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Introduction: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental 
condition characterized by impairments in motor skills, communication, 
emotional expression, and social interaction. Accurate diagnosis of ASD remains 
challenging due to the reliance on subjective behavioral observations and 
assessment scales, lacking objective diagnostic indicators.

Methods: In this study, we introduced a novel approach for diagnosing ASD, 
leveraging T1-based gray matter and ASL-based cerebral blood flow network 
metrics. Thirty preschool-aged patients with ASD and twenty-two typically 
developing (TD) individuals were enrolled. Brain network features, including 
gray matter and cerebral blood flow metrics, were extracted from both T1-
weighted magnetic resonance imaging (MRI) and ASL images. Feature selection 
was performed using statistical t-tests and Minimum Redundancy Maximum 
Relevance (mRMR). A machine learning model based on random vector 
functional link network was constructed for diagnosis.

Results: The proposed approach demonstrated a classification accuracy of 
84.91% in distinguishing ASD from TD. Key discriminating network features 
were identified in the inferior frontal gyrus and superior occipital gyrus, regions 
critical for social and executive functions in ASD patients.

Discussion: Our study presents an objective and effective approach to the clinical 
diagnosis of ASD, overcoming the limitations of subjective behavioral observations. 
The identified brain network features provide insights into the neurobiological 
mechanisms underlying ASD, potentially leading to more targeted interventions.
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1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by 
disruptions in social, emotional, and cognitive brain connectivity, significantly affecting an 
individual’s daily functioning. However, diagnosing ASD presents formidable challenges. 
While typically diagnosed between the ages of 3 and 6, symptoms often manifest as early as 1 
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to 3 years of age. However, objectively identifying these symptoms is 
a complex task (Maenner et al., 2021; Yuan and Luo, 2022). Currently, 
assessments primarily rely on clinical symptoms and scales behavioral 
observations and subjective judgments. The assessment of clinical 
symptoms and scales typically involves subjective judgments. Different 
doctors or assessors may arrive at different conclusions. Meanwhile, 
clinical symptom assessments and scales primarily focus on observable 
behaviors while overlooking the structural and functional variances 
within the patient’s brain. Magnetic resonance imaging provides 
objective information about brain structure and function, enabling 
doctors to make diagnoses without relying on subjective observations. 
This helps reduce the subjectivity of ASD diagnoses (Klin et al., 2000; 
Koumpouros and Kafazis, 2019).

In previous studies, researchers have employed brain network 
characteristics based on resting-state functional magnetic resonance 
imaging (fMRI) to classify individuals with ASD compared to healthy 
controls (Nebel et al., 2016; Ingalhalikar et al., 2021; Yang et al., 2022). 
These methods, through functional connectivity analysis, have 
unveiled developmental abnormalities within the ASD patients, 
providing insights into the intricacies of intra- and inter-network 
functional connectivity. When contrasting brain network features 
between children with ASD and typically developing individuals, it 
becomes evident that children with ASD exhibit a reduced density of 
brain network connections, particularly in higher frequency bands 
(Byeon et al., 2020). This indicates that the transfer of information 
between brain regions in children with ASD is irregular or constrained, 
thereby giving rise to specific characteristics in their social and 
cognitive functions.

In addition to resting-state functional magnetic resonance imaging 
(fMRI), other MRI techniques can also be  used to detect the 
abnormalities in brain structure and function alteration in 
ASD. T1-weighted imaging is a commonly used magnetic resonance 
imaging (MRI) technique that primarily reflects the anatomical 
structure of tissues and the contrast between tissues such as gray matter 
and white matter. In ASD research, T1-weighted is often used to observe 
structural changes in the brain, such as gray matter volume, cortical 
thickness, and connectivity between brain regions (Jianfeng et al., 2019; 
Conti et al., 2020). By comparing T1-weighted images of ASD patients 
with healthy controls, researchers can discover structural differences in 
certain brain regions of ASD patients, which may be related to cognitive, 
social, and emotional disorders in ASD (Alvarez-Jimenez et al., 2020; 
Samian et  al., 2021). Arterial spin labeling (ASL) is a non-invasive 
imaging technique used to study brain function and neural activity. The 
signal of fMRI mainly comes from the local blood oxygen level-
dependent (BOLD) effect caused by neuronal activity. The BOLD signal 
is only an indirect and qualitative measurement of blood supply, and its 
hemodynamic response function may be  abnormal in autistic 
individuals, which may affect the reliability and accuracy of the study. 
In contrast, ASL can directly and objectively measure local and global 
brain perfusion intensity and blood flow. ASL’s measurement of blood 
flow is not affected by blood oxygen status, and blood flow is 
significantly correlated with neural activity (Ohnishi et  al., 2000; 
Lindner et  al., 2017). CBF is of significant importance in studying 
abnormalities in brain perfusion. The measurement of CBF lateralization 
in temporal lobes was used as a discriminative feature for diagnosis ASD 
(Wong et al., 2017; Lin et al., 2023).

In addition to abnormalities in specific brain regions, interactions 
among brain regions in ASD are also atypical. Research indicates that 

the connections between different brain areas in ASD patients may 
differ from those in typically developing individuals, potentially 
affecting the social and cognitive function of ASD patients. These 
abnormalities may involve multiple brain regions, including those 
related to sensory perception, motor functions, emotions, and social 
functions (Khan et  al., 2015; Abbott et  al., 2016; Guo et  al., 2016). 
Previous studies have used resting-state fMRI to construct functional 
brain networks and, in combination with the support vector machine 
recursive feature elimination (SVM-RFE) classification method, classify 
ASD patients and typically developing controls (Wang et al., 2019). A 
study used structural MRI data collected from 817 subjects aged 
7–64 years sourced from the ABIDE-I database (Rakić et al., 2020). They 
downscaled the feature vectors using Fisher’s algorithm and employed 
auto-encoder and multilayer perceptron algorithms for recognition 
purposes. Furthermore, some researchers have integrated both gray 
matter brain networks, which primarily focus on brain structure, and 
functional brain networks, which emphasize brain activity, to examine 
ASD (Wang et al., 2023). Combining these approaches provides a more 
comprehensive understanding that encompasses both structural 
features and functional connections of the brain.

The aim of this study is to propose an innovative approach to 
diagnosing ASD by utilizing T1-based gray matter and ASL-based 
cerebral blood flow network metrics. By integrating gray matter 
networks and cerebral blood flow networks, researchers can gain a 
more comprehensive understanding of the brain of ASD children, 
which provide insights into brain structural abnormalities and 
changes in perfusion. This proposed approach enables an in-depth 
exploration of the structural characteristics and functional 
connections (FC) within ASD children. When considering both 
structure and function, it contributes to improved diagnostic accuracy 
for ASD. Consequently, the proposed method is conducive to early 
and accurate diagnosis of autism, facilitating the discovery of 
neuroimaging biomarkers and the investigation of 
neurodevelopmental aberrations in ASD.

2 Materials and methods

2.1 Participants

This study involved 30 preschool-aged patients with ASD and 22 
typically developing (TD) individuals. Table 1 records the clinical 
information, Gesell Developmental Scale, and Autism Behavior 
Checklist (ABC) scale information for all subjects. All participants 
signed a written informed consent after a detailed description of the 
research. This study was approved by the Institutional Review Board 
of the Children’s Hospital affiliated with Jiangnan University.

2.2 MRI acquisitions

The T1-weighted MRI images of all subjects were acquired using 
a Siemens 1.5T system with the following scanning parameters: TR 
(Repetition Time)/TE (Echo Time) = 2000/3.1 ms, slice 
thickness = 1 mm, flip angle (FA) =8°, and field of view (FOV) =90.625. 
The ASL MRI images were obtained using the same scanner with the 
following parameters: TR/TE = 4600/15.9 ms, slice thickness = 3 mm, 
FA = 180°, and FOV = 100.
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2.3 Data preprocessing

In this research, we used a standard procedure to preprocess 
the MRI of each subject (Peng et al., 2017), and the T1 images were 
processed as follows: first, the original T1 MRI images were 
resampled and reoriented so that the image size was uniformly 
256 × 256 × 256 and the spatial resolution was uniformly 1 × 1 × 1; 
then, cranial stripping and removal of non-brain tissue parts not 
related to the experiment, such as scalp, skull and dura mater and 
other extra-brain tissues, were performed; then, brain tissue 
segmentation was performed to separate the brain tissues in the 
images, and further brain parenchyma segmentation was 
performed. Then, region of interest (ROI) was labeled using the 
automatic anatomical labeling (AAL) template (Tzourio-Mazoyer 
et al., 2002). Finally, cortical surface reconstruction was performed 
to calculate cortical thickness and area (Wang et al., 2014). This 
preprocessing pipeline ensured standardization and consistency of 
the MRI data, facilitating subsequent analysis and interpretation 
of brain connectivity and structural alterations in children 
with ASD.

For ASL images, we used the following alignment procedure: first, 
the CBF image was calculated based on the different time series, and 
then the CBF image was redirected and resampled to make the 
different modal images of each subject have the same size and number 
of layers. Then, FMRIB’s Software Library (FSL) software was used, 
and the linear transformation FMRIB’s Linear Image Registration Tool 
(FLIRT) function was employed to use the mutual information 
function as the cost of the T1 image after skull peeling as the reference 
image and the CBF image as the floating image. These preprocessed 
images can then be used for feature extraction and analysis.

2.4 Brain network metrics computation

For T1-based gray matter network, we selected 78 cortical regions 
(excluding subcortical brain regions in AAL template). We then 
calculated the cortical thickness within each cortical region and 
obtained a 78 × 78 brain network metric by calculating the Pearson 
correlation coefficients in Eq. 1 and Eq. 2.
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characterizes the correlation between brain regions, of the cortical 
thicknesses. We extracted the upper triangle of this matrix to generate 
a feature vector of T1-based gray matter network for each subject.

For ASL-based cerebral blood flow network, we extracted CBF 
features of 78 ROI region from ASL images, constructed an ASL brain 
network using Pearson correlation, and a 78 × 78 ASL-based brain 
network metrics was obtained. The feature vector was gained as the 
same approach of T1-based brain network metric. After feature vector 
extraction, z-score normalization was used to change the feature 
values to a common scale.

2.5 Machine learning based diagnosis 
pipeline

The pipeline of the proposed approach is shown in Figure  1, 
including brain network metrics computation, feature selection, and 
machine learning model. In the feature selection module, the statistical 
t-test and the minimum redundancy maximum relevance (mRMR) 
were employed to select feature. Initially, the statistical t-test was 
utilized to select features with p-value below 0.05. Subsequently, the 
mRMR method was applied to further reduce the dimensionality of 
the brain network features (Peng et al., 2005). In the machine learning 
module, we used a random vector functional link (RVFL) classification 
framework (Pao et al., 1994).

We compared our ASD classification performance with that using 
only T1-based gray matter volume and ASL-based cerebral blood flow 
network metrics as features. Besides, we also adopted several other 
classification models for performance comparison, including support 
vector machine (SVM) (Vapnik, 1964) and extreme learning machine 
(ELM) (Huang et al., 2004).

2.6 Statistical analysis

All statistical analyses were conducted using SPSS (v26.0; IBM 
SPSS Statistics for Windows, NY, Armonk, United States). Gender 
differences between the ASD patients and TD were examined using 
chi-square tests. Two-sample t-tests were used to assess differences in 
continuous measures between groups. To assess the performance of 

TABLE 1 Demographic and clinical characteristics of the 52 subjects.

ASD TD p-value

Number 30 22 —

Age 4.71 ± 1.41 5.49 ± 1.68 0.076

Male/female 24/6 14/8 0.0004

DQ 55.42 ± 11.69 NA —

Gesell-adaptability 60.04 ± 13.48 NA —

Gesell-great sports 68.46 ± 18.77 NA —

Gesell-fine motion 58.81 ± 16.28 NA —

Gesell-language 41.00 ± 14.88 NA —

Gesell-personal 

socializing

49.85 ± 12.78 NA —

ABC-total 69.16 ± 24.42 NA

ABC-sensory 9.77 ± 5.44 NA —

ABC-relating 10.76 ± 5.85 NA —

ABC-body and 

object use

10.00 ± 8.30 NA —

ABC-language 16.82 ± 4.30 NA —

ABC-social and 

self-help skills

12.88 ± 5.35 NA —

CARS 36.10 ± 2.40 NA —

ABC, Autism Behavior Checklist; DQ, developmental quotient; CARS, Childhood Autism 
Rating Scale.
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the classification model, we  used a variety of metrics, including 
accuracy (ACC), sensitivity (SEN), specificity (SPC), precision, 
F1-score, area under the receiving operating characteristic curve 
(AUC). These metrics were used to validate the effectiveness and 
predictive power of the classification model.

To validate the robustness of our method, we adjusted the weights 
of T1 gray matter network features and cerebral blood flow network 
features. Specifically, we adjusted the weight of T1 gray matter network 
features within the range of 0.1 to 0.9, and correspondingly adjusted 
the weight of cerebral blood flow network features within the range of 
0.9 to 0.1. As shown in Figure 2, when the weights of both T1 gray 
matter network features and cerebral blood flow network features 
were 0.5, the classification results reached their best state, and the 
AUC value also reached its highest. This result indicates that both 
types of features have equal importance in the classification process 

and can maximize the classification effect when their weights are 
equal. To further enhance the stability of the model, we adopted a 
five-fold cross-validation strategy and repeated the experiment 20 
times to ensure its good stability across different data divisions.

3 Results

3.1 The performance of the proposed 
method in ASD diagnosis

To comprehensively evaluate the performance of our proposed 
framework, we  compared with SVM and ELM classifiers and 
scientifically assessed the performance differences between them and 
the RVFL classifier using the DeLong test. The experimental results in 

FIGURE 1

The pipeline of the proposed approach for ASD diagnosis using T1-based gray matter and ASL-based cerebral blood flow network metrics, including 
brain network metrics computation, feature selection, and machine learning model. mRMR, minimum redundancy and maximum relevance; ASD, 
autism spectrum disorder.

FIGURE 2

AUC plots for different weight combinations. Demonstrates the change of ASD classification AUC curves when adjusting the weights of T1 gray matter 
and cerebral blood flow network features. T1 gray matter weights 0.1–0.9, cerebral blood flow weights 0.9–0.1.
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Table 2 show that SVM and ELM achieved accuracies of 59.63 and 
81.45%, respectively, in ASD diagnosis, while the RVFL classifier 
achieved the best accuracy of 84.30%.

Figure 3A illustrates the receiver operating characteristic (ROC) 
plots, and Figure 3B illustrates the confusion matrix using different 
classifiers. Based on the experimental findings, the RVFL algorithm 
demonstrated superior classification performance compared to SVM 
and ELM. It achieved an AUC value of 0.81 in ASD diagnosis. These 
results indicate that the RVFL algorithm is effective in accurately 
diagnosing ASD by achieving high accuracy, sensitivity, specificity, 
and AUC value when RVFL classifier was used.

3.2 The performance of the proposed 
feature in ASD diagnosis

To validate the effectiveness of multimodal brain network features, 
a comparative analysis was conducted based on the RVFL classifier. 
As shown in Table 3, the accuracy in ASD diagnosis based on only 
T1-based or ASL-based network features resulted in worse 
performance (79.21 and 66.06%, respectively), compared with that 
using proposed network features together. By using the RVFL 
classification framework, the ASD diagnosis accuracy was increased 
prominently. To validate the importance of feature selection, 
we conducted classification experiments without feature selection and 
found that accuracy improved by more than 10% after feature 
selection, demonstrating the significance of feature selection.

Figures 4A,B illustrate the ROC curve and confusion matrix using 
different feature types. Based on the experimental findings. In 
comparison to the other three feature sets, the proposed multimodal 
brain network fusion features demonstrate a higher AUC value and 
achieve the best ROC curve performance. Moreover, the confusion 
matrix illustrates that this feature set enables more accurate 
identification of individuals with ASD and those without. 
Furthermore, the study explored the construction of feature sets using 
unimodal T1, ASL and without feature selection brain network 
features independently. To summarize, the proposed multimodal 
brain network fusion features in this study exhibit favorable feature 
representation and offer clear advantages in distinguishing ASD 
patients from the neuro-typical population.

3.3 The most discriminative brain 
connectivity features

To identify features with significant discriminatory abilities, 
we employed a five-fold cross-validation approach and performed 
statistical analyses in each fold. Specifically, we first identified the 
top 20 brain regions with the smallest p-values in each fold. Then, 

we counted the occurrences of brain region connections in each of the 
five folds in descending order. Since many brain regions had the same 
number of occurrences, we compared which brain regions had smaller 
p-values for the same number of occurrences, thus selecting the top 9 
brain region FCs with significant differences. As shown in Table 4 and 
Figure  5, these brain region connections included the following 
regions: inferior frontal gyrus of the deltoid, supplementary motor 
area, superior occipital gyrus, inferior occipital gyrus, superior 
parietal gyrus, transverse temporal gyrus, superior temporal gyrus, 
supraorbital frontal gyrus, medial superior frontal gyrus, insula, and 
posterior cingulate gyrus. In this way, we were able to identify more 
accurately the features of brain regions with significant discriminatory 
power. To further explore the effect of gender on classification 
performance, we performed gender difference analysis for the first 
nine FC features that showed significant differences. As shown in 
Figure 6, after the validation of the two-sample t-test, we found that 
the p-value of only a few FC features is less than 0.01, which indicates 
that the gender factor has a very limited impact on the classification 
performance in our study.

4 Discussion

This study proposes an ASD diagnosis method based on T1 and 
ASL brain network features. The results show that our experiment 
achieved the best classification performance using RVFL. This is 
mainly because SVM and ELM encountered challenges in processing 
highly complex and nonlinear data. SVM relies on finding an effective 
hyperplane to segment the data, but for ASD brain networks with 
complex features, finding such a hyperplane can be  very difficult 
(Vapnik, 1964; Huang et  al., 2004). Although ELM is suitable for 
training single-hidden-layer feedforward neural networks, for the 
complex structure and features of complex brain network data, single-
hidden-layer networks may have difficulty capturing them fully. In 
contrast, the RVFL network structure has demonstrated stronger 
adaptability in processing such data. By randomly generating hidden 
layer nodes and weights, combined with regularization techniques, it 
can more effectively capture the inherent structure of the data, 
achieving higher classification accuracy.

Our study provides insights into brain network abnormalities in 
ASD. In this study, we integrated T1- and ASL-based brain network 
metrics to capture gray matter and cerebral blood flow connectome 
alteration between pairs of brain regions in ASD. ASL could accurately 
measure cerebral blood flow in local tissues, providing insights into 
the mechanisms of ASD and detailed information of distinctions from 
typical individuals. Multiple brain network features provide 
comprehensive information of brain structural and functional 
alteration for ASD. The experiments results show that the combination 
of multiple brain network features achieves higher classification 

TABLE 2 Classification results based on different classifiers in ASD recognition.

Classification ACC SEN SPC F1-score precision AUC p-value

SVM 59.63% 50.00% 75.10% 84.34% 80.81% 0.52 <0.001

ELM 81.45% 87.96% 74.83% 60.14% 75.24% 0.47 <0.001

RVFL 84.30% 82.67% 85.56% 81.34% 86.37% 0.81 —

RVFL, random vector functional link; ELM, extreme learning machine; SVM, support vector machine.
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accuracy compared to using single-modality features only. Therefore, 
these multiple brain network features based on ASL and T1 MRI 
techniques display great potential in the early diagnosis of ASD and 
are expected to become a crucial diagnostic tool in the future.

Our research found that the most significant connectivity 
features for ASD classification are mainly located in the frontal, 
occipital, and temporal lobes. The frontal lobe is crucial for children’s 
social functioning, social cognition, and executive functions, and 
abnormal CBF values in this region may affect these functions. This 
is consistent with previous studies, such as those showing ASD 
patients have social barriers, and a positive correlation between ABC 
language scores and CBF in the inferior frontal gyrus, indicating 
potential functional abnormalities or abnormal social tendencies in 
this area (Wilcox et al., 2002; Ye et al., 2022). However, we also noted 
inconsistencies with previous research. Some studies have found 
abnormal CBF values in five brain regions, including the frontal and 
temporal lobes, which partially aligns with our findings (Mori et al., 
2020). But our research also identified functional connectivity 
abnormalities in the occipital lobe, which was not explored in those 
studies. These differences may be due to differences in subject age 
range, sample size, or other research methods. Nevertheless, these 
findings collectively highlight the tremendous potential of 

CBF-based brain connectivity studies in exploring biomarkers and 
diagnostics for ASD.

Previous studies have demonstrated increased cortical thickness 
in various brain regions in ASD (Hardan et al., 2009; Mak-Fan et al., 
2012; Doyle-Thomas et al., 2013). Our findings were in accordance 
with previous studies, showing that patients with ASD exhibit 
significant differences in cortical thickness compared to typically 
developing individuals, particularly in the frontal and occipital 
cortical regions. Changes in cortical thickness within these language-
related areas may reflect language delays or deficits in patients, as well 
as difficulties in social interaction and autonomic regulation among 
children with ASD (Khundrakpam et al., 2017; Lucibello et al., 2022). 
Based on these consistent observations, our study suggests that the 
method proposed, which relies on brain connectivity features 
extracted from cortical thickness information, holds promise as a 
diagnostic tool for identifying neuroimaging biomarkers in ASD.

5 Limitations

There are several limitations in this study. First, the limited sample 
size could affect the generalization of the machine learning model. The 

FIGURE 3

Visualization of the classification performance of different classifiers. (A) ROC curve of the three classifiers. (B) Confusion matrices of the three 
classifiers. ROC, receiver operating characteristic; RVFL, random vector functional link; ELM, extreme learning machines; SVM, support vector machine; 
AUC, area-under-the-curve; ASD, autism spectrum disorder; TD, typically developing.

TABLE 3 Overall ASD diagnosis performance when different features were utilized.

Features ACC SEN SPC F1-score Precision AUC

T1-based gray matter 

network
79.21% 71.67% 84.44% 75.98% 77.57% 0.74

ASL-based cerebral 

blood flow network
66.06% 67.67% 65.56% 61.50% 77.22% 0.65

T1- and ASL-based 

network
64.79% 50.00% 76.67% 51.37% 66.24% 0.51

Proposed network 84.30% 82.67% 85.56% 81.34% 86.37% 0.81

ACC, accuracy; SEN, sensitivity; SPC, specificity; AUC, area under the curve.
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A B

FIGURE 4

Visualization of the classification performance of different feature types. (A) ROC curve of the four feature types. (B) Confusion matrices of the four 
feature types. ROC, receiver operating characteristic; AUC, area-under-the-curve; ASD, autism spectrum disorder; TD, typically developing.

TABLE 4 The top 9 discriminative brain connectivity features.

No. Brain connectivity feature Brain lobe Modality

1 L_Supplementary motor area-L_Calcarine cortex Frontal-limbic T1

2 L_Supplementary motor area-R_Paracentral lobule Frontal-frontal T1

3 L_Inferior frontal gyrus (triangular)-R_Insula Frontal-insula T1

4 L_Inferior frontal gyrus (triangular)-L_Precuneus Frontal-parietal T1

5 L_Inferior frontal gyrus (triangular)-R_Inferior frontal gyrus (triangular) Frontal-frontal T1

6 L_Posterior cingulate gyrus-R_Inferior occipital gyrus Limbic-occipital ASL

7 L_Inferior frontal gyrus (triangular)-R_Superior occipital gyrus Frontal-occipital T1

8 R_Superior frontal gyrus (medial)-L_Superior parietal gyrus Frontal-parietal ASL

9 R_Orbitofrontal cortex (superior)-R_Superior occipital gyrus Frontal-occipital T1

L, left hemisphere; R, right hemisphere.

FIGURE 5

Brain area connectivity map. The top 9 brain area connections closely associated with ASD were found by frequency counts and the corresponding 
brain area connectivity maps.
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need to increase the scanning time for ASL sequences poses 
challenges, especially for pediatric subjects who are not administered 
sedation. Second, in this study, the computed cerebral blood flow 
network matrices are based on Pearson correlation, serving 
eigenvalues of correlation coefficients as features. Subsequently, graph 
theory analysis tools can be incorporated to further explore the graph-
theoretical properties of the cerebral blood flow network in children 
with autism spectrum disorder.

6 Conclusion

In this study, we performed a preliminary diagnosis of ASD in 
children based on the T1 gray matter and ASL cerebral blood flow 
networks, demonstrating the effectiveness of multimodal brain 
networks in disease recognition. By comprehensively computing 
different modal brain networks, we  successfully extracted 
comprehensive features for ASD diagnosis and achieved a classification 
accuracy of 84.30%, which is significantly improved compared to 
single brain network features. This study not only provides potential 
neuroimaging biomarkers related to social and executive functions for 
ASD diagnosis, but also provides new perspectives for our in-depth 
understanding of the neuropathological mechanisms of ASD. At the 
same time, this study also provides a useful reference for the 
application of ASL-based brain networks in prognostic diagnosis. 
However, we are also aware of some limitations in the study. First, the 
sample size is relatively small, which may have some impact on the 
stability and generalization of the results. Future studies can further 
validate our findings by expanding the sample size. Second, this study 

mainly focused on the cerebral blood flow network indexes of T1 gray 
matter and ASL, and future studies can explore the characteristics of 
more modalities and incorporate more clinical information to 
improve the accuracy and comprehensiveness of the 
auxiliary diagnosis.
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