group had a higher mean age than PCA (t = 2.16, 
p = 0.03). Additionally, the amnestic AD group were older than the 
CBS (t = 2.32, p = 0.02) and PCA (t = 2.84, p = 0.005) groups. The 
majority of amnestic AD participants (61.0%) had an estimated 
disease onset at age 65 or earlier. An additional 14.6% had an onset 
between 65 and 70 years of age, and the remaining amnestic AD 
patients had onset after age 70. In comparison, 82.1% of non-amnestic 
AD participants had an estimated onset of age 65 or earlier; 7.5% 
between 65 and 70; and 9.0% after age 70. In tests of global cognition, 
a highly significant group effect (Table 2) reflected significantly better 
cognition for the CN group than all patients (all T > 4.1, p < 0.0001); 
no significant differences were found between phenotypes (all 
T < 1.72, p > 0.08). The frequency of the APOE 4∈  allele differed by 
phenotype [χ 2=42.7, p = 0.0005]: the 4∈  allele was more common in 
amnestic AD and bvAD, and less common in lvPPA and PCA 
(Table 2). No phenotypic differences in sex ratio were found, and 
patient groups did not significantly differ in disease duration.

Neuropsychological performance

Cognitive and behavioral features for each phenotype are detailed 
in Table  1. For all assessments, the main effect of phenotype was 
significant (all F  > 4.0, p  < 0.0025). Post-hoc tests 

FIGURE 2

Significant between-group differences in tractwise w-scores (calculated as mean generalized fractional anisotropy, adjusting for age at MRI and sex). 
(A) Cognitively-normal - amnestic AD; (B) Cognitively normal - non-amnestic AD; (C) Amnestic AD > non-amnestic AD; (D) Non-amnestic AD > amnestic 
AD. Edge color represents t-statistics from post-hoc Tukey’s test for edges that exhibited a significant main effect of group in analyses of variance. Warm 
colors indicate higher w-scores for the first group than the second in each plot; cool colors indicate lower w-scores for the first group than the second.
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(Supplementary Table 1) indicated that patients were impaired on 
most tasks relative to the CN group, with exceptions. The amnestic AD 
group did not differ from the CN group in forward digit span. The 

lvPPA group did not differ from controls in copying and delayed recall 
of the Rey complex figure or on the Functional Activities 
Questionnaire (FAQ). The CBS group also did not differ from controls 

FIGURE 3

Differences in tractwise w-scores (calculated as mean generalized fractional anisotropy, adjusting for age at MRI and sex) between phenotypes: 
cognitively normal, amnestic AD (aAD), logopenic-variant primary progressive aphasia (lvPPA), posterior cortical atrophy (PCA), behavioral-variant AD 
(bvAD), and corticobasal syndrome (CBS). (A) Cognitively normal vs. each non-amnestic AD phenotype; (B) Amnestic AD vs. each non-amnestic AD 
phenotype; (C) contrasts between non-amnestic AD phenotypes. Edge color represents t-statistics from post-hoc Tukey’s tests for edges that 
exhibited a significant main effect of group or phenotype in analyses of variance. Warm colors indicate higher w-scores for the first group than the 
second in each plot; cool colors indicate lower w-scores for the first group than the second.
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in delayed recall of the Rey figure or on the FAQ; however, these 
results cannot be  reliably interpreted due to the low number of 
observations available in the CBS group. Notably, the PCA group was 
the only patient group to exhibit impairment on the Judgment of Line 
Orientation (JOLO) task; and the amnestic AD and bvAD groups were 
the only groups with significantly higher symptom counts than 
controls on the brief form of the Neuropsychiatric Inventory (NPI-Q) 
(Kaufer et al., 2000).

In contrasts between patient groups, the lvPPA group had 
significantly higher performance than PCA patients on the JOLO and 
Rey figure copy (Supplementary Table 1). LvPPA patients also had a 
higher total memory score on the Philadelphia Brief Assessment of 
Cognition (PBAC) than the amnestic AD and PCA groups; and 
superior recall of the Rey figure than the PCA, amnestic AD, and 
bvAD groups. In contrast, lvPPA patients had lower forward digit 
spans than the amnestic AD group; and lower scores on the F-words 
tasks than the PCA group. LvPPA patients additionally exhibited less 
impairment in functional activities than the amnestic AD, PCA, and 
bvAD groups. Finally, the bvAD group had a greater frequency of 
neuropsychiatric symptoms than the amnestic AD, lvPPA, and 
PCA groups.

Tract-wise differences by group and 
phenotype

A total of 164 tracts out of 497 tested exhibited significant 
differences between the 3 groups (CN, amnestic AD, and non-amnestic 
AD). Post-hoc Tukey’s tests indicated that both the amnestic and 
non-amnestic AD groups had widespread WM degeneration relative 
to the CN group (Figures  2A,B). Affected tracts in both groups 
included bilateral fronto-parietal and parahippocampal-parietal 
segments of the cingulum; the superior longitudinal fasciculi 
bilaterally; the right parietal aslant tract; and the body of the corpus 
callosum. Overall, amnestic AD patients exhibited lower WM 
w-scores than controls in 22 tracts, while non-amnestic AD patients 
had lower scores than controls in 61 tracts. In direct comparisons 
between the amnestic and non-amnestic AD groups, amnestic AD 
patients had lower WM scores than non-amnestic AD patients only 
in one intracerebellar tract (Figure  2C). In the left hemisphere, 

non-amnestic AD patients exhibited lower WM scores than amnestic 
AD patients (Figure 2D) in the arcuate and superior and inferior 
longitudinal fasciculi; frontal-parahippocampal segment of the 
cingulum; and the parietal aslant tract. In the right hemisphere, 
non-amnestic AD patients differed from amnestic AD in the inferior 
fronto-occipital fasciculus and superior longitudinal fasciculus I and 
II. Finally, non-amnestic AD patients had specific WM degeneration 
in the forceps minor.

We observed a significant effect of phenotype (CN, amnestic AD, 
lvPPA, PCA, CBS, or bvAD) in 113 of the tracts that exhibited group 
differences, plus an additional 21 connections. A complete list of 
significant post-hoc findings is included in Supplementary Table 2. 
We note that contrasts involving bvAD and CBS participants should 
be interpreted with caution due to the lower sample sizes in these 
groups; we  report them in Figure  3 for the sake of transparency. 
Consistent with the left posterior temporal epicenter of disease in 
lvPPA (Phillips et al., 2018a), patients exhibited WM degeneration 
relative to controls in several tracts connecting left temporal nodes of 
the default-mode network, including left arcuate and inferior 
longitudinal fasciculi; left superior longitudinal fasciculus I; and the 
left parietal aslant tract. Additional findings involved bilateral 
cingulum and the forceps major. PCA participants exhibited a 
bilateral, mostly posterior pattern of WM atrophy that principally 
involved tracts in the dorsal attentional, salience, and visual networks, 
in accordance with the visuospatial, constructional, and executive 
function deficits observed in PCA. Affected tracts included bilateral 
parietal aslant tracts; vertical occipital, inferior longitudinal, and 
superior longitudinal fasciculi; and the frontal–parietal segments of 
the cingulum. Left-lateralized degeneration was observed in the 
frontal aslant tract. While CBS exhibited an overlapping pattern of 
WM degeneration with PCA (including the parietal aslant tracts and 
right superior longitudinal fasciculus), there were fewer differences 
from the CN group overall and less involvement of visual network 
connections. However, CBS also exhibited lower WM scores than 
controls in left cerebellum, left cingulum, and the body of the corpus 
callosum. The bvAD group exhibited degeneration of bilateral midline 
and interhemispheric WM tracts including the callosal body, forceps 
major, and forceps minor; bilateral cingulum and superior longitudinal 
fasciculi; left arcuate fasciculus; and right inferior longitudinal  
fasciculus.

TABLE 2 Participant characteristics.

Normal aAD lvPPA PCA bvAD CBS p

N 45 41 32 17 10 8

Age 64.0 [59.0–70.0] 67.0 [59.0–75.0] 63.5 [57.0–68.2] 57.0 [55.0–62.0] 60.5 [54.5–68.5] 57.5 [54.0–60.5] 0.03

MMSE Total 29.2 [29.0–30.0] 22.9 [20.0–25.0] 24.0 [19.0–27.2] 25.0 [19.0–26.0] 19.0 [16.0–23.0] 19.0 [15.0–24.0] 1.37e-11

Duration 0.0 [0.0–0.0] 4.0 [2.0–5.0] 3.0 [2.0–4.1] 3.0 [1.0–5.0] 3.5 [1.2–6.0] 4.0 [2.8–4.8] 6.68e-17

Sex Female 26 (57.8) 20 (48.8) 16 (50.0) 12 (70.6) 2 (20.0) 5 (62.5) 0.18

Male 19 (42.2) 21 (51.2) 16 (50.0) 5 (29.4) 8 (80.0) 3 (37.5)

APOE ε4 allele count 0 8 (17.8) 6 (14.6) 20 (62.5) 10 (58.8) 5 (50.0) 1 (12.5) 1.00e-04

1 2 (4.4) 18 (43.9) 11 (34.4) 4 (23.5) 5 (50.0) 2 (25.0)

2 2 (4.4) 6 (14.6) 0 (0.0) 3 (17.6) 0 (0.0) 1 (12.5)

N/A 33 (73.3) 11 (26.8) 1 (3.1) 0 (0.0) 0 (0.0) 4 (50.0)

For age, MMSE, and disease duration, each cell reports the median and interquartile range. For sex and APOE ε4 allele count, each cell reports the number (percentage) of individuals. 
Boldface indicates statistically-significant p-values.
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Pairwise phenotypic contrasts further highlighted differences 
between amnestic and non-amnestic AD (Figure 3B). Amnestic AD 
had higher WM scores than lvPPA in fibers connecting left anterior 
temporal cortex with the left frontal eye fields, as well as in fibers 
connecting left prefrontal cortex with the anterior thalamus. Amnestic 
AD patients also had higher WM scores than PCA patients in the right 
superior longitudinal fasciculus I; and higher scores than both PCA 
and CBS patients in the right parietal aslant tract. Conversely, CBS 
patients had less WM degeneration than aAD patients in left cerebellar 
WM. BvAD patients showed reduced WM integrity vs. amnestic AD 
in left-hemisphere tracts connecting temporal cortex with the frontal 
eye fields; right inferior fronto-occipital fasciculus; the forceps major, 
and the body of the corpus callosum.

A comparison of the two largest non-amnestic AD groups 
(Figure 3C), lvPPA and PCA, indicated that lvPPA patients had higher 
WM scores in right cingulum, parietal aslant tract, and inferior 
longitudinal fasciculus, consistent with differential disease 
lateralization in the two syndromes; however, PCA patients did not 
have correspondingly higher WM scores than the lvPPA group in the 
left hemisphere. LvPPA patients also had lower WM integrity than the 
PCA group in a portion of the forceps major connecting left posterior 
occipital cortex with right anterior occipito-temporal cortex. LvPPA 
patients had less WM degeneration than bvAD patients in callosal 
fibers connecting left medial frontal and right somatomotor cortex, as 
well as in a portion of right superior longitudinal fasciculus II 
connecting portions of somatomotor cortex. The lvPPA group had less 
degeneration than CBS patients in projections from right somatomotor 
cortex to right cerebellum and to left medial prefrontal cortex; as well 
as in tracts connecting the left and right nodes of the cerebellum. PCA 
patients exhibited stronger WM integrity than the bvAD group in the 
right corticostriatal tract and in fibers connecting the left cerebellum 
and red nucleus. Contrary to expectations, the bvAD group had lower 
WM integrity than the PCA and CBS groups in a segment of the 
forceps major connecting left and right anterior visual regions; and in 
the forceps minor and left precuneus-temporal projections relative to 
the CBS group.

Differences in global white matter 
microstructure

To provide converging evidence for syndromic differences in WM 
degeneration, we next tested whether mean values of FA, MD, and 
isotropic diffusion (averaged across voxels in an eroded WM mask for 
each participant) differed by group (Figure 4). All 3 metrics showed a 
significant effect of group: FA, F(2,146) = 7.24, p  = 0.001; MD, 
F(2,146) = 3.44, p  = 0.03; and isotropic diffusion, F(2,146) = 3.51, 
p = 0.03. In post-hoc tests, amnestic AD patients had higher FA than 
non-amnestic AD patients [t(146) = 3.51, p = 0.002] as well as lower 
MD [t(146) = −2.57, p = 0.03]. Isotropic diffusion was also marginally 
lower in amnestic than non-amnestic AD [t(146) = −2.36, p = 0.05].

Associations between grey and white 
matter degeneration

We next investigated whether associations between WM and GM 
degeneration varied by group and phenotype. Table 3 reports fixed 

effects for the group model. An ANOVA on this model indicated a 
main effect of GM volume [F(1,20,442) = 326.02, p = 2.58e-72] and an 
interaction of group × volume [F(2,20,443) = 27.60, p = 1.07e-12]. This 
interaction reflected a difference in the slope of association between 
GM and WM w-scores for the three groups (Figure 5, top left), with 
significantly more positive slopes for the amnestic and non-amnestic 
AD groups relative to the CN group (Table  3). Fixed effects fits 
explained 4.63% of the variance in mean WM w-scores. The 
phenotype model (Table 4) similarly indicated a main effect of GM 
w-score [F(1,20,436) = 470.40, p  = 3.81e-103] and a significant 
phenotype × GM w-score interaction [F(5,20,437) = 14.27, p = 5.64e-
14], with greater positive slopes for the 5 patient groups relative to 
controls (Table 3; Figure 5, bottom left). This model accounted for 5.36 
percent of the variance in mean WM scores.

In the subset of 104 participants with known APOE genotype, 
we calculated a similar model with fixed effects of APOE 4∈  copy 
number (0, 1, or 2), GM w-score, and their interaction; as well as a 
random intercept per participant. This model yielded a null effect of 
APOE genotype [F(2,102) = 0.43, p = 0.65] but a significant main effect 
of GM volume [F(1,14,291) = 318.02, p = 2.26e-70] and a significant 
interaction of APOE 4∈  with GM volume [F(2,14,293) = 3.86, 
p = 0.02]. This interaction reflected the fact that people with zero 
copies of the 4∈  allele had a steeper slope of association between WM 
and GM w-scores than individuals with one [β= − 0.020, t = −2.48, 
p = 0.01] or two [β= − 0.024, t = −1.93, p = 0.05] copies. Because APOE 
genotype was partially confounded with diagnostic group, 
we  calculated two additional models: one with additive effects of 
group (CN, amnestic AD, or non-amnestic AD), APOE 4∈  copy 
number, and GM w-scores; and a second testing main effects and all 
two- and three-way interactions of these factors. When the factor of 
group was included, neither the main effect of APOE 4∈  nor any of 
its interactions with other factors were significant (all F  < 1.01, 
p > 0.36).

Global differences in network topology

The individual and mean Betti curves are shown in Figure 6. For 
all participants, the number of components (Betti-0) necessarily 
increased at higher filtration thresholds, indicating more disconnected 
sub-networks in the brain as fewer edges survived the threshold. Over 
these different filtration thresholds, the number of components in the 
brain was consistently higher in non-amnestic AD than in the CN 
group (p < 0.05), though it did not differ between amnestic AD and 
CN or between amnestic and non-amnestic AD (both p  > 0.05). 
Conversely, at higher thresholds the number of cycles (Betti-1) was 
reduced, as the number of traversable edges fell. While Betti-1 curves 
appeared to decline more steeply for the amnestic and non-amnestic 
AD groups than for CN participants, no significant group differences 
were observed (all p > 0.05).

Topological metric associations with global 
cognition and disease duration

We additionally assessed associations of Betti numbers with 
MMSE and disease duration to gauge their sensitivity to disease 
severity. For graphs based on untransformed GFA values, Betti-0 was 
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negatively associated with MMSE [β= − 0.136, t(149) = −3.72, 
p = 0.0003], indicating global cognitive impairment was associated 
with greater disconnection of brain areas. Figure 7 (top left) illustrates 
this relationship with separate trend lines per group, suggesting it was 
driven by the amnestic and non-amnestic AD participants. Conversely, 
the Betti-1 model for GFA-based graphs (Figure  7, top middle) 
exhibited a positive association between Betti-1 and MMSE [β=0.043, 
t(149) = 3.20, p = 0.002], suggesting that better global cognition was 
associated with greater frequency of loops in patients’ brain graphs. 
The Betti-1/Betti-0 ratio score (Figure  7, top right) had a similar 

positive association [β=0.718, t(149) = 3.30, p = 0.001]. Betti numbers 
calculated from w-score-based graphs (Figure 7, bottom row) had 
similar, statistically significant associations with MMSE as numbers 
based on untransformed GFA values (Table 5).

Relationships between Betti numbers and disease duration are 
illustrated in Figure 8; model results are given in Table 6. These models 
included only amnestic and non-amnestic AD participants, since 
disease duration was unknown for CN participants. As with MMSE, 
statistical models tested for a main effect of each Betti metric across 
groups; plots show separate trend lines per group to provide 

FIGURE 4

Between-group contrasts of global fractional anisotropy, mean diffusivity, and isotropic diffusion, averaged for each individual over voxels in an eroded 
white matter mask. The non-amnestic AD group had lower global FA (p =  0.0017), higher mean diffusivity (p =  0.030), and marginally higher isotropic 
diffusion (p =  0.051) than the amnestic AD group, covarying for age, sex, and MMSE score.

TABLE 3 Associations of mean white matter w-scores with group, regional GM volume w-scores, and group x volume interactions.

Term Coefficient Std. error Statistic DF Value of p

(Intercept) −0.014 0.080 −0.170 146 0.8650

GroupaAD −0.121 0.116 −1.044 147 0.2981

GroupnaAD −0.242 0.105 −2.302 146 0.0228

WVol 0.026 0.008 3.340 20,437 0.0008

GroupaAD:WVol 0.051 0.010 5.106 20,439 0.0000

GroupnaAD:WVol 0.068 0.009 7.430 20,442 0.0000

Boldface indicates statistically-significant p-values.
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complementary information. Disease duration was positively 
associated with Betti-0 numbers for GFA-based graphs [β=0.045, 
t(104) = 2.35, p  = 0.02] and negatively associated with Betti-1 [β

= − 0.015, t(104) = −2.09, p = 0.04], though only marginally associated 
with the Betti-1/Betti-0 ratio [β= − 0.243, t(104) = −1.73, p = 0.09]. For 
w-score-based graphs, the association with Betti-0 was non-significant 
[β=0.016, t(104) = 2.29, p  = 0.02], but Betti-1 [β= − 0.011, 
t(104) = −2.77, p  = 0.007] and the Betti ratio score [β= − 0.405, 
t(104) = −2.61, p = 0.01] were both negatively associated with disease 
duration, indicating that disease progression was associated with a 
drop in the number of intact circuits between brain areas.

Subset analyses

We repeated tractwise contrasts and topological analyses 
omitting those patients without biomarker confirmation of AD 
pathologic change, as well as those with imputed MMSE scores and 
disease duration; these omissions left a subset of n = 139 participants. 
In tractwise contrasts, a total of 488 connections were included in 
both the full-dataset and the n  = 139 subset analysis. Seven 
connections included in the full analysis did not satisfy our “50% 
rule” in the n = 139 subset; 10 connections not analyzed in the full 
analysis were included in the subset analysis. F-statistics for the main 
effect of group (amnestic AD, non-amnestic AD, or control) were 
highly correlated between the full dataset and subset analyses 
[R(486) = 0.972, p < 0.0001]. The main effect of phenotype (amnestic 
AD, lvPPA, PCA, bvAD, CBS, or control) was similarly highly 
consistent [R(486) = 0.978, p < 0.0001]. Of the 488 tracts in common 
between the full and subset analyses, significance of the group effect 
was concordant for 445 tracts (91.2%) at an FDR-adjusted alpha level 
of 0.05. Significance for the main effect of phenotype was concordant 
for 459/488 tracts (94.1%). Discordant results between the full and 
subset analyses are highlighted in Supplementary Table  5. In 
topological analyses, the statistical significance of results did not 
change for either the groupwise persistent homology comparisons 
(Supplementary Table  6) or the MMSE correlations 
(Supplementary Table 7). Associations between Betti metrics and 
disease duration also remained significant and highly consistent; the 
only exception was that the association between disease duration 
and Betti-0 number in the full analysis (p  = 0.0241) became 
marginally significant in the subset analysis (p = 0.0665).

FIGURE 5

Top left: association of regional atrophy with mean WM w-scores for 
tractwise generalized fractional anisotropy (GFA), stratified by group 
(normal, amnestic, and non-amnestic). Top right: observed mean 
GFA w-scores vs. fixed-effects model fits. Bottom left: regional 
atrophy vs. mean GFA w-scores, stratified by phenotype (normal, 
amnestic MCI/AD, lvPPA, PCA, bvAD, and CBS). Bottom right: 
observed observed mean GFA values for each region vs. fixed-effects 
fits (bottom).

TABLE 4 Associations of mean white matter w-scores with phenotype, regional volume, and group x phenotype interactions.

Term Coefficient Std. error Statistic DF Value of p

(Intercept) −0.014 0.080 −0.170 143 0.8654

PhenotypeaAD −0.121 0.116 −1.042 144 0.2994

PhenotypelvPPA −0.184 0.125 −1.474 144 0.1427

PhenotypePCA −0.239 0.154 −1.556 144 0.1218

PhenotypebvAD −0.398 0.189 −2.111 144 0.0365

PhenotypeCBS −0.323 0.282 −1.144 145 0.2544

WVol 0.026 0.008 3.341 20,433 0.0008

PhenotypeaAD:WVol 0.051 0.010 5.108 20,435 0.0000

PhenotypelvPPA:WVol 0.052 0.010 5.050 20,452 0.0000

PhenotypePCA:WVol 0.068 0.012 5.583 20,424 0.0000

PhenotypebvAD:WVol 0.092 0.013 6.845 20,422 0.0000

PhenotypeCBS:WVol 0.105 0.017 6.024 20,442 0.0000

Boldface indicates statistically-significant p-values.
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Discussion

The present study asked whether individuals with 
non-amnestic AD syndromes exhibited similar or distinct 
patterns of WM degeneration as people diagnosed with amnestic 
MCI/AD. Furthermore, we tested whether observed variation in 
WM integrity, assessed by tractwise GFA, was related to patterns 
of GM degeneration in tract endpoints. We  found that both 
amnestic and non-amnestic AD groups displayed lower GFA than 
CN participants in key fiber tracts including the cingulum, 

corpus callosum, superior longitudinal fasciculi, and others. 
Non-amnestic syndromes were characterized by more severe and 
widespread WM degeneration than in amnestic AD; and patients 
displayed phenotypic differences that corresponded with 
previously reported differences in GM degeneration 
(Ossenkoppele et al., 2015a; Phillips et al., 2018a). Differential 
breakdown of structural connectivity was corroborated by 
contrasts of global FA, MD, and isotropic diffusion; as well as by 
analysis of topological features, which indicated that 
non-amnestic AD patients had persistently greater fragmentation 
of brain graphs than CN participants. Topological metrics 
including Betti-0 (number of graph components), Betti-1 
(number of loops/cycles), and the Betti-1/Betti-0 ratio were 
correlated both with clinical variables (MMSE and disease 
duration) and DWI microstructural metrics, supporting their 
utility as markers of cognitive and brain change. Finally, regional 
GM volumes had modest but highly significant associations with 
the mean GFA of fiber tracts projecting from each region, 
suggesting that WM degeneration in non-amnestic AD is at least 
partially related to GM disease progression, although the nature 
of this relationship remains uncertain.

Our findings corroborate and add to prior white matter 
imaging studies in early-onset amnestic and non-amnestic 
AD. We replicate Sintini et al. (2018)‘s findings of FA reductions 
in the splenium, cingulum, and posterior thalamic radiation in 
atypical AD (lvPPA and PCA); however, the current study adds 
greater context through comparisons to CN and amnestic AD 
groups; and anatomical detail through tractwise analysis. Caso 
et al. (2015) reported results from 28 early-onset amnestic AD, 
12 lvPPA, and 13 PCA cases; as in this study, they found 
overlapping degeneration between amnestic and non-amnestic 
AD in the corpus callosum, cingulum, and superior longitudinal 
fasciculus. However, Caso et  al. did not detect WM tract 
degeneration specific to lvPPA or PCA. The current study, based 
on a larger and more phenotypically-varied sample, found that 
PCA patients had greater WM degeneration than the lvPPA 
group in right-hemisphere occipital, temporal, and parietal 
projections; and all non-amnestic AD phenotypes exhibited 
unique differences relative to amnestic AD and CN participants. 
Additionally, we  found that non-amnestic AD patients had 
greater WM degeneration than a sample of primarily early-onset 
amnestic patients; given that WM burden is greater in early-onset 
than late-onset amnestic AD (Sirkis et al., 2022), WM changes are 
likely to be even greater between non-amnestic AD and late-onset 
amnestic patients.

Several aspects of the findings from tractwise contrasts are 
consistent with hypothesized WM-mediated spread of disease 
from established, syndrome-specific GM epicenters. In lvPPA, 
the majority of tracts exhibiting degeneration were underlying 
left temporal and inferior parietal cortex, the earliest site of GM 
degeneration (Phillips et  al., 2018a) and a peak area of tau 
accumulation (Phillips et al., 2021) in logopenic patients. In the 
PCA group, differences from controls included projections from 
posterior parietal, posterior temporal, and occipital cortex. This 
distribution was bilateral but included larger effect sizes in the 
right then left hemisphere, echoing previously reported 
asymmetry of GM atrophy effects (Phillips et al., 2019; Groot 
et al., 2020) and indicating the presence of PCA cases with greater 

FIGURE 6

Graph filtration results for cognitively normal, amnestic AD, and non-
amnestic AD groups. (A) Individual filtration curves for graphs based 
on generalized fractional anisotropy (GFA) values (left) and w-score-
transformed GFA values (right). The top row shows increasing Betti-0 
numbers with stricter thresholds, while the bottom row shows fewer 
cycles/loops as the threshold increases. (B) Mean curves for each 
group. The non-amnestic AD group exhibited significantly higher 
Betti-0 numbers than the cognitively normal group, indicating more 
graph components; no other group differences were observed.
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right than left hemisphere involvement in the current sample. 
The PCA group additionally showed significant degeneration in 
frontoparietal segments of the cingulum and in projections from 
nodes in the dorsal attentional network, consistent with the 
longitudinal spread of disease from posterior to prefrontal brain 
areas over time (Andrade et  al., 2013; Phillips et  al., 2019; 
Katsumi et  al., 2022). BvAD patients had reduced GFA in 
projections from limbic areas including orbitofrontal cortex and 
the anterior temporal lobes, as well as prefrontal nodes of the 
default mode and control networks. These sites are close to our 
previously reported epicenters for bvAD in left lateral prefrontal, 
left insular, and right middle temporal cortex (Phillips et  al., 
2018a) and are consistent with the hallmark deficits in affective 
processing, social behavior, and executive function that 
characterize bvAD (Ossenkoppele et al., 2022). [Prior research 
has found heterogeneous distributions of disease, indexed by tau 
positron emission tomography, in bvAD (Singleton et al., 2020)]. 
Finally, while results in the CBS group were likely underpowered 
and should be interpreted with caution, we observed a distributed 
pattern of WM degeneration encompassing left cingulum, the 
body of the corpus callosum, bilateral parietal aslant tracts, and 
the right superior longitudinal fasciculus. These tracts are located 
adjacent to previously reported epicenters of GM disease 
observed in CBS, including the left angular and supramarginal 
gyri as well as bilateral superior parietal lobules (Phillips et al., 
2018a; Saito et al., 2022). Notably, WM differences between CBS 
and controls involved bilateral nodes of the somatomotor 
network (Supplementary Table  2), presenting possible WM 

correlates of the sensorimotor deficits observed in CBS 
(Armstrong et al., 2013).

Associations between grey and white 
matter degeneration

Per hypotheses, we observed associations in WM tract integrity 
and GM atrophy that supported a link between degeneration in both 
tissue types. Observed correlations between WM and GM 
degeneration were small (on the order of 5% of variance explained by 
fixed-effects model fits). Interpreting the magnitude of these effects is 
difficult, as relatively few studies report quantitative associations 
between tractwise WM measures and atrophy of the corresponding 
GM endpoints. (Qualitative comparisons of GM and WM 
degeneration or correlations of GM atrophy with voxelwise WM 
microstructure metrics are more common). However, one recent 
study based on connectomic imaging from 2,789 datasets (Schilling 
et al., 2023) reported correlations of similar magnitude between FA 
and cortical thickness in older adults, in line with the current findings. 
The relatively modest association between GM and WM degeneration 
may indicate that both GM atrophy and WM degeneration are driven 
not only by some common processes but also tissue-specific factors.

One potential concern with tract-based analyses is that 
degeneration might reduce the ability of fiber-tracking algorithms to 
detect real WM tracts, as partial-volume effects from adjacent GM or 
cerebrospinal fluid could lower anisotropy and skew estimates of 
diffusion direction in many voxels. We  addressed this concern 

FIGURE 7

Associations of individuals’ Betti-0 (B-0) and Betti-1 (B-1) numbers as well as the Betti-1/Betti-0 ratio with total MMSE score. Top: Betti numbers were 
calculated from graphs using untransformed generalized fractional anisotropy (GFA) values. Bottom: Betti numbers based on graphs of w-score-
transformed GFA values.
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through analyses of global FA, MD, and isotropic diffusion measured 
within an eroded WM mask, which would be largely independent of 
partial-volume effects. This analysis again demonstrated greater WM 
degeneration in non-amnestic than amnestic AD, suggesting that the 
differences we observed in tractwise analyses could not be attributed 
entirely to false negatives in tractography.

The significance of white matter 
degeneration in Alzheimer’s disease

The present study was motivated by the hypothesis that 
transneuronal spread of tau would be associated with syndrome-specific 
patterns of WM degeneration; however, our results do not specify the 
precise mechanism of degeneration, nor can they definitively rule out 
alternative explanations. Converging evidence from autopsy studies 
(Scheltens et al., 1995), neuroimaging (Nasrabady et al., 2018; Veale et al., 
2021), and single-cell transcriptomics (Mathys et al., 2019) demonstrates 
that demyelination is an early and prevalent change in AD that is likely 
to affect diffusion MRI metrics (Jelescu et al., 2016; Preziosa et al., 2019). 
Amyloid-β  is one possible driver of myelin loss, given prior evidence for 
toxic effects of soluble amyloid-β  on oligodendrocytes (Sachdev et al., 
2013; Nasrabady et al., 2018). However, amyloid-related axonal injury is 
not mutually exclusive with involvement of tau. Agosta et al. (2014) 
proposed that microvesicles shed by microglia could release neurotoxic 

oligomeric amyloid-β , which could both cause neuronal and 
oligodendrocytic damage both directly and indirectly, by promoting tau 
aggregation and cell injury. Joint involvement of amyloid-β  and tau in 
driving axonal degeneration is also supported by experimental studies of 
neurons in compartmentalized microfluidic environments, 
demonstrating that amyloid-β  peptide administered to the neuronal 
soma can induce tau hyperphosphorylation and distal axonal 
degeneration (Deleglise et al., 2014).

Another possible explanation for the current results is Wallerian 
degeneration of WM tracts following neuronal injury or death. The 
cross-sectional design of the current study cannot disambiguate early 
changes preceding GM degeneration and later changes due to 
Wallerian processes. However, prior studies have found that WM 
degeneration precedes GM atrophy in MCI (Agosta et  al., 2011; 
Maier-Hein et al., 2015; Raj et al., 2017) and precedes symptom onset 
in autosomal-dominant AD by up to 10 years (Araque Caballero et al., 
2018). Moreover, Caso et  al. (2015) described observed WM 
degeneration in atypical AD as out of proportion to GM disease, 
suggesting that WM changes preceded GM atrophy. Ultimately, the 
distinction between primary WM changes that are instrumental in 
disease progression vs. subsequent, secondary changes due to 
Wallerian degeneration may be an artificial one. WM changes such as 
demyelination and destabilization of microtubules (Kowall and Kosik, 
1987) may have cyclical interactions with changes occurring near the 
neuronal cell body (e.g., tau aggregation, degeneration in somatic 

TABLE 5 Results of linear regressions of MMSE score on Betti metrics.

Graph type Betti metric Term Coefficient Std. error T-statistic Value of p

GFA B-0 (# components) (Intercept) −0.136 0.037 −3.717 0.0003

value 0.037 0.059 0.625 0.5327

Age −0.961 0.974 −0.987 0.3254

SexMale 15.544 4.265 3.645 0.0004

GFA B-1 (# loops) (Intercept) 0.043 0.014 3.195 0.0017

value 0.056 0.060 0.934 0.3516

Age −0.907 0.985 −0.921 0.3587

Sex Male 26.720 4.175 6.400 0.0000

W-score B-0 (# components) (Intercept) −0.049 0.015 −3.171 0.0018

Value 0.030 0.060 0.507 0.6129

Age −1.396 0.998 −1.398 0.1641

SexMale 19.952 3.990 5.000 0.0000

W-score B-1 (# loops) (Intercept) 0.018 0.009 1.986 0.0489

Value 0.041 0.061 0.667 0.5056

Age −1.165 1.014 −1.148 0.2526

SexMale 19.011 3.900 4.874 0.0000

GFA B-1/B-0 (Intercept) 0.718 0.217 3.304 0.0012

Value 0.046 0.060 0.774 0.4402

Age −0.918 0.983 −0.934 0.3519

SexMale 20.940 3.878 5.399 0.0000

W-score B-1/B-0 (Intercept) 0.760 0.284 2.672 0.0084

Value 0.034 0.061 0.568 0.5708

Age −1.320 1.008 −1.310 0.1921

Sex Male −0.136 0.037 −3.717 0.0003

Boldface indicates statistically-significant p-values.
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structure, nuclear functions, etc.), making it less meaningful to label 
them as strictly cause or consequence of GM changes. In human 
observational research, longitudinal imaging is critical to determining 
the relative sequence of GM vs. WM degeneration; and at the 
microscopic scale, innovative in vitro methods (Deleglise et al., 2014) 
can help validate mechanistic hypotheses.

Limitations

The present study has several limitations that urge caution in 
interpreting our findings. Sample sizes were low for phenotypic contrasts, 
especially those for bvAD and CBS; although observed WM degeneration 
was consistent with established patterns of GM atrophy, they require 
replication with larger datasets. Additionally, we leveraged data acquired 
from 2007 to 2017 using a single-shell, 30-direction DWI protocol that 
had limited angular resolution and ability to resolve crossing fibers, 
which may explain the sparsity and inter-individual variability of 
structural connectivity matrices. By focusing only on the most reliably-
detected fiber tracts, we may in fact have underestimated the extent of 
WM degeneration across all groups. Additionally, the current analyses 
are based on a single microstructural metric, generalized fractional 
anisotropy; but previous studies have demonstrated the sensitivity of 
alternative metrics like mean diffusivity for detecting WM degeneration 
in non-amnestic AD (Gatto et al., 2022) and apraxia of speech (Gatto 
et al., 2024). In future studies, we aim to apply techniques such as neurite 
orientation dispersion and density imaging (Gatto et al., 2024) to validate 
the current findings using multi-shell diffusion MRI. One limitation of 
topological analysis methods as applied in this study is that numbers of 
connected components and loops are influenced by methodological 
factors including atlas parcellation; future studies may employ a 

parcellation-free approach in estimation of topological and graph 
theoretic metrics (Chung et al., 2011). Finally, we note that biomarker 
data were unavailable for 14/153 participants (9.2%); these cases are thus 
characterized as having possible rather than probable AD. While subset 
analyses omitting these possible AD cases largely replicated the full 
analysis, the fiber tracts reported in Supplementary Table  5 had 
discrepant results and should be interpreted with caution.

Conclusion

The present study demonstrated that non-amnestic AD clinical 
syndromes were characterized by phenotype-specific patterns of WM 
degeneration, with greater overall severity than in amnestic AD. The 
sources of this degeneration are unclear: while the results are broadly 
consistent with models of transneuronal tau spread, other factors 
including amyloid-β , ischemia, oxidative stress, and immune responses 
have all been previously associated with WM disease. Indeed, 
examining differential involvement of these potential contributors in 
amnestic vs. non-amnestic AD may be  a promising strategy for 
understanding the group differences in WM disease reported here. The 
present study also demonstrates that topological metrics—including 
the number of connected components and closed loops in individuals’ 
brain graphs—are potential imaging biomarkers of disease state that 
do not rely on subjective report (as disease duration does) or 
assessment by human raters (as global cognition does).
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Associations of individuals’ Betti-0 (B-0) and Betti-1 (B-1) numbers as 
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calculated from graphs using untransformed generalized fractional 
anisotropy (GFA) values. Right: Betti numbers based on graphs of 
w-score-transformed GFA values.
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TABLE 6 Results of linear regressions of disease duration on Betti metrics.

Graph type Betti metric Term Coefficient Std. error T-statistic Value of p

GFA B-0 (# components) (Intercept) −3.328 1.966 −1.693 0.0934

Value 0.045 0.019 2.345 0.0209

Age 0.077 0.026 3.001 0.0034

Sex Male 0.049 0.441 0.110 0.9123

GFA B-1 (# loops) (Intercept) 0.988 1.814 0.545 0.5872

Value −0.015 0.007 −2.090 0.0391

Age 0.069 0.026 2.687 0.0084

Sex Male −0.017 0.443 −0.038 0.9698

W-score B-0 (# components) (Intercept) −2.403 1.780 −1.350 0.1799

Value 0.016 0.007 2.290 0.0241

Age 0.071 0.026 2.776 0.0065

Sex Male 0.239 0.453 0.528 0.5984

W-score B-1 (# loops) (Intercept) 0.315 1.641 0.192 0.8480

Value −0.011 0.004 −2.773 0.0066

Age 0.068 0.025 2.705 0.0080

Sex Male 0.222 0.443 0.500 0.6179

GFA B-1/B-0 (Intercept) −0.199 1.660 −0.120 0.9049

Value −0.243 0.141 −1.731 0.0864

Age 0.072 0.026 2.777 0.0065

Sex Male 0.033 0.446 0.075 0.9406

W-score B-1/B-0 (Intercept) −0.090 1.623 −0.055 0.9559

Value −0.405 0.155 −2.614 0.0103

Age 0.068 0.025 2.662 0.0090

Sex Male 0.261 0.449 0.581 0.5626

Boldface indicates statistically-significant p-values.
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