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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that 
affects over 50 million elderly individuals worldwide. Although the pathogenesis 
of AD is not fully understood, based on current research, researchers are able 
to identify potential biomarker genes and proteins that may serve as effective 
targets against AD. This article aims to present a comprehensive overview of 
recent advances in AD biomarker identification, with highlights on the use of 
various algorithms, the exploration of relevant biological processes, and the 
investigation of shared biomarkers with co-occurring diseases. Additionally, 
this article includes a statistical analysis of key genes reported in the research 
literature, and identifies the intersection with AD-related gene sets from 
databases such as AlzGen, GeneCard, and DisGeNet. For these gene sets, 
besides enrichment analysis, protein–protein interaction (PPI) networks utilized 
to identify central genes among the overlapping genes. Enrichment analysis, 
protein interaction network analysis, and tissue-specific connectedness analysis 
based on GTEx database performed on multiple groups of overlapping genes. 
Our work has laid the foundation for a better understanding of the molecular 
mechanisms of AD and more accurate identification of key AD markers.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects over 50 
million elderly individuals worldwide (Alzheimer’s Statistics, 2019). Late-onset Alzheimer’s 
Disease (LOAD) accounts for more than 97% of all AD cases and typically occurs after the age 
of 65. Along with the global trend of population aging, the incidence rate of AD has risen 
substantially. The World Health Organization’s “Global Health Estimates 2019” report (World 
Health Statistics, 20191) revealed that Alzheimer’s disease and other forms of dementia have 
entered the top ten leading causes of death over the past 20 years. According to the 2021 special 
report “Race, Ethnicity, and Alzheimer’s Disease in America” by Alzheimer’s Association 
(Alzheimer’s Association, 20232), more than 6 million Americans suffer from AD, with the 
number of deaths surpassing the combined total deaths from breast and prostate cancers. 

1 https://www.who.int/data/gho/publications/world-health-statistics

2 https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf
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According to a nationwide cross-sectional study conducted in 2020 
(Chou et al., 2020), there are 15.07 million cases of dementia among 
the population aged 60 and above in China, including 9.83 million 
cases of AD, 3.92 million cases of vascular dementia, and 1.32 million 
cases of other types of dementia. During the COVID-19 pandemic, 
the number of deaths among AD and other dementia patients 
increased by 16% in the U.S. The Centers for Disease Control and 
Prevention in the United States reported that the number of elderly 
dementia patients aged 65 and above doubles every five years (Centers 
for Disease Control and Prevention, 20203).

Individuals with AD generally experience a range of phenotypic 
changes, including memory loss, cognitive decline, and impaired 
executive function (Alzheimer’s Statistics, 2019). The major symptoms 
include memory decline, impaired language abilities, diminished 
judgment, abnormal behaviors, and emotions, as well as severe loss of 
daily life skills (Hane et al., 2017). AD is classified as familial and 
sporadic. The dominant familial or autosomal presentation represents 
1–5% of the total number of cases. It is categorized as early onset 
(EOAD; <65 years of age) and presents genetic mutations in presenilin 
1 (PSEN1), presenilin 2 (PSEN2), or the Amyloid precursor protein 
(APP). Sporadic AD represents 95% of the cases and is categorized as 
late-onset (LOAD), occurring in patients older than 65 years of age 
(Andrade-Guerrero et al., 2023). Specific mechanisms and causes of 
AD remain unclear, but it is believed to be related to genetics, brain 
injuries, and environmental factors. Two monoclonal antibody drugs 
aducanumab (Knopman et  al., 2021; Haeberlein et  al., 2022) and 
lecanemab (van Dyck et al., 2023) have been approved for Alzheimer’s 
disease treatment. It is the first new therapy approved for the treatment 
of this disease in nearly 20 years and the first therapy to modify the 
disease. Patients require long-term treatment and caregiving 
management, which poses significant challenges and exerts a 
profound impact on their families, while also resulting in substantial 
societal costs. The hallmark features of this disease are the formation 
of amyloid-beta plaques and the tangles of tau protein fibers 
(Calabrese et al., 2008). These abnormal structures impair neuronal 
cells, brain volume, and cognitive abilities, leading to compromised 
and lost connections between nerve cells (Sampath et  al., 2017). 
Despite the incomplete knowledge of exact pathogenetic mechanisms, 
measurement of α-beta and p-tau protein levels in cerebrospinal fluid 
(CSF), can aid in AD diagnosis (Zhu et  al., 2023a). However, the 
invasive nature of lumbar puncture and the high cost of PET scans 
have limited the application of these methods. With the advancement 
of high-throughput sequencing and microarray technologies, 
bioinformatics has been increasingly utilized to analyze genetic 
alterations in the nervous system. At present, many biomarkers and 
targets are identified primarily through computational methods, 
aiming to minimize the substantial investment required for 
drug development.

In recent years, we have noticed that a large number of studies 
have been devoted to identification of key AD biomarkers, including 
many previously unreported genes that have been identified as hub 
genes. The workflow diagram of this article is shown in Figure 1. In 
order to gain a more intuitive understanding of the achievements in 
this research field, this article covers the following work:

3 https://www.cdc.gov/aging/aginginfo/alzheimers.htm

 • We have reviewed approximately 180 papers on the identification 
of key AD genes, including AD biomarker genes, AD genes 
combined with biological processes, and pleiotropic genes 
underlining AD and related diseases.

 • Based on previous research results, we constructed an AD Review 
Gene (AD-RG) list including 565 genes and compared it with 
well-known disease databases to obtain a list of shared genes.

 • We also performed enrichment analysis and protein interaction 
analysis on these gene lists and studied the tissue specificity of 
these genes’ connectedness within the GTEx database.

2 Methods of identification of 
candidate biomarkers for AD

A significant amount of research effort has been devoted to the 
identification of candidate biomarkers for AD and its diagnosis, such 
as fine genetic mapping using genome-wide association studies 
(GWAS), traditional statistical studies, and recent ones employing 
network analysis of gene interactions, and machine 
learning algorithms.

GWAS research provides insights into various biological processes 
involved in AD. However, the challenge lies in interpreting the 
functional implications of genetic variants. To address this, an 
increasing number of studies have emerged that combine genetic data 
with gene expression data to elucidate the mechanisms underlying AD 
(Bihlmeyer et al., 2019). Table 1 lists the genes reported by GWAS-
related studies. Jonas et al. (2022) identified variants in many genes 
related to immunity and/or microglia, using whole-genome 
sequencing and GWAS analysis. Liu A. et al. (2022) applied an Edge-
Weighted Dense Module Search of GWAS, to integrate AD GWAS 
statistics of 472,868 individuals with proteomic profiles from 
parahippocampal gyrus (PHG), and dorsolateral prefrontal cortex 
(DLPFC), and pinpointed three potential drug target genes. Baird 
et al. (2021) used Mendelian randomization and colocalization, two 
methods that combination exploit these genetic variants to estimate 
the causal effects of individual genes, and identified 5 potential AD 
therapeutic targets. Novikova et al. (2021) integrated AD GWAS data 
with myeloid-specific epigenomic and transcriptomic datasets, and 
identified 11 genes as risk factors for AD to 20 loci. Sun Y. F. et al. 
(2022) utilized two gene expression prediction models of blood to 
predict meta-GWAS data, determining the expression of 108 genes in 
blood associated with AD risk, and identified 15 differentially 
expressed genes (DEGs). Kosoy et al. (2022) employed transcriptional 
and chromatin accessibility analysis on primary human astrocytes 
derived from 150 donors to identify putative regulatory mechanisms 
of 21 AD risk loci. Within these loci, 18 were further refined to single 
genes, including three novel candidate risk genes.

These studies investigated the transcriptome-level mechanisms of 
AD in different tissues. The correlation between GWAS loci and 
transcriptome regulation is typically explored through expression 
quality loci (eQTLs) analysis. eQTLs serve as connections between 
GWAS loci and disease susceptibility (Albert and Kruglyak, 2015). 
The integration of extensive gene expression data from specific tissues 
with GWAS data related to the disease has led to the development of 
transcriptome-wide association studies (TWAS). This innovative 
approach has been recognized as a potent method for identifying 

https://doi.org/10.3389/fnins.2024.1358998
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.cdc.gov/aging/aginginfo/alzheimers.htm
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genes that exhibit significant associations between their expression in 
specific tissues and the disease of interest (Gamazon et al., 2015; Gusev 
et al., 2016; Barbeira et al., 2018). Hao et al. (2019) collected a big 
sample of 17,008 AD cases and 37,154 controls to construct gene 
expression prediction models in various tissues including the DLPFC, 
adipose tissue, and blood tissue, and identified 4 new genes. Raj et al. 
(2018) utilized gene expression prediction models specifically for 
DLPFC tissue and identified eight associated genes at novel loci 
through the analysis of 25,580 cases and 48,466 controls. Leveraging 
a newly developed TWAS framework called UTMOST, Baselmans 
et al. (2019) conducted a comprehensive analysis and revealed 126 
tissue-specific associations involving 50 unique genes.

2.1 Differential analysis

One of the simplest approaches for identifying potential 
biomarkers is to search for differential data between different 
phenotypes. These differential data can help researchers understand 

the mechanisms underlying diseases, develop diagnostic and 
treatment approaches, and address issues related to individual 
variations and biological diversity. For example, Madar et al. (2021) 
constructed six different classifiers to distinguish between healthy and 
diseased samples using 26 differentially expressed genes (DEGs). The 
DEGs were identified through their statistical p-values from the 
differential expression (DE) tests and further analyzed using the 
online annotation tool DAVID. The researchers used these DEGs as 
features in their classification models to distinguish diseased samples 
from healthy ones.

2.2 Interaction network

Traditional DE analysis typically emphasizes genes with significant 
expression level changes under different conditions but overlooks the 
complex interactions and regulatory mechanisms between genes. 
People are gradually realizing that complex biological phenomena 
cannot be solely analyzed at a single level, but require the integration 

FIGURE 1

Article workflow diagram.
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of different components within the system for comprehensive study. 
Genes interacting with each other may cause perturbation in the 
molecular pathways leading to complex diseases. Genes, RNA, 
proteins, metabolites, and their internal and external interactions 
collectively form a complex system, and these interactions facilitate 
the functioning of cells. More and more databases are also 
incorporating corresponding molecular networks, including protein–
protein interaction (PPI) networks, metabolic networks, and gene 
regulatory networks. The establishment and analysis of these networks 
improve our understanding of the complexity of biological systems 
and the interrelationships among biomolecules.

PPI plots are an effective method to bridge the gap between 
mRNA-based gene expression findings and protein-level interactions. 
Gui et al. (2021) obtained DEGs by differential analysis and identified 
GAPDH, RHOA, RPS29, and RPS27A as candidate genes for AD by 
constructing a PPI network. Yang et  al. (2020) analyzed the 
transcriptome microarray of the prefrontal cortex (PFC) between AD 
specimens and non-AD controls and screened ten hub genes. Li et al. 
(2021) identified 10 hub genes in the entorhinal cortex (EC) and 
hippocampus (HIP) of patients with AD. Pang et al. (2017) found 
some functional hub genes from microarray data of EC and HIP of 
AD. Xu et al. (2022) identified 10 hub genes were the most targeted 
DEGs in the miRNA-mRNA network, and TIMP1, HLA-DRA, VWF, 
and FGF2 were the top four targeted DEGs in the TF-gene network. 
Rahman et  al. (2019b) constructed TF-DEGs and miRNA-DEGs 
interaction networks (Table 2).

Weighted gene co-expression network analysis (WGCNA) is a 
powerful screening tool that constructs a scale-free gene co-expression 
network to explore the relationship between genes with similar 
expression patterns and external clinical information (Langfelder and 
Horvath, 2008). Zhang T. et  al. (2021) utilized DE analysis and 
WGCNA analysis to identify 16 hub genes associated with AD. Xia 
et al. (2022) obtained DEG-enriched co-expression networks between 
AD and normal samples in multiple transcriptomics datasets by 
WGCNA and found GJA1 interacts with AD from target-drugs-
diseases network prediction. Li and De Muynck (2021) identified AD 
hub genes by PPI and WGCNA, which are enriched in microglial 
genes. Zhang F. et al. (2020) identified AD hub genes by WGCNA, 
including WDR47, OXCT1, C3orf14, ATP6V1A, SLC25A14, and 
NAPB. Among them, three hub genes (ATP6V1A, SLC25A14, 
OXCTI) may contribute to AD pathogenesis through the pathway of 
the TCA cycle (Table 3).

2.3 Machine learning

Researchers are also dedicated to using artificial intelligence (AI), 
machine learning (ML), and deep learning (DL) algorithms for 
detecting AD and integrating different types of data (Alamro et al., 
2023). These data types include, but are not limited to, neuroimaging 
data, non-coding RNAs, transcriptomic data (Qorri et  al., 2020), 
miRNA biomarkers (Xu et al., 2022), or other genomic data (Monk 

TABLE 1 AD genes from GWAS-related studies.

Reference Data source Genes

Raj et al. (2018)

Large-scale GWAS summary data provided by IGAP with total 17,008 AD 

cases and 37,154 controls, include 7,055,881 SNPs, we selected 6,004,159 

SNPs

MLH3, FNBP4, CEACAM19, MLH3

Baselmans et al. (2019)
Deep sequencing data in the DLFPC of 450 subjects from two aging 

cohorts.

AP2A1, AP2A2, FUS, MAP1B, TBC1D7, ABCA7, 

RHBDF1, VPS53

Bihlmeyer et al. (2019) Review related to immunity and microglia
TREM2, CD33, APOE, APII, MS4A, ABCA7, BIN1, 

CLU, CR1, INPP5D, PICALM, PLCG2

Baird et al. (2021)

Accelerating Medicines Partnership for Alzheimer’s Disease consortium 

(AMP-AD) and the Common Mind Consortium (CMC) meta-analysis 

study data (n = 1,286)

ACE, GPNMB, KCNQ5, RERE, SUOX

Novikova et al. (2021)

Epigenomic annotations using the International Genomics of Alzheimer’s 

Project (IGAP) AD GWAS datase. Schizophrenia SNP heritability (using 

the Psychiatric Genomics Consortium SCZ GWAS dataset as control)

AP4E1, AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, 

PILRA, RABEP1, SPI1, TP53INP1, ZYX

Liu A. et al. (2022) 472,868 individuals with proteomic profiles from PHG, and DLPFC APP, SNCA, VCAM1

Sun Y. F. et al. (2022)

AD GWAS data involving 71,880 (proxy) cases and 383,378 (proxy) 

controls of European ancestry from three consortia (Alzheimer’s disease 

working group of the Psychiatric Genomics Consortium (PGCALZ), 

IGAP and the Alzheimer’s disease sequencing project (ADSP)) and the 

UK Biobank data

HP1BP3, CD2AP, TMEM170B, NRF1, CCDC6, 

PICALM, CYP11A1, KAT8, RNF40, VKORC1, YPEL3, 

ACE, EPG5, BLOC1S3, KLC3

Kosoy et al. (2022)

The ATAC-seq (n = 107), RNA-seq (n = 127), SNP array (n = 122), and 

Hi-C (n = 5) data were generated from human brains of 150 individuals 

from four biobank resources (three based in New York City, NY, and 

ROSMAP from Rush University, Chicago, IL), including 123 autopsies 

and 27 biopsies.

KCNN4, FIBP, LRRC25

Jonas et al. (2022)
Review of whole genome sequencing and GWAS analyses identified 

variants in immune-and/or microglia-related genes

TREM2, CD33, APOE, API1, MS4A, ABCA7, BIN1, 

CLU, CR1, INPP5D, PICALM and PLCG2
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et al., 2021). These advanced computational techniques enable the 
analysis and integration of diverse data sources, allowing for a more 
comprehensive understanding of AD and improving diagnostic 
accuracy and prediction models. Yu et al. (2021), employed the Least 
Absolute Shrinkage and Selection Operator (LASSO) feature 
selection method for DEGs related to AD. Abyadeh et  al. (2022) 
analyzed gene expression datasets from different brain regions using 
the robust rank aggregation (RRA) method, and predicted three 
miRNAs, namely hsa-mir-17-5p, hsa-mir-106a-5p and hsa-mir-
373-3p, as potential candidates targeting these genes. Three 
transcription factors (TFs) ELK-1, GATA1, and GATA2 were also 
identified as the potential upstream regulators of the robust DEGs. 
Zhu et al. (2023b) identified TAC1 as a hub gene using the RRA 
method, which may be  associated with synaptic function and 
inflammation. Zhu et al. (2023a) utilized a robust rank aggregation 
method to determine 1,138 differently expressed genes associated 
with AD. They performed WGCNA, LASSO, and logistic regression 
to investigate 13 hub genes exhibiting a high enrichment in immune 
function. Yu et al. (2021) identified BDNF and WWTR1 as critical 
genes of AD by LASSO and logistic regression, which are associated 
with the Braak stage, A beta 42 levels, and beta-secretase activity. Guo 
et al. (2023) identified 10 hub genes and found neuroinflammation 
and T-cell antigen receptor (TCR)-associated genes (LCK, ZAP70, 
and CD44) were the top three hub genes and validated using machine 
learning. Liu C. et al. (2023) collected transcriptomic data from the 
hippocampus to investigate the impact of immune cell infiltration on 

AD. It was found that monocytes are important immune cells 
associated with AD, and four genes related to AD and monocytes 
were identified: KDELR1, SPTAN1, CDC16, and RBBP6. 
Additionally, the research results demonstrate the involvement of 
KDELR1, SPTAN1, CDC16, and RBBP6 in lipid metabolism and 
immune response. Sekaran et al. (2023) conducted prioritized gene 
clustering analysis using the STRING database and trained candidate 
gene biomarkers using various supervised ML classification 
algorithms. They identified ORAI2 as a closely associated biomarker 
with the progression of AD. Additionally, within the ORAI2 gene 
network, they found three hub genes, namely TPI1, STIM1, and 
TRPC3, which may potentially be  involved in the molecular 
pathogenesis of AD. Jin et  al. (2023) proposed an improved DL 
algorithm called Differential Gene Selection TabNet (DGS-TabNet) 
for binary and multi-class classification of AD. The algorithm 
demonstrated excellent performance compared to five classical ML 
methods. They identified AVIL and NDUFS4 genes as important 
global genetic features. Lai et  al. (2022) utilized unsupervised 
clustering to estimate subgroups of the immune microenvironment. 
In AD patients, the immune microenvironment was found to consist 
of two subgroups, one of which was associated with the metabolic 
phenotype and belonged to the immune-active type. Duan et  al. 
(2022) screened five AD hub genes by WGCNA, and logistic 
regression analysis further identified ATP2A2, ATP6V1D, CAP2, and 
SYNJ1 were hub genes. Liu Z. et al. (2021) identified seven genes by 
LASSO and SVM-RFE (Table 4).

TABLE 2 The hub genes list by PPI method.

Reference Data source Genes

Pang et al. (2017) GSE5281, GSE48350 ErbB2, ErbB4, OCT3, MIF, CDK13, GPI

Rahman et al. (2019b) GSE4757 UBA52, RAC1, CREBBP, AR, RPS11, SMAD3, RPS6, RPL12, RPL15, UBC

Yang et al. (2020) GSE36980 PDHA1, CLTC, YWHAE, MAPK6, YWHAZ, GRB2

Li et al. (2021) GSE5281
GPI, PYGB, PFKM, ATP5C1, ATP5B, ATP6V1E1, LDOC, ATP6VOD1, 

ENO1, ATP6V1H

Gui et al. (2021) GSE63061 GAPDH, RHOA, RPS29, RPS27A

Xu et al. (2022) GSE11882 C1QC, C1QA, C1QB, CD163, FCER1G, VSIG4, CD93, CD14, VWF, CD44

TABLE 3 AD hub genes list by WGCNA method.

Reference Data source Genes

Liang et al. (2018) GSE1297 MT1, MT2, MSX1, NOTCH2, ADD3, RAB31

Su et al. (2019)
GSE48350. GSE5281, GSE26927, GSE5281, GSE36980, 

GSE29378, GSE48350, GSE1297, GSE5281, GSE84422
GAPDH, RPS27A, GFAP, B2M, CLU, EEF2, GJA1, CP

Zhu M. et al. (2020)
GSE122063, GSE36980, GSE5281, GSE118553, GSE132903, 

GSE106241, GSE63060, GSE63061
AP3B2, GABRD, GPR158, KIAA0513, MAL2

Zhang F. et al. (2020) GSE36980, GSE 1297 GSE28146 WDR47, OXCT1, C3orf14, ATP6V1A, SLC25A14, NAPB

Li and De Muynck (2021)
The Banner Sun Health Research Institute under its brain 

donation program (STG, n = 76), (IFG, n = 65)
TREM2, C3AR1, ITGAX, OLR1, CD74, HLA-DRA, CDK2AP1

Zhang T. et al. (2021) GSE5281

ATP5C1, PSMD1, ATP5B, EIF3H, EMC4, PSMB7, RAD51C, 

FAM162A, RAP1GDS1, BRAF, NME1, AP3M2, RRAGA, 

BLVRA, PSMD4, ATP6V1H

Xia et al. (2022)
AlzData (http://www.alzdata.org/) and ADNI data (http://adni.

loni.usc.edu)
GJA1

Santiago et al. (2023) GSE1297; GSE118553; GSE109887 ENO2, ELAVL4, SNAP91, NEFM
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2.4 Single-cell sequencing and spatial 
transcriptome

With the rapid advancement of sequencing technology, more 
detailed single-cell sequencing data and spatial transcriptome data 
provide richer information for advertising marker screening. 
Traditional gene expression analysis is usually performed at the cell 
population level, while single-cell sequencing technology can reveal 
the heterogeneity between cells and the characteristics of individual 
cells, allowing researchers to identify and classify cell types, discover 
cell subpopulations, and study cells. State and dynamic changes, as 
well as revealing intercellular interactions and communication 
networks. Spatial transcriptome technology combines gene expression 
information with tissue structure to obtain spatial distribution 
information of gene expression while maintaining the integrity of 
tissue structure. This allows researchers to understand gene expression 
patterns in tissues, the distribution of different cell types, and 
interactions between cells.

Chen Y. et al. (2022) have discussed that monocytes are important 
mediators in the prevention of AD development through exercise. 
Single-cell transcriptome analysis found that CD14+ and CD16+ 
monocytes interact with other cells in the circulating blood. Key 
ligand receptor-related genes TNF, CCR1, APP, and AREG are 
differentially expressed between exercise-treated and AD patients. 
Recent research shows that the hippocampus plays an important role 

in conditioned fear memory (CFM). Shen et al. (2023) used single-cell 
RNA sequencing (scRNA-seq) technology and found that CA subtype 
1 has characteristic gene markers Ttr and Ptgds, which are speculated 
to be  the result of acute stress and promote the production of 
CFM. Sirkis et  al. (2023) explores the association of early-onset 
Alzheimer’s disease (EOAD) with specific peripheral immune 
signatures, and single-cell RNA sequencing identified significant 
expansion of a CD4 T cell termed interferon (IFN) signaling-
associated gene (ISAG) hi T cells. Lin et al. (2023) has explored the 
association between high-fat diet and AD and T2D. Analysis of single-
cell RNA-seq (scRNA-seq) data indicated C4b is astrocyte-specific. 
Spatial transcriptomics (ST) revealed C4b colocalizes with Gfad, a 
known astrocyte marker, and the colocalization of C4b expressing 
cells with Gad2 expressing cells, i.e., GABAergic neurons, in mouse 
brain. Chen S. et al. (2022) By applying Visium to human MTG spatial 
transcriptome profiles of AD and control cases, not only layer-specific 
markers shown in other studies (RORB, PCP4, MBP) were identified, 
but also new marker genes that have not been reported (SPARC, 
CALB2, DIRAS2, KRT17).

2.5 RNA-related biomarkers

In addition to different identification methods, many studies have 
identified RNA-related biomarkers. The interaction between 

TABLE 4 The hub genes list by machine learning method.

Reference Data source Method Genes

Liu Z. et al. (2021) GSE63061, GSE85426 LASSO, SVM-RFE
ABCA2, CREBRF, CD72, CETN2, 

KCNG1, NDUFA2, and RPL36AL

Yu et al. (2021)

GSE33000, GSE36980, GSE48350, GSE5281, 

GSE122063, GSE106241, GSE4226, GSE97760, 

GSE63060, GSE63061

LASSO regression BDNF, WWTR1

Abyadeh et al. (2022)

GSE118553, GSE44768, GSE48350, GSE5281, 

GSE33000, GSE44770, GSE36980, GSE122063, 

GSE132903, GSE29378

RRA ELK-1, GATA1, GATA2

Duan et al. (2022) GSE1297 GSE28146 GSE36980 Logistic regression ATP2A2, ATP6V1D, CAP2, SYNJ1

Zhu et al. (2023a)

GSE118553, GSE122063, GSE36980, GSE48350, 

GSE5281, GSE36980, GSE48350, GSE5281, 

GSE118553, GSE122063, GSE36980, GSE132903, 

GSE5281, GSE140829, ADNI dataset

RRA, LASSO regression

CD163, CDC42SE1, CECR6, CSF1R, 

CYP27A1, EIF4E3, H2AFJ, IFIT2, 

IL10RA, KIAA1324, PSTPIP1, SLA, 

TBC1D2, APOE

Zhu et al. (2023b)
GSE118553, GSE122063, GSE36980, GSE33000, 

GSE48350, GSE44770, GSE5281
RRA TAC1

Guo et al. (2023) GSE173955, GSE203206, GSE15222, GSE97760

random forest (RF) binary classifier, 

Gaussian mixture model (GMM), linear 

model (LM), and support vector 

machine (SVM)

LCK, ZAP70, CD44, CD2, SNAP25, 

CD3E, CXCL8, HIST1H3J, IL12RB2, 

STAT4

Liu C. et al. (2023) GSE5281, GSE48350 logistic regression and RF KDELR1, SPTAN1, CDC16, RBBP6

Sekaran et al. (2023) GSE36980

Logistic Regression (LR), RF, Linear 

Support Vector Machines (L-SVM), 

Naive Bayes (NB), and Multilayered 

Perceptron Neural Network (MLP-NN)

ORAI2, TPI1, STIM1, TRPC3

Jin et al. (2023) GSE63060 DGS-TabNet AVIL, NDUFS4

Duan et al. (2022) GSE1297 GSE28146 GSE36980 Logistic regression ATP2A2, ATP6V1D, CAP2, SYNJ1
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differential long noncoding RNA (lncRNA) and/or targeted 
microRNA (miRNA) and messenger RNA (mRNA) has been 
demonstrated in AD and AD pathogenesis. Zhang et  al. (2022b) 
identified four AD genes and two miRNAs and constructed a network 
in which miRNAs and transcription factors jointly regulate pathogenic 
genes. Zhang T. et  al. (2020) integrated genomic transcriptome 
datasets through biomolecular networks, found 9 genes, as well as 6 
common transcription factors, 10 miRNAs, and identified 10 AD 
candidate biomolecules by protein-drug interactions. Zhao et  al. 
(2016) mapped DEGs to the target genes to construct miRNA-
regulated networks, target genes SEC22B, RAB10, and FLT1 may 
be potential biomarkers of AD. Quan et al. (2020) identified 8 genes 
and 2 hub miRNAs from hippocampus microarrays data by PPI and 
miRNA-target network. Huang Z.-H. et al. (2022) constructed an 
mRNA-miRNA network and discovered six hub genes. Wang et al. 
(2020) construct the AD specific miRNA-mRNA network and 
identified five key miRNAs by topological analysis.

In the research on AD, lncRNAs play a crucial role. Yan et al. 
(2019) identified hub genes from the hippocampus, including CDC42, 
BDNF, TH, PDYN, VEGFA, CALB, CD44, TAC1, and CACNA1A, as 
well as OXT and TAC1 from the entorhinal cortex, and identified 
linc00622, linc00282, and linc00960 as novel potential candidates 
participating in the pathological mechanism of AD. Based on the 
competing endogenous RNA (ceRNA) hypothesis, Zhang J.-J. et al. 
(2021) constructed a lncRNA-miRNA-mRNA network and identified 
lncRNAs MALAT1, OIP5-AS1, LINC00657, and lnc-NUMB-1 as 
regulators of key pathogenic genes in AD such as APP, PSEN1, and 
BACE1. These lncRNAs may facilitate the distribution of β-amyloid 
protein (A-protein) in the brain, potentially through exosomes. This 
type of systems biology algorithm partially overcomes the limitation 
of traditional research that focuses only on differential gene expression 
while neglecting the high correlation between genes. Zhang et al. 
(2022a) identified 10 key AD genes, led by MAPT and AP2M1 by the 
mediation center algorithm, and used hub circRNAs and mRNAs to 
develop ceRNA networks (Table 5).

3 Identification of candidate 
biomarkers associated with the 
biological processes of AD

Application of bioinformatics methodologies in target 
identification can be categorized as ascertaining pathways involved 
and targets associated with the genetic, epigenetic, and transcriptomic 
factors of AD (Singh et al., 2022). The pathogenesis of AD involves 
numerous cellular processes, including immune inflammation, 
cholesterol metabolism, apoptosis, synaptic dysfunction, and oxidative 
stress. Elucidating the specific molecules, the exact underlying 
molecular mechanisms and the pathways help to comprehend the 
pathogenesis and identify the therapeutic targets of the disease (Liu 
N. et al., 2021).

3.1 Mitochondrial dysfunction

Mitochondrial dysfunction is closely linked to the core 
pathological feature of AD: neuronal dysfunction (Ashleigh et al., 
2023). Castora et  al. (2022) conducted a qPCR analysis of gene 

expression for 84 genes involved in mitochondrial biogenesis. They 
found 9 hub genes involved in various aspects of mitochondrial 
function and regulation, including protein transport to mitochondria, 
mitochondrial morphology, maintenance of mitochondrial membrane 
potential, mitochondrial fragmentation and dysfunction, amyloidosis, 
and neuronal cell death. Chen F. Q. et al. (2022) found 5 central genes 
related to mitochondrial complexes. Enrichment analysis of these hub 
genes revealed disruptions in mitochondrial complexes in the context 
of AD pathogenesis. Zhang et al. (2023a) used PPI network, random 
forest, and two machine learning algorithms to obtain hub 
mitochondrial-related differentially expressed genes (MitoDEGs) 
closely related to AD. Zhao et al. (2023) identified six mitophagy-
related hub genes (MRHGs) that be  used as valuable diagnostic 
biomarkers for AD.

3.2 Oxidative stress

Oxidative stress is an important contributor to the pathogenesis 
of AD (Zhou et al., 2023). The overproduction of reactive oxygen 
species observed in AD patients results in the loss of mitochondrial 
function, altered metal ion homeostasis, lipopolysaccharide 
metabolism disorder, reduced anti-oxidant defense, increased release 
of inflammatory factors, and the aggravation and accumulation of 
amyloid-beta and tau hyper-phosphorylation, which directly cause 
synaptic and neuronal loss and lead to cognitive dysfunction. Li et al. 
(2023) screened differentially expressed oxidative stress genes and 
identified 15 hub genes using WGCNA and PPI analysis. Validation 
in an external dataset confirmed the expression of 9 hub genes.

3.3 Aging

Aging, the strongest single risk factor for AD, has been 
implicated in the accumulation of somatic cell mutations in 
neurons. Soheili-Nezhad et  al. (2021) simulated the theoretical 
possibility of gene-associated somatic cell mutations induced by 
aging, with the results suggesting that long gene-dependent synaptic 
damage may contribute to the pathogenesis of AD. Additionally, 
telomeres, which are DNA sequences that protect chromosomes 
from damage, have been found to shorten with age and are of 
interest in the context of AD. Telomere-related genes have been 
proposed to play a role in the pathogenesis of AD. Ruan et al. (2023) 
identified telomere-related genes associated with aging clusters in 
AD patients and explored their immunological characteristics. 
Furthermore, they established prediction models for AD and AD 
subtypes based on TRGs and validated them using artificial neural 
network analysis and nomogram models. Balmorez et al. (2023) 
presented statistically significant shared genetic characteristics of 
aging, longevity, and AD. The study discussed important genes 
involved in these pathways, including TP53, FOXO, SUMO, IL4, 
IL6, APOE, and CEPT. One component of lipid metabolism 
includes APOE isoforms, which are considered risk factors for 
LOAD and are also associated with lifespan (Sebastiani et al., 2019). 
Liu T. et al. (2023) identified four genes (MSD14, PEBP1, ITPKB, 
and ATF7IP) for AD diagnosis from differentially expressed 
senescence-related genes, and found that the drug Abemaciclib is a 
targeted drug for the treatment of age-related AD.
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3.4 Immune dysfunction

In the past few decades, there has been increasing attention on the 
immune dysregulation in AD. Mishra and Brinton (2018) pointed out 
that the inflammatory immune response is a unifying factor linking 
various risk factors of AD. Furthermore, it has been found that 
multiple genes are involved in neuroinflammation and immune 
activation associated with the occurrence and progression of AD in 
detection models. Xu and Jia (2020) identified immune-related DEGs. 
Eighteen hub genes were identified through PPI network analysis. An 
AD immune-related ceRNA network was generated using tools such 
as StarBase, DiANA-LncBase, and the Human MicroRNA Disease 
Database (HMDD). Zhuang et  al. (2023) used the CIBERSORT 
algorithm to identify differentially infiltrated immune cells (DIICs). 
Ten biomarkers associated with AD immune infiltration were 
identified by WGCNA and machine learning algorithms. Liu C. et al. 
(2022) utilized WGCNA to explore immune cells and key genes 
associated with AD. Through LASSO and RF screening, they identified 
10 key genes. Song et al. (2022) explored the role of the peripheral 
immune system in the pathogenesis of AD. It discovered a significant 
increase and decrease in the proportion of neutrophils and B 
lymphocytes in the blood of AD patients. Differentially expressed 

genes in AD neutrophils were found to be  enriched in several 
AD-related pathways, such as ATP metabolism and mitochondrial 
organization. Additionally, it was observed that AD risk genes, 
including CD33 and IL1B, exhibited significant enrichment in 
protein–protein interaction network modules related to leukocyte-cell 
activation, mitochondrial organization, and cytokine-mediated 
signaling pathways in neutrophils. Lai et al. (2022) made a significant 
discovery using machine learning algorithms, identifying five immune 
microenvironment-related genes that are closely associated with AD 
pathological biomarkers and demonstrating accurate prediction of 
AD progression. The outputs of the machine learning model were 
further explained using the SHAP and LiME algorithms, providing 
valuable insights into the interpretation of the model’s outputs.

3.5 Metabolism

Gu et al. (2022) obtained nine hub genes associated with iron 
metabolism and AD by DE analysis and WGCNA. Glutamine (Gln) 
metabolism plays a crucial role in tumors. Wu et al. (2023) reported 
the identification of four potential Gln-related genes associated with 
AD through WGCNA. The analysis of their biological functions 

TABLE 5 Genes and RNAs list.

Reference Data source Genes RNAs

Zhao et al. (2016) GSE16759 SEC22B, RAB10, FLT1
miRNA-206, miRNA-655, miRNA-30e-3p, 

miRNA-369-3p

Zhou et al. (2019)
Accelerating Medicines Partnership-

Alzheimer’s Disease (AMP-AD)
-

hsa-miR-155-5p, CERS6-AS1, and CTB-

89H12.4

Yan et al. (2019) GSE48350
CDC42, BDNF, TH, PDYN, VEGFA, CALB, 

CD44, TAC1, and CACNA1A
linc00662, linc00282 linc00960

Quan et al. (2020) GSE5281, GSE48350
YWHAZ, DLG4, AGAP2, EGFR, TGFBR3, 

PSD3, RDX, BRWD1
hsa-miR-106b-5p and hsa-miR-93-5p

Zhang T. et al. (2020) GSE4226, GSE4229
NOL6, ATF3, TUBB, UQCRC1, CASP2, 

SND1, VCAM1, BTF3, VPS37B

mir-20a-5p, mir-93-5p, mir-16-5p, let-7b-

5p, mir-7085p, mir-24-3p, mir-26b-5p, 

mir-17-5p, mir-193-3p, mir-186-5p

Wang et al. (2020) GSE63060, GSE63061 GSE18309 -
hsa-miR-93, hsa-miR-26b, hsa-miR-34a, 

hsa-miR-98-5p and hsa-miR-15b-5p

Ma et al. (2021) GSE16759, GSE28146 ADAMTS1, CITED2, and GABRA2. miR-548c-3p

Zhang J.-J. et al. (2021)
GSE5281, GSE48350, GSE9770, and 

GSE28146.
APP, PSEN1, BACE1

lncRNAs MALAT1, OIP5-AS1, LINC00657, 

lnc-NUMB-1

Dobricic et al. (2022) Oxford Brain Bank GABRB1, HCFC2, SLC16A3. MiR-129-5p, miR-132-5p, miR-138-5p

Zhang et al. (2022b) GSE1297, GSE5281 TBP, CDK7, GRM5, and GRIA1 hsa-miR-425-5p, hsa-miR-186-5p

Huang Z.-H. et al. (2022)
GSE33000, GSE48552, GSE36980, 

GSE28146, GSE147232 GSE159699

CALN1, TRPM7, ATR, SOCS3, MOB3A 

and OGDH
-

Qu et al. (2022) GSE28146 -

LINC02047, LINC01124, LINC02478. miR-

4060, miR-4090, miR-4786, miR-3612, 

miR-1254, miR-132.

Cai Z. et al. (2022)
Transgenic mice with five familial AD 

mutations.
- lncRNA ENSMUST00000127786

Zhang et al. (2022a)
GSE5281, GSE122603, GSE97760, 

GSE150693, GSE1297, GSE161435

MAPT, AP2M1, ATР6V0C, SNCA, 

ATP6V1G2, ATP2B3, TTN, LMO7, SYNE1, 

AHNAK

has_circ_002048
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emphasized their role in determining cell fate, atrioventricular canal 
development, and neuronal fate.

3.6 Cell death

Autophagy is the process of cell self-digestion (Liu L. et  al., 
2022). It swallows its own cytoplasmic contents and wraps them to 
form vesicles, then fuse with lysosomes to form autolysosomes, 
which play a degrading role. Autophagy was originally considered to 
be a large-scale and non-selective degradation system. But in recent 
years, it has been gradually revealed that autophagy can selectively 
degrade senescent organelles, error proteins, and other substrates, 
thereby maintaining the homeostasis of the cell environment. Xia 
et al. (2023) found cell necrosis-related genes BAX, IL18, and CYCS 
exhibited significant differences between AD patients and normal 
controls. Disulfidptosis, a newly discovered type of cell death, seems 
to be closely related to the occurrence of various diseases. Ma et al. 
(2023) identified 22 overlapping genes between AD and 
disulfidptosis-related genes, and 7 hub genes were further obtained 
through machine learning.

Zhang et al. (2022) analyzed differential expression patterns in 
the hippocampus of AD patients and discovered dysregulation of 

ferroptosis-related genes. PCBP2 and FTL were significantly 
upregulated in the AD hippocampus, while VDAC2, LPCAT3, GSS, 
ACSL4, and ACSL6 were significantly downregulated. The altered 
expression of iron death-related DEGs affected the infiltration of 
specific immune cell types. Non-coding RNAs (ncRNAs) are 
involved in ferroptosis and AD progression, Tan et  al. (2023) 
identified 5 AD and ferroptosis-related hub genes, and constructed 
a novel ferroptosis-related signature models including mRNAs, 
miRNAs and lncRNAs. Deng et  al. (2022) screen correlative 
ferroptosis-related genes (FRGs) in the progress of AD by 
logistic regression.

Abnormalities in copper metabolism can prevent the clearance of 
β-amyloid peptides and promote the progression of AD pathogenesis. 
Zhang et al. (2023) identified seven cuproptosis genes by WGCNA.

3.7 Cell cycle re-entry

Zhou et al. (2021) explored the cell cycle re-entry mechanism in 
AD and mature neurons. Through WGCNA analysis, ten genes 
exhibited the strongest association with AD. Cross-signaling pathways 
of signal receptors, such as glutamatergic synapse, long-term 
potentiation, PI3K-AKT, and MAPK, were involved (Table 6).

TABLE 6 AD hub gene list combined with biological process research.

Reference Biological processes Hub gene

Castora et al. (2022)

Mitochondrial dysfunction

TP53, SOD2, CDKN2A, MFN2, DNM1L, OPA1, FIS1, BNIP3, GAPDH

Chen F. Q. et al. (2022) COX5A, NDUFAB1, SDHB, UQCRC2, UQCRFS1

Zhang et al. (2023a) BDH1, TRAP1, OPA1, DLD, OPA1

Zhao et al. (2023) CD44, SUCLA2, DLAT, ITGAX, PPARG, MYC

Li et al. (2023) Oxidative stress CCK, CNR1, GAD1, GAP43, NEFL, NPY, PENK, SST, TAC1

Balmorez et al. (2023)
Aging

TP53, FOXO, SUMOylation, IL4, IL6, APOE, CEPT

Liu T. et al. (2023) MSD14, PEBP1, ITPKB, ATF7IP

Deng et al. (2022) RAF1, NFKBIA, MOV10L1, IQGAP1, FOXO1

Xu and Jia (2020)

Immune dysfunction

B2M, FYN, PIK3R1, PIK3CA

Zhao et al. (2022) CHGB, APLNR, FGF13, PAK1, SERPINA3

Lai et al. (2022) CXCR4, PPP3R1, HSP90AB1, CXCL10, S100A12

Qian et al. (2022) NFKBIA, CD4, RELA, CASP3, HSP90AA1

Liu C. et al. (2022) ARMCX5, EDN3, GPR174, MRPL23, RAET1E, ROD1, TRAF1, WNT7B, OR4K2, ZNF543

Song et al. (2022) CD33, IL1B

Zhuang et al. (2023) CMTM2, DDIT4, LDHB, NDUFA1, NDUFB2, NDUFS5, RPL17, RPL21, RPL26, NDUFAF2

Gu et al. (2022)
Metabolism

ATP6V1D, ATP6V1G2, ATP6V1H, CYP26B1, FBXO34, PGRMC1, PLOD1, SNCA, TSPO

Wu et al. (2023) ATP5H, NDUFAB1, PFN2, SPHKAP

Zhang et al. (2022)

Cell death

PCBP2, FTL, GSS, ACSL4

Deng et al. (2022) RAF1, NFKBIA, MOV10L1, IQGAP1, FOXO1

Xia et al. (2023) BAX, IL18, CYCS

Ma et al. (2023) MYH9, IQGAP1, ACTN4, DSTN, ACTB, MYL6, GYS1

Tan et al. (2023) EPT1, KLHL24, LRRFIP1, CXCL2 CD44

Zhang et al. (2023) IFI30, PLA1A, ALOX5AP, A4GALT

Zhou et al. (2021) Cell cycle re-entry
GRIN2A, GRIA2, CHRM1, GABRG2, PGRMC1, EPHA4, MAGED1, TNFRSF1B, TNFRSF1A, 

RXRA
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4 Identification of shared candidate 
biomarkers between AD and other 
diseases

Numerous scholars have discovered close connections between 
AD and other illnesses, attempting to unravel the mechanisms 
underlying their interactions.

4.1 MCI

Neurodegenerative diseases affect over 1 billion people, 
accounting for approximately 15% of the global population, with at 
least 7 million deaths attributed to neurodegenerative diseases 
annually (Maiese, 2016). MCI is a cognitive state that lies between 
normal cognition and dementia. Longitudinal studies have shown that 
some MCI patients remain in the MCI state, while others progress to 
AD. The reasons behind these diverse transitions in MCI are still 
under investigation. Shigemizu et al. (2020) utilized blood microRNA 
expression profiles and genomic data from 197 Japanese patients with 
MCI to construct a prognostic prediction model based on the Cox 
proportional hazards model. They found PTEN as a gene with 
differential expression between MCI and AD among four significant 
hub genes (SHC1, FOXO1, GSK3B, and PTEN). Xue et al. (2020) 
obtained DEG profiles of MCI, AD, and late-stage AD patients from 
the GEO database. Enrichment analysis revealed functional 
associations of the genes with mitochondria and ribosomes. Wang 
X. et al. (2021) collected a comprehensive dataset consisting of 1,036 
brain imaging features and 15,481 gene expression values from 180 
MCI patients. They utilized the WGCNA approach to discover key 
features that influence the conversion of MCI to AD. These features 
included the thickness of the left paracentral lobule and sulcus (L.PTs), 
as well as the expression levels of CTCF, UQCR11, and WDR5B genes. 
Rantanen et al. (2022) analyzed transcriptomic data from olfactory 
neural sphere (ONS)-derived cells in MCI and AD patients. They 
discovered a significant difference in the expression of AKAP6, which 
is associated with cognitive function. Donaghy et al. (2022) examined 
the gene expression differences between AD and Dementia with Lewy 
Bodies (DLB) in both the MCI and dementia stages. They identified 
multiple DEGs, among which ANP32A was identified as a potential 
prognostic marker for AD. Enrichment analysis of the DEGs specific 
to the MCI-AD/AD comparison revealed an upregulation of immune 
and inflammatory responses. The cognitive decline caused by AD 
shares a significant overlap with the cognitive decline caused by 
cerebrovascular diseases, making it challenging to differentiate 
between them. Qin et  al. (2023) utilized Mfuzz clustering and 
WGCNA to examine the shared DEGs and differentially expressed 
miRNAs between MCI and AD. The resulting miRNA-mRNA 
network highlighted the potential involvement of miR-6764-5p in the 
pathogenesis of MCI and AD through its targeting of RPL11 in the 
ribosomal pathway.

4.2 VaD, epilepsy, and Parkinson’s disease

Tian et al. (2022) conducted a screening of DEGs between AD and 
vascular dementia (VaD) and employed WGCNA to construct a 
VaD-AD-specific PPI network for analysis. Luo et al. (2022) identified 

REPS1 as a shared hub gene between VaD and AD, REPS1 was 
associated with the activation of pyruvate metabolism and inhibition 
of the Ras signaling pathway.

Epilepsy often manifests in AD and hastens its progression. Wu 
et al. (2022) utilized WGCNA to perform co-expression analysis on 
the top  50% variably expressed genes in both AD and epilepsy 
datasets. They identified 229 and 1,187 genes in the key modules and 
determined that the co-regulatory factors for 17 overlapping genes 
were TF-Foxc1 and miRNA-hsa-mir-335-5p. Notably, the hub gene 
CXCR4 emerged as a potential target for 20 different drugs. Tang et al. 
(2023) identified 12 DEGs that were significant in AD and epilepsy, 
SCN2A, GRIA1, and KCNJ9 were the hub genes with high 
connectivity. Wang X.-D. et al. (2021) captured hub genes of AD- and 
epilepsy-associated gene co-expression modules by weighted key 
driver analysis.

Li et al. (2020) identified ATP1A1, ATP6V1G2, GOT1, HPRT1, 
MAP2K1, PCMT1, and PLK2 as key metabolic genes that were 
downregulated in AD, Parkinson’s disease (PD), and Huntington’s 
disease (HD), and screened 57 drugs that target these genes. Kelly 
et al. (2020) identified 12 shared SNPs between PD and AD. Gupta 
and Kumar (2021) identified 10 hub genes that be involved in the 
shared mechanism of AD and PD pathogenesis.

4.3 Depressive disorder

Cheng et  al. (2021) investigated the underlying mechanisms 
linking AD and major depressive disorder (MDD) and identified 19 
DEGs associated with both AD and MDD. Enrichment analysis 
revealed significant involvement of pathways related to circadian 
rhythm disruption and chronic depressive signaling. Through PPI and 
transcription factor (TF) and microRNA target gene network analysis, 
they identified five hub genes, namely DYNC1H1, MAPRE3, TTBK2, 
ITGB1, and WASL, which may serve as potential targets for diagnosis 
and treatment of both AD and MDD. Based on publicly available 
mRNA expression profile data, Song et  al. (2023) identified 
differentially expressed immune-related genes (DEIRGs) involved in 
depression and AD. A total of 121 genes were found to be enriched in 
immune-related pathways, such as the JAK–STAT signaling pathway, 
chemotaxis regulation, chemotactic activity, cytokine-cytokine 
receptor interaction, and primary immunodeficiency. Through PPI 
network analysis, three hub genes, IL1R1, CHGB, and NRG1, 
were identified.

4.4 T2D

Cellular metabolic disorders, such as diabetes, have a 
widespread impact on various systems in the body, including the 
central nervous system, peripheral nervous system, inflammatory 
system, and vascular system (Maiese, 2023). Diabetes can lead to 
insulin resistance and dementia in patients with AD. It can affect 
stem cell proliferation, cell protective pathways, retinal diseases, 
and immune-mediated pathways involving microglial cells. 
Furthermore, over 70% of diabetes patients may develop peripheral 
neuropathy. Diabetes can cause autonomic neuropathy and 
peripheral nerve disorders. Recently, AD has been increasingly 
recognized as a brain-specific type of diabetes, referred to as type 3 
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diabetes. Several studies have indicated that individuals with type 
2 diabetes (T2D) have a higher risk of developing AD (Chung et al., 
2021). Chung et  al. (2021) employed the non-negative matrix 
factorization method to generate gene clusters for AD and T2D, 
extracting common differentially expressed genes as candidate 
genes. These genes are enriched in pathways related to AD and T2D, 
such as T cell selection and chemokine signaling pathways. Yuan 
et al. (2023) screened a total of 175 shared genes between AD and 
T2D. These genes were found to be enriched in metabolic processes, 
lipid and atherosclerosis, AMPK signaling pathways, insulin 
resistance, chemokines, and cytokines. Zhu Y. et al. (2020) utilized 
WGCNA to mine GEO microarray data. The shared genes were 
found to be  enriched in signaling pathways such as circadian 
rhythm, autophagy, glutathione metabolism, and synaptic vesicle 
cycle. Castillo-Velazquez et al. (2023) conducted a study to explore 
the shared gene and protein information between AD and DM2. A 
total of 1,551 common genes were obtained, and the hub genes were 
found to be enriched in biological processes and cytokine signaling 
pathways. Using the Metascape platform, 10 potential targets were 
identified, out of which 7 showed pharmacological interactions with 
monoclonal antibodies, anticancer drugs, and flavonoid derivatives 
currently in use. Gao et al. (2023) identified significant differentially 
expressed genes common to T2DM and AD by WGCNA. Molecular 
docking prediction showed that CD44 and STAT3 may play a 
significant role in the development of T2DM-induced AD. Lee and 
Lee (2021) constructed a co-expression network to identify COPS4, 
PSMA6, GTF2B, GTF2F2, and SSB as dysregulated transcription 
common factors between AD and DM. Ye et al. (2023) identified 10 
shared hub genes between AD and T2D. Afzal et  al. (2023) 
uncovered the mutual genomics motifs between AD and T2D via 
non-negative matrix factorization, and screened of six shared genes. 
Kang et al. (2022) constructed a PPI network consisting of AD and 
T2DM DEGs and found that the hub gene SLC2A2 (coding 
transmembrane carrier protein GLUT2), which connects the most 
DEGs in both AD and T2DM, plays a key regulator in linking 
T2DM and AD via glucose metabolism-related pathways. Shu et al. 
(2022) identified Five hub proteins between AD and T2D. Zhang 
et  al. (2023b) identified seven hub genes of co-DEGs between 
T2DM, MDD, and dementia. Huang C. et  al. (2022) confirmed 
through multiple comparisons that CACNA2D3, NUMB, and IER3 
simultaneously participate in AD and T2D, and analyzed interacting 
chemicals, transcription factors, and miRNAs.

4.5 Obesity

Li T. et al. (2022) used WGCNA to define co-expression gene 
modules related to Obesity and AD. The functional analysis of shared 
genes emphasized that inflammation and mitochondrial function are 
common features of Obesity and AD pathophysiology. PPI analysis 
identified 6 hub genes, including MMP9, PECAM1, C3AR1, IL1R1, 
PPARGC1alpha, and COQ3, which were validated using qPCR.

4.6 Metabolic syndrome

Li J. et al. (2022) utilized WGCNA to identify co-expression gene 
modules shared between AD and metabolic syndrome. Candidate 

genes were identified using RF and LASSO, resulting in the 
identification of 8 diagnostic genes. Immunoinfiltration analysis was 
performed, and the ssGSEA results indicated significant regulation of 
immune-related genes in the glycolysis-metabolism pathway.

4.7 Sleep problems

Liang et  al. (2022) conducted a multi-scale embedded gene 
co-expression network analysis to identify common DEGs between 
AD and sleep disorders and identified 10 hub genes. Wu et al. (2021) 
identified the hub gene between Obstructive sleep apnea syndrome 
and AD by WGCNA.

4.8 Periodontitis

Jiang et al. (2021) extracted and integrated shared DEGs between 
AD and periodontitis. These shared genes are associated with cell 
morphogenesis related to neuronal differentiation, leading-edge 
membrane, and receptor-ligand activity. PPI analysis identified 10 hub 
genes associated with AD. Jin et al. (2021) integrated AD-related genes 
with differentially expressed genes from periodontitis data. The shared 
genes were subjected to feature extraction using the Boruta algorithm 
and used to construct an SVM model. TF network and differentially 
expressed pathway network were constructed to determine the core 
common genes. Three TFs (FOS, MEF2C, and USF2) and several 
pathways (JAK–STAT, MAPK, NF-κB, and natural killer cell-mediated 
cytotoxicity) were identified as regulatory factors for these interacting 
genes. C4A, C4B, CXCL12, FCGR3A, IL1B, and MMP3 were 
identified as core shared hub genes.

4.9 Gastrointestinal disorders

Dong et al. (2023) identified PPARG and NOS2 are shared genes 
of AD and ulcerative colitis, They drive macrophages and microglia 
heterogeneous polarization, which may be  potential targets for 
treating neural dysfunction induced by systemic inflammation. 
Adewuyi et  al. (2022) conducted a comprehensive analysis of the 
relationship between AD and gastrointestinal disorders. The results 
showed significant genetic overlap and correlation between AD and 
gastroesophageal reflux disease, peptic ulcer disease, gastritis-
duodenitis, irritable bowel syndrome, and diverticular disease, but not 
with inflammatory bowel disease. Seven shared genes were identified. 
Pathway analysis revealed significant enrichment of lipid metabolism, 
autoimmune response, lipase inhibitors, PD signaling pathway, and 
statin drug mechanisms, which are associated with the characteristics 
of AD and GiT.

4.10 Cardiovascular disease and ischemic 
strokes

Lee et  al. (2021) constructed gene regulatory networks that 
utilized each of the AD and cardiovascular disease candidate disease-
related gene sets and identified two common upstream genes (GPBP1 
and SETDB2).
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Rahman et  al. (2019a) identified hub proteins that are shared 
between ischemic strokes and AD. Furthermore, protein-drug 
interaction analysis revealed that PDE9A interacts with drugs such as 
caffeine, γ-glutamyl glycine, and 3-isobutyl-1-methyl-7H-xanthine. 
Through the PPI and network topology analysis for the common 
DEGs, Liu W. et al. (2022) identified hub genes RPS3, RPS15, PSMB6, 
MRPL17, and MRPL24 of AD and IS.

4.11 COVID-19

Neuroinflammation and immune dysregulation play a crucial role 
in AD and are also associated with severe COVID-19 and neurological 
symptoms (Shi et al., 2023). The COVID-19 pandemic has caused 
millions of deaths and remains a significant global public health 
burden. Previous studies have found that a large number of COVID-19 
patients and survivors experience neurological symptoms, making 
them a high-risk population for neurodegenerative diseases such as 
AD and PD. Genome-wide association studies have identified 
numerous risk single nucleotide polymorphisms for both AD and 
COVID-19. Khullar and Wang (2023) conducted an integrative multi-
omics analysis, predicting gene regulatory networks in the major brain 
regions using AD population data. Machine learning analysis 
prioritized 36 AD-COVID candidate genes for predicting the severity 
of COVID-19. Shi et al. (2023) identify 52 common DEGs in COVID-
19, AD, and PD, and found that these three diseases are involved in 
synaptic vesicle cycling and synaptic downregulation, suggesting that 
synaptic dysfunction may contribute to the occurrence and 
progression of neurodegenerative diseases caused by COVID-19. 
Wang et al. (2022) identify 40 DEGs that are shared between AD and 
COVID-19. These genes are enriched in the calcium signaling 
pathway and the PPI network.

4.12 Viral infection

Sun X. et al. (2022) investigated the relationship between viral 
infection and AD through bioinformatics analysis. By using WGCNA 
to detect DEGs, they identified 126 highly co-expressed modules. 
They further identified four central genes, TLR2, COL1A2, NOTCH3, 
and ZNF132, that are associated with both viral infection and 
AD. Talwar et al. (2019) identified 8 overlapping candidate genes from 
the retrieved APP, MAP, oxidative stress, inflammation, and aging-
related high-confidence AD-related genes/proteins. The analysis 
revealed that APOE was mainly associated with hepatitis C virus, 
EGFR with the Epstein–Barr virus and Human papillomavirus, and 
APP and CASP8 with the Human herpes virus.

4.13 Cancer

Yılmaz (2020) found five genes as common DEG for five datasets 
of AD and cancer, EGFR for AD-breast cancer, SOX9 for 
AD-colorectal cancer, THBS1 for AD-lung cancer, and ‘VEGFA’ for 
AD-prostate cancer were identified as the most significant hub genes 
in network analysis. Cai J. et al. (2022) screened 13 hub genes of AD 
and Glioblastoma multiforme by seven typical algorithms 
co-expression networks. miRNAs are involved in the regulation of 

various cellular processes including pathological conditions. Petrovic 
et al. (2023) identified miR-107, miR-146a, and miR-17 as potentially 
good candidates for both AD and breast cancer treatment (targeting 
BRCA1/2 and PTEN in both diseases). Chen et al. (2021) constructed 
circRNA-miRNA target network for explore the circRNA relationship 
between AD and cancer, and found three hub nodes CircPICALM, 
circRTN4 and circMAN2A1. Zhang and Kiryu (2023) utilized 
WGCNA to identify 5 hub genes that were differentially expressed and 
associated with osteosarcoma. A diagnostic model was then 
established using LASSO. Drug-gene interaction databases were used 
to predict target drugs, and 78 drugs were predicted to target FOXO1, 
SP1, MAPK9, and BCL2, including fluorouracil, cyclophosphamide, 
and bortezomib (Table 7).

5 Discussion

5.1 Statistical analysis

The research work is divided into three modules, and 677 key 
genes are mentioned in this article. After deduplication statistics, 
we constructed a list of 565 key genes, called the AD Review Gene 
(AD-RG) list. Statistics on the number of occurrences of key genes are 
shown in Table 8. Notably, there are 20 genes (‘CD44’: 9 ‘GAPDH’: 5 
‘RPS27A’: 5 ‘APOE’: 4 ‘SNCA’: 4 ‘GJA1’: 4 ‘EGFR’: 3 ‘SST’: 3 ‘OPA1’: 3 
‘TP53’: 3 ‘ATP6V1G2’: 3 ‘TAC1’: 3 ‘ITGAX’: 3 ‘B2M’: 3 ‘GFAP’: 3 
‘CLU’: 3 ‘ATP6V1H’: 3 ‘ATP5B’: 3 ‘APP’: 3 ‘IL1B’: 3) has been reported 
more than 3 times in the literature.

In order to more accurately screen out the key genes of AD, this 
article obtained AD-related gene lists from multiple well-known 
databases, including AlzGene (Bertram et al., 2007), GeneCards, and 
DisGeNet (Pinero et  al., 2020), and performed an intersection 
operation with the gene lists reviewed in this article to obtain 
overlapping genes. AlzGene is a well-known AD susceptibility gene 
database, currently containing 695 genes. The database was last 
updated in 2011. GeneCards is a widely used genetic database that 
provides a comprehensive genetic resource on human genes. We used 
“Alzheimer’s Disease” as the keyword to obtain the Relevance score 
and the top 2000 genes. The scoring rules of GeneCards are usually 
based on a comprehensive consideration of multiple factors, such as 
literature citations, experimental evidence, database annotations, and 
expert evaluations. DisGeNet is a widely used disease gene association 
database that provides comprehensive information on the associations 
between human diseases and genes. Using Alzheimer’s Disease as the 
keyword, 3,397 related genes were retrieved, and 852 genes with 
Score_gda greater than the average were retained.

The AD-RG list intersects with the three gene lists of AlzGene, 
GeneCard, and DisGeNet, respectively. AD-RG_AlzGene has 94 
overlapping genes, AD-RG_GeneCard has 229 overlapping genes, 
AD-RG_DisGeNet has 138 overlapping genes, and the four gene lists 
have 63 overlapping genes. The upset plot formed by the intersection 
is shown in Figure 2.

5.2 Enrichment analysis

Enrichment analysis was conducted on the intersection results of 
the AD-RG_AlzGen, AD-RG_GeneCard, AD-RG_DisGeNet, and 
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TABLE 7 AD gene list combined with relevant disease research.

Reference AD related 
illnesses

Shared genes

Shigemizu et al. (2020)

MCI

SHC1, FOXO1, GSK3B, and PTEN

Xue et al. (2020) RPS17, RPL26, RPS27A, RPS24, RPL31, EEF1B2, RPS27, TOMM7 RPL23

Wang X. et al. (2021) CTCF, UQCR11 WDR5B

Rantanen et al. (2022) AKAP6

Donaghy et al. (2022) ANP32A

Qin et al. (2023) RPL11

Tian et al. (2022)
VaD

SH3GL2, PROK2, TAC3, HTR2A, MET, TF, PTH2R, CNR1, CHRM4, PTPN3, CRH

Luo et al. (2022) REPS1

Wu et al. (2022)

Epilepsy

CXCR4

Tang et al. (2023) SCN2A, GRIA1, KCNJ9

Wang X.-D. et al. (2021) TRPC1, C2ORF40, NR3C1, KIAA0368, MMT00043109, STEAP1, MSX1, KL, CLIC6

Li et al. (2020)

Parkinson’s disease

ATP1A1, ATP6V1G2, GOT1, HPRT1, MAP2K1, PCMT1 PLK2

Kelly et al. (2020) EPB41L5, CYP26B1, IQCB1, DCPIA, CLGN, TDRD6, PSORSIC1, PARP12, WISP1, PIK3C2A, CLMN, DHX33

Gupta and Kumar (2021) CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B, ARHGEF9, USP5, INPP5D, NUP93

Cheng et al. (2021)
Depressive disorder

DYNC1H1, MAPRE3, TTBK2, ITGB1, WASL

Song et al. (2023) IL1R1, CHGB, NRG1

Yuan et al. (2023)

Diabetes

IL6, TNF, INS, IL1B, AKT1, VEGFA, IL10, TP53, PTGS2, TLR4

Zhu Y. et al. (2020) CALM1, LRRK2, RBX1, SLC6A1, TXN, SNRPF, GJA1, VWF, LPL, AGT

Castillo-Velazquez et al. (2023) STAT3, EGFR, IRS1, MAPK1, SRC, HSP90AA1, PIK3R1, UBC, MAPK3, ESR1

Gao et al. (2023) CD44, STAT3

Lee and Lee (2021) COPS4, PSMA6, GTF2B, GTF2F2, SSB

Ye et al. (2023) NF1, RAB14, ADCY5, RAPGEF3

Afzal et al. (2023) CDKN1A, COL22A1, EIF4A, GFAP, SLC1A1, VIM

Kang et al. (2022) SLC2A2

Shu et al. (2022) SFN, CD44, ITGB2, MERTK, GEM

Zhang et al. (2023b) SMC4, CDC27, HNF1A, RHOD, CUX1, PDLIM5, TTR

Huang C. et al. (2022) CACNA2D3, NUMB, IER3

Li T. et al. (2022) Obesity MMP9, PECAM1, C3AR1, IL1R1, PPARGC1alpha, COQ3

Li J. et al. (2022) Metabolic syndrome ARHGAP4, SNRPG, UQCRB, PSMA3, DPM1, MED6, RPL36AL, RPS27A

Liang et al. (2022)
Sleep Problems

ATP5A1, ATP5B, COX5A, GAPDH, NDUFA9, NDUFS3, NDUFV2, SOD1, UQCRC1, UQCRC2

Wu et al. (2021) AREG, SPP1, CXCL2, ITGAX, DUSP1, COL1A1, SCD, ACTA2, CCND2, ATF3

Jiang et al. (2021)
Periodontitis

SPP1, THY1, CD44, ITGB1, HSPB3, CREB1, SST, UCHL1, CCL5, BMP7

Jin et al. (2021) C4A, C4B, CXCL12, FCGR3A, IL1B, MMP3

Dong et al. (2023) Ulcerative colitis PPARG, NOS2

Adewuyi et al. (2022) Gastrointestinal disorders PDE4B, BRINP3, ATG16L1, SEMA3F, HLA-DRA, SCARA3, MTSS2, PHB, TOMM40

Lee et al. (2021) Cardiovascular disease GPBP1, SETDB2

Rahman et al. (2019a)
Ischemic strokes

PDE9A, GNAO1, DUSP16, NTRK2, PGAM2, MAG, TXLNA.

Liu W. et al. (2022) RPS3, RPS15, PSMB6, MRPL17, MRPL24

Shi et al. (2023)
COVID-19

TAGLN3, GAD2, SST, SYP, KCNJ4.

Wang et al. (2022) ITPR1, ITPR3, ITPKB, RAPGEF3, MFGE8

Sun X. et al. (2022)
Viral infection

TLR2, COL1A2, NOTCH3, ZNF132

Talwar et al. (2019) AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8, SNCA

Yılmaz (2020)

Cancer

CEBPD, DCN, DST, FHL1, SLIT3

Cai J. et al. (2022) HPCA, CA10, PENK, CALB2, DRD2, CPNE6, SVOP, CCNA2, NCAPG, KIF20A, UBE2C, CKAP2L, NCAPH

Zhang and Kiryu (2023) MAPK9, FOXO1, BCL2, ETS1, SP1

https://doi.org/10.3389/fnins.2024.1358998
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2024.1358998

Frontiers in Neuroscience 14 frontiersin.org

Intersection of all gene lists, which formed the AD gene list, in the 
field of bioinformatics. The bubble plot of the GO enrichment analysis 
is shown in Figure 3. Gene Ontology (GO) analysis revealed that the 
AD-RG_AlzGen gene list was significantly enriched in biological 
processes related to the regulation of inflammatory response, neuron 
death, regulation of neuron death, neuroinflammatory response, and 
amyloid-beta metabolic process. Similarly, the AD-RG_GeneCard 
gene list exhibited enrichment in biological processes associated with 
cognition, neuron death, learning or memory, positive regulation of 
response to external stimulus, and regulation of neuron death. 
Furthermore, the AD-RG_DisGeNet gene list showed significant 
enrichment in biological processes such as neuron death, positive 
regulation of response to external stimulus, requlation of neuron 
death, response to molecule of bacterial origin, and response to 
lipopolysaccharide. Finally, the intersection of all gene lists was 
enriched in neuron death, regulation of inflammatory response, 
regulation of neuron death, negative regulation of transport, and 
positive regulation of response to external stimulus.

5.3 PPI

In addition, PPI analysis was performed on the three gene lists 
using the STRING database. The PPI analysis results were imported 
into Cytoscape (version 3.10) to generate a structural diagram of the 
hub genes. The PPI analysis structural diagram of the hub genes is 
presented in Figure 4. Furthermore, Table 9 displays the top 10 hub 
genes generated from the three gene lists.

The results in Figure 3 show that cancer-related genes such as 
TP53 and TNF have higher degree values in the protein interaction 
network. It may be because this article collected shared genes related 
to AD-related diseases, and shared genes connect the disease network. 
This conclusion requires further exploration and verification by 
experts in the field. Based on this assumption, this paper also draws 
the interaction network between pathways, see Supplementary Figures 
S1–S4.

We conducted gene analysis and investigation on the top 10 PPI 
results generated by the 4 sets of gene lists. TP53, STAT3, EGFR, 
MAPK1, GRB2, and HSP90AA1 are genes involved in cellular 
processes. TP53, also known as the tumor suppressor gene p53 (Feng 
et al., 2011), plays a vital role in maintaining genomic integrity by 
regulating cell cycle progression and the DNA damage response. It 
serves as a guardian of the genome and is involved in DNA break 
repair. TP53 can be  targeted by approved drugs (Lagisetty et  al., 
2022). Additionally, TP53 acts as a transcription factor and influences 
various aging-related pathways, such as apoptosis, senescence, and 
insulin/mTOR signaling, which have implications for longevity 

(Balmorez et al., 2023). STAT3 encodes a transcription factor called 
Signal Transducer and Activator of Transcription 3 (STAT3). This 
gene is a key regulator of cellular processes, including cell growth, 
differentiation, survival, and immune responses. It plays a crucial role 
in mediating the signaling of cytokines and growth factors. 
Dysregulation of the JAK2/STAT3 axis, as observed in AD, can lead 
to cholinergic dysfunction and memory impairment (Chiba et al., 
2009). EGFR, or Epidermal Growth Factor Receptor, encodes a 
receptor protein belonging to the ErbB family of receptor tyrosine 
kinases. It plays a critical role in regulating cell growth, proliferation, 
and survival. Choi et  al. (2023) demonstrated the potential 
therapeutic effects of anti-cancer EGFR tyrosine kinase inhibitors 
(TKIs) on AD pathology. In AD mouse models, EGFR inhibitors have 
shown promise in attenuating amyloid-beta (Aβ) pathology and 
improving cognitive function. MAPK1, also known as ERK2, is a 
member of the mitogen-activated protein kinase (MAPK) family. It 
is involved in various cellular processes, including cell growth, 
differentiation, and survival. MAPK1 is a key component of the 
MAPK signaling pathway, which regulates gene expression and is 
crucial for neuronal function and plasticity. The MAPK1 gene, also 
known as Mitogen-Activated Protein Kinase 1 or ERK2 (Extracellular 
Signal-Regulated Kinase 2), encodes a protein kinase that is a key 
component of the MAPK signaling pathway. MAPK1 is involved in 
transmitting signals from the cell surface to the nucleus, regulating 
various cellular processes, including cell proliferation, differentiation, 
survival, and apoptosis. Hyperphosphorylation of tau is a key factor 
in the generation of neurofibrillary tangles (NFTs). MAPK1 and 
protein kinase C beta (PRKCB) are thought to play a role in 
hyperphosphorylation, and PRCKB is thought to be  involved in 
hypoxic stress and vascular dysfunction, triggering MAPK 
phosphorylation pathways (Gerschuetz et  al., 2014). The GRB2 
(Growth Factor Receptor-Bound Protein 2) gene encodes an adapter 
protein that plays a critical role in signal transduction pathways. 
GRB2 is involved in mediating signaling from receptor tyrosine 
kinases, such as the epidermal growth factor receptor (EGFR), to 
downstream signaling molecules. It acts as a bridge between activated 
receptors and intracellular signaling proteins, facilitating the 
transmission of signals that regulate various cellular processes. Grb2 
and p38α MAPK are important for atherosclerosis and neointima 
formation (Proctor, 2008). Majumder et  al. (2017) unravel a the 
unique role of Grb2 in protecting the cytoskeletal architecture in 
AD-like conditions. The HSP90AA1 gene encodes a heat shock 
protein called HSP90 alpha, also known as HSP90AA1 or HSPC1. 
HSP90 is a highly conserved molecular chaperone that plays a crucial 
role in protein folding, stability, and degradation. It is involved in 
various cellular processes, including signal transduction, cell cycle 
regulation, and protein quality control. Qian et al. (2022) identified 

TABLE 8 Frequency of gene occurrence in AD biomarker research.

Frequency 1 2 3 4 5 9

Count 486 59 14 3 2 1

Genes - - EGFR, SST, OPA1, 

TP53, ATP6V1G2, 

TAC1, ITGAX, B2M, 

GFAP, CLU, 

ATP6V1H, ATP5B, 

APP, IL1B

APOE, SNCA, GJA1 GAPDH, RPS27A CD44
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HSP90AA1 as a reliable immune hub gene in patients with mild 
cognitive impairment (MCI) and consistent changes in AD. The 
expression level of HSP90AA1 was negatively correlated with alpha- 
and beta-secretase activity, suggesting its involvement in 
AD pathology.

APOE and APP are widely recognized as prominent genetic 
factors associated with AD. Despite the lack of success in translating 
anti-amyloid therapeutic strategies into clinically effective treatments, 
it has been suggested that APP and Aβ42 may not be  the sole 
contributors to the AD disease cascade. Nevertheless, the amyloid 
hypothesis continues to be  regarded as a significant mechanism 
underlying the pathophysiology of AD. In addition to the noteworthy 
correlation between APP and PSEN mutations in familial AD cases, 

APOE4 has consistently emerged as the most robust risk factor for 
late-onset AD to date (Li et al., 2017).

IL1B, IL6, TNF, TLR4, TNF, and SRC are genes associated with 
inflammation and immune responses that have been linked to 
AD. IL1B has been found to play a promoting role in 
neuroinflammation by enhancing the expression of leukocyte 
chemotactic chemokines, cell surface adhesion molecules, 
cyclooxygenases, and MMPs within the brain parenchyma (Knopman 
et  al., 2021). Additionally, IL1B may contribute to the peripheral 
systemic host immune response triggered by periodontitis, leading to 
central nervous system (CNS) dysfunction in AD (Jin et al., 2021). In 
the immune system category, cytokines such as IL6 and TNF alpha 
play crucial roles in regulating inflammatory pathways, including 

FIGURE 2

Upset plot of the four lists AD-RG, AlzGene, GeneCard, and DisGeNet.
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neuroinflammation in AD. Aß plaques have been shown to increase 
the levels of these proinflammatory cytokines, resulting in a cycle of 
inflammation and plaque accumulation (Lin et al., 2021). On the other 
hand, interleukin-10 (IL-10) acts as an important anti-inflammatory 
cytokine with potential anti-atherogenic properties. Toll-like receptors 
(TLRs) are pattern recognition receptors that play a central role in 
regulating the host’s protective adaptive immune response. Among the 
TLR family members, TLR4 is widely expressed in neural cells, 
including microglia, neurons, astrocytes, and endothelial cells (Lin 
et al., 2021). Tumor necrosis factor (TNF) is a small protein mainly 
secreted by macrophages and is involved in various cellular processes, 
including activating the NF-кB signaling pathway, promoting cell 
death, and regulating immune function (Haeberlein et  al., 2022). 
TNF-mediated neuroinflammation has been associated with the 
necroptosis of hippocampal neurons in AD. The SRC gene encodes 
Src kinase, a non-receptor tyrosine kinase involved in regulating cell 
growth, differentiation, adhesion, migration, and survival. SRC-1, a 
key coactivator of SRC, is abundant in the hippocampus and has been 
implicated in cognition. It is also related to major risk factors for AD, 
such as estrogen decline and aging (Wu et al., 2020).

The genes PIK3R1, INS, and AKT1 are known to be involved in 
metabolic processes. PIK3R1, also known as p85a, functions as a 
regulatory subunit of phosphoinositide 3-kinases (PI3Ks). It plays a 
crucial role in stabilizing and inhibiting the catalytic activity of p110 

and acts as an adaptor to interact with insulin receptor substrate 
(IRS) proteins and growth factor receptors. Mutations or altered 
expression of PIK3R1 can modulate the activity of PI3K, leading to 
significant metabolic outcomes (Tsay and Wang, 2023). The INS gene 
is responsible for encoding insulin, a hormone that is secreted by the 
pancreas. Insulin plays a vital role in regulating blood glucose levels 
and energy metabolism. Its primary function is to facilitate the 
uptake and utilization of glucose. Dysregulation of glucose 
metabolism has been implicated in the development of AD, with 
genetic variations in INS and PPARA, particularly among Northern 
Europeans, potentially contributing to this dysregulation (Koelsch 
et al., 2012). The AKT1 gene encodes a protein kinase called AKT 
kinase. AKT1 is a key molecule involved in cellular signaling 
pathways and is responsible for regulating various biological 
processes, including cell survival, proliferation, growth, and 
metabolism. Evidence suggests that the AKT1 protein may 
be associated with an increased risk of AD, especially among patients 
with type 2 diabetes (Liu et al., 2015).

5.4 Tissue-specific analysis

Import GTEx data to allow validation of tissue passes for reference 
gene lists. We downloaded the latest RNA-Seq TPM data (version 8) 

FIGURE 3

GO enrichment analysis bubble plot of AD gene list (A) AD-RG_AlzGene, (B) AD-RG_GeneCard, (C) AD-RG_DisGeNet, (D) intersection of all.
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from the GTEx Portal website, which contains nearly 1,000 human 
samples from 54 non-tissue injury sites. To implement gene 
annotation based on GENCODE (v44), we deleted genes less than 1 kb 
in length. We deleted the expression data of four tissues with sample 

sizes less than 15: renal medulla, ectocervix, fallopian tube, 
and endocervix.

First, gene co-expression patterns were used to assess the 
functional relevance of susceptibility genes. Use the bicor function in 

TABLE 9 Top 10 hub genes identified from three gene lists.

Gene list Count Top 10 hub gene

AD-RG_AlzGene 94 TP53, TNF, IL1B, IL6, APOE, APP, TLR4, IL10, PIK3R1, INS

AD-RG_GeneCard 229 TP53, AKT1, SRC, STAT3, TNF, IL6, EGFR, HSP90AA1, PIK3R1, MAPK1

AD-RG_DisGeNet 138 TP53, TNF, AKT1, STAT3, IL6, HSP90AA1, IL1B, ESR1, MAPK1, MAPK3

Intersection of all 63 TP53, TNF, IL1B, IL6, APOE, APP, TLR4, IL10, INS, GRB2

FIGURE 4

Structural diagram of hub genes identified by PPI analysis, (A) AD-RG_DisGeNet, (B) AD-RG_GeneCard, (C) intersection of all, (D) AD-RG_AlzGene.
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the WGCNA package to calculate the correlation coefficient between 
two genes, and set the correlation coefficient threshold to count the 
gene amount. If the correlation coefficient between two genes is 
greater than 0.8, there is connectivity between genes. We calculated 
the correlation coefficient and gene connectivity of the expression data 
of the 4 reference gene lists AD-RG_AlzGene, AD-RG_GeneCard, 
AD-RG_DisGeNet, and ALL on 50 tissues in GTEx. Then, for each 
gene list, 10,000 random gene lists with the same number of genes 
were generated through resampling, and the average correlation 
coefficient and average gene connect amount of the random gene list 
were calculated. Calculation results are stored in Supplementary Tables 
S1–S4.

Then, the specific organization of the reference gene is found 
based on the Z-score normalized difference. For the four reference 
gene lists, calculate the Z-score standardized values of the correlation 
coefficients and gene connect between the reference gene list and the 
random gene list respectively, and then calculate the Z-score difference 
between the reference gene list and the random gene list to find the 
largest difference of 10 organizations.

The results in Figure 5 show that among the 50 tissues, the 4 gene 
lists we constructed showed high specificity for brain tissues, such as 
putamen basal ganglia, anterior cingulate cortex ba24, caudate basal 
ganglia, nucleus accumbens basal ganglia, frontal cortex ba9, 
hypothalamus, hippocampus, amygdala, cortex, substantia nigra. It is 
worth noting that the kidney cortex tissue also showed higher 
characteristics, which coincides with the view that “AD is also called 
type 3 diabetes.”

6 Conclusion

This article reviews recent research efforts in the identification of 
candidate biomarkers for AD and categorizes them into three main 
groups. Firstly, it discusses the use of conventional algorithms for AD 
biomarker identification, including GWAS, differential analysis, 
WGCNA, machine learning, and deep learning. In the field of 
bioinformatics, there is still room for improvement in the application 
of advanced algorithms such as machine learning and deep learning. 
Secondly, it explores AD biomarkers associated with biological 
processes such as mitochondrial dysfunction, neuroinflammation, 
immune dysregulation, aging, metabolism, and apoptosis. 
Understanding these biological processes is crucial for identifying 
relevant AD biomarkers. The third category involves the identification 
of biomarkers shared with co-occurring diseases, including psychiatric 
disorders, metabolic diseases, inflammatory diseases, viral infections, 
and cancer. Exploring the overlap between AD and other related 
diseases can provide valuable insights into common biomarkers and 
underlying mechanisms. Additionally, this article performs a statistical 
analysis of key genes mentioned in the research literature and 
identifies the intersection with AD-related gene sets from databases 
such as AlzGen and GeneCard. For overlapping genes, enrichment 
analysis is conducted, and PPI networks are utilized to identify central 
genes among the overlapping genes. Overall, this article provides a 
comprehensive overview of recent advances in AD biomarker 
identification, highlighting the use of various algorithms, the 
exploration of relevant biological processes, and the investigation of 
shared biomarkers with co-occurring diseases.

In the future, we aspire to precisely identify candidate biomarkers 
for AD, enabling early-stage diagnosis and prevention, and offering 
early intervention and treatment opportunities for patients. By delving 
into the biological processes associated with AD, such as mitochondrial 
dysfunction, neuroinflammation, immune dysregulation, and others, 
we can discover new therapeutic targets and strategies, empowering 
precision medicine with more effective tools.
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FIGURE 5 (Continued)
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FIGURE 5

Z-score results of tissue-specific analysis of AD associated hub gene list in GTEx database, with top 10 tissues as association coefficient, top 10 
tissues as connectivity, and Z-score differences among different tissues (A) AD-RG_AlzGene, (B) AD-RG_GeneCard, (C) AD-RG_DisGeNet, 
(D) intersection of all.
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