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Cell signaling based on homeoprotein transfer is a pathway with developmental 
and physiological functions. For a few transcription factors of this family, primarily 
ENGRAILED1, ENGRAILED2 and OTX2, their physiological functions have led to 
therapeutic strategies in animal models of human diseases, including Parkinson’s 
disease, amyotrophic lateral sclerosis, amblyopia and anxiety-related disorders. In 
mesencephalic dopaminergic neurons which degenerate in Parkinson’s disease, 
ENGRAILED1/2 have cell autonomous activities, but their transducing properties 
enables their use as therapeutic proteins. In contrast, in spinal alpha-motoneurons, 
which are lost in amyotrophic lateral sclerosis, ENGRAILED1 is supplied by V1 
interneurons. Thus, its use as a therapeutic protein to protect alpha-motoneurons 
against degeneration mimics its normal non-cell autonomous neurotrophic 
activity. OTX2, synthesized and secreted by the choroid plexus, is transferred to 
parvalbumin interneurons and exerts regulatory functions controlling cerebral 
cortex plasticity. Understanding the latter OTX2 function has led to strategies 
for manipulating visual acuity and anxiety-like behavior in adult mice. In this 
review, we describe these cases and what is known about the involved molecular 
mechanisms. Because the transduction sequences are conserved in most of the 
few hundred homeoproteins, we argue how this family of molecules constitutes 
an important reservoir of physiological knowledge, with potential consequences 
in the search for new therapeutic strategies.
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Introduction

The discovery of homeoprotein signaling

Transcription factor participation in signal transduction is normally cell autonomous. 
Homeoprotein (HP) transcription factors, discovered on the basis of their developmental 
functions but expressed throughout adulthood, provide an exception to the rule. Direct non-cell 
autonomous signaling by cell-to-cell HP transfer was first discovered in plants where KNOTTED1 
travels through specific cell bridging structures called plasmodesmata (Lucas et al., 1995; Kim 
et al., 2002; Ruiz-Medrano et al., 2004; Bolduc et al., 2008). In animals, a first step in the discovery 
of HP transfer was the observation that their DNA-binding domain, or homeodomain (HD), is 
internalized by live cells and directly addressed to the cytoplasm and nucleus (Joliot et al., 1991). 
This finding was rapidly followed by the demonstration that full-length HPs are internalized and 
secreted through non-conventional mechanisms (Prochiantz and Di Nardo, 2015; Di Nardo et al., 
2018, 2020). HP secretion and internalization domains are part of the highly conserved HD 
explaining why most of the 160 tested HPs can transfer (Lee et al., 2019). Despite this high number 
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and the likeliness that this property is shared by the approximately 300 
members of the HP family, the developmental and physiological 
functions associated with HP transfer have been studied for only a few 
of them, including ENGRAILED (EN), PAX6, VAX1 and OTX2. Before 
illustrating with EN1 and OTX2 how this novel signaling pathway is 
conducive to new therapeutic strategies, we will describe established HP 
signaling functions and the mechanisms involved.

Summary of established HP signaling 
functions in animals

The main established functions are summarized in Table 1. During 
development, PAX6 signaling acts on cell migration, as shown for 
Cajal–Retzius cells in the embryonic mouse cerebral cortex (Kaddour 
et al., 2019), and for oligodendrocyte precursor cells (OPCs) in the 
chick spinal cord (Di Lullo et al., 2011). Still during development, EN 
signaling regulates anterior cross vein (ACV) formation in the 
Drosophila wing disk (Layalle et al., 2011), eye anlagen development 
and midbrain patterning in the zebrafish (Lesaffre et al., 2007; Rampon 
et al., 2015; Amblard et al., 2020b), and retinal ganglion cell (RGC) 
axon guidance and synaptic stability in the chick and frog (Brunet 
et al., 2005; Wizenmann et al., 2009; Yoon et al., 2012). In RGC growth 
cones, EN1 and EN2 (together EN1/2) activity involves the regulation 
of local mRNA translation (Brunet et al., 2005, 2007; Wizenmann et al., 
2009). Some of these mRNAs encode mitochondrial complex I proteins 
and their EN1/2-induced translation results in transient ATP synthesis 
(Stettler et al., 2012). Also related to growth cone behavior, VAX1 was 
shown to regulate RGC decussation at the level of the optic chiasma 
(Kim et al., 2014; Min et al., 2023). In the adult, EN1 secreted by V1 
interneurons in the mouse spinal cord is captured by motoneurons 
(MNs), and blocking this transfer induces αMN retrograde 
degeneration (Lebœuf et al., 2023). In the juvenile and adult mouse, 
OTX2 signaling regulates the opening and closure of cerebral cortex 
critical periods (CPs) of plasticity in the visual, auditory, and medial 
prefrontal cortices (Sugiyama et al., 2008). This regulation involves the 
secretion of OTX2 by the choroid plexus and its specific capture by 
parvalbumin interneurons (PV cells) localized in layer IV of the 

cerebral cortex (Beurdeley et al., 2012; Spatazza et al., 2013; Bernard 
et al., 2016). OTX2 internalization by PV cells induces their maturation 
and a shift in the excitatory/inhibitory (E/I) balance toward inhibition 
leading to heightened neural circuit plasticity (Sugiyama et al., 2008). 
In the visual system, blocking OTX2 signaling in the mouse retina 
within a week after eye opening delays CP onset (Sugiyama et al., 2008).

Mechanisms of intercellular transfer 
and co-signaling

Rapid insight into HP transfer mechanisms 
and specificity

Signaling requires HP secretion and internalization. Both processes 
involve specific domains within the HD and are unconventional in the 
sense that secretion is not through the ER-Golgi pathway while 
internalization does not require endocytosis and instead involves 
crossing the plasma membrane with direct access to the cytoplasm and 
nucleus. Despite years of research by several laboratories, including 
chemists and cell biologists, the internalization and secretion processes 
are not yet fully understood. Although transfer mechanisms were 
mainly studied with EN2 and OTX2, domain conservation suggests 
most HPs use similar strategies. EN2 secretion and internalization 
involve an interaction with phosphatidylinositol (4,5)-biphosphate 
(PIP2), and a recent report suggests that OTX2 secretion involves 
association with nuclear membrane buds and lysosomes (Amblard 
et al., 2020a; Park et al., 2023). From a therapeutic perspective, two 
main points are of particular interest. The first one is direct access to the 
cytoplasm, first demonstrated for the HP internalization domain 
defined by the third helix of the HD and known as Penetratin. Direct 
access may involve the formation of inverted micelles (Derossi et al., 
1994, 1996, 1998; Berlose et  al., 1996) and/or membrane 
hyperpolarization (Trofimenko et  al., 2021). A second point is the 
specificity of cell targeting by HPs. In the case of EN1 and OTX2, the 
specific recognition of spinal αMNs and PV cells, respectively, is due to 
the interaction between glycosaminoglycans (GAGs) present at the cell 
surface and a GAG-binding motif overlapping with the HD first helix 

TABLE 1 Main identified homeoprotein developmental and adult signaling functions.

HP Model Embryo Juvenile Adult

KN1 Plant shoot meristem

PAX6 Zebrafish Eye anlagen

Chick OPC migration

Mouse CR cell migration

EN Fly Wing disk ACV

Zebrafish Midbrain Patterning

EN1/2 Xenopus RGC axon guidance Synapse stabilization

Chick RGC axon guidance

Mouse RGC axon guidance ⍺MN survival

VAX1 Mouse RGC axon decussation

OTX2 Xenopus RGC axon guidance

Mouse Critical Period timing Cortical plasticity

This table illustrates for only a few homeoproteins the variety of species and developmental or adult processes in which their direct signaling properties have been demonstrated. ACV, anterior 
cross vein; CR, Cajal–Retzius; HP, homeoprotein; OPC, oligodendrocyte precursor cell; RGC, retinal ganglion cell. See references in text.
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(Beurdeley et al., 2012; Lebœuf et al., 2023). Although two HPs are not 
sufficient to validate a “sugar code” hypothesis for in vivo specific 
targeting, it is of note that GAG binding domains are present at a similar 
sequence position in many HPs (Prochiantz and Di Nardo, 2015).

Co-signaling

An interesting aspect of HP signaling is that it can work 
synergistically with classical signaling. The best example is EN2 signaling 
that provokes the in vitro collapse of temporal retina RGC growth cones, 
similar to aggregated EphrinA5. In an experiment where temporal cones 
were given the choice to navigate on naive or EphrinA5-coated stripes, 
EphrinA5 avoidance was clear at 0.5 μg/mL but not at a 0.1 μg/mL, unless 
75 nM EN2 was added to the culture medium (Wizenmann et al., 2009). 
The same cooperation was replicated by directly monitoring growth 
cone collapse, revealing that cooperative EN2/EphrinA5 signaling 
requires EN2 internalization and is mediated by local translation 
(Wizenmann et al., 2009). In fact, further experiments demonstrated 
that local translation is followed by a burst of ATP synthesis and that 
adenosine produced by extracellular ATP degradation activates 
Adenosine receptor A1, providing an intermediate step in 
EN2-potentiated EphrinA5 signaling (Stettler et al., 2012). Two other 
examples, not developed here, include the interaction between PAX6 and 
netrin signaling for OPC migration (Di Lullo et al., 2011), and that of EN 
and Decapentaplegic (DPP) signaling in the activation of Mothers 
against DPP, resulting in ACV formation in the fly wing imaginal disc 
(Layalle et al., 2011). This concept is important to bear in mind for HP 
signaling mechanisms, as the exact active morphogen concentrations in 
vivo are unknown and HP transfer might thus be a co-signaling partner 
in several developmental and physiological situations.

Homeoprotein therapeutic activities in 
animal models of human diseases

The use of HPs and HP-derived tools in the regulation of 
physiological functions is recalled in Table 2. Potential HP-associated 
therapeutic pathways are summarized in Figure 1. They include local 

translation, transcription regulation, and chromatin organization with 
an impact on genome stability.

EN1/2 as a therapeutic protein in animal 
models of Parkinson’s disease

Mesencephalic dopaminergic (mDA) neurons that innervate the 
striatum and degenerate in Parkinson’s disease (PD) express both 
EN1 and EN2. In the Swiss genetic background, En1 heterozygote 
(En1-Het) mice experience progressive mDA neuron retrograde 
degeneration and develop motor and non-motor PD-like symptoms 
(Sonnier et  al., 2007; Alvarez-Fischer et  al., 2011). Changes in 
epigenetic mark distribution and intensity, for marks such as 
H3K9me27, H3K9me3, Nucleolin, and LaminB2, are observed 
specifically in En1-Het mice mDA neurons, together with an 
increase in the number of γH2AX foci (DNA-breaks) and the 
expression of LINE-1A and LINE-1Tf/Gf retrotransposons (Rekaik 
et al., 2015; Blaudin de Thé et al., 2018). In keeping the observation 
that mDA neurons from En1-Het mice are more sensitive to 
oxidative stress, the internalization of recombinant EN1/2 by mDA 
neuron rescues them from oxidative stress induced either by a 
6-OHDA stereotaxic injection in the mouse or by slow MPTP 
exposure in the non-human primate (Rekaik et al., 2015; Thomasson 
et al., 2019). EN1/2 injection, and internalization by mouse mDA 
neurons, 30 min after 6-OHDA administration, rescues the cells 
from degeneration and returns all nuclear marks back to normal 
(Rekaik et al., 2015). The hypothesis that a mechanism of EN1/2 
“therapeutic activity” involves LINE-1A is supported by the finding 
that EN2 directly represses LINE-1A expression and binds to its 
promoter (Blaudin de Thé et  al., 2018). Further evidence that 
substantiates the LINE-1A (and possibly Tf/Gf) hypothesis includes 
the protection against 6-OHDA by stavudine, a reverse-transcriptase 
inhibitor and siRNAs directed against LINE-1A ORF2 protein 
(Blaudin de Thé et al., 2018), and the protective activity of PIWIL1 
protein (binds and inactivates LINE-1 transcripts) when 
overexpressed in the midbrain of En1-Het mice. These experiments 
suggest that in En1-Het or in WT mice exposed to oxidative stress, 
a loss of heterochromatin allows for toxic LINE-1 overexpression 
that can be repressed by EN1/2 gain of function, both directly at a 
transcriptional level and indirectly through heterochromatin 
restoration (Blaudin de Thé et al., 2018). It is of note that OTX2 
exerts a similar protective activity on midbrain dopaminergic 
neurons and RGCs in a mouse glaucoma model (Torero-Ibad et al., 
2011; Rekaik et al., 2015).

Neurotrophic protective activity of 
non-cell autonomous ENGRAILED1 for 
spinal cord alpha-motoneurons

In the ventral spinal cord, V1 interneurons, including Renshaw 
cells, express EN1 while the En1 locus is not active in αMNs 
(Wenner and O’Donovan, 1999; Sapir, 2004; Lebœuf et al., 2023). 
These large MNs receive synaptic input from V1 interneurons and 
capture secreted EN1 protein. When this transfer is blocked by the 
local expression of a secreted EN1-specific single-chain antibody 
(scFv-EN1), αMN retrograde degeneration is induced and muscular 
strength is partially lost (Lebœuf et al., 2023). A similar degenerative 

TABLE 2 Main utilizations of homeoproteins, homeoprotein-derived 
peptides and homeoprotein antagonists in the regulation of physiological 
functions.

Tool Model Target

Penetratin- 

LINE1-siRNA

Mouse Parkinson’s disease

EN1/2 Mouse Parkinson’s disease

Mouse Amyotrophic lateral sclerosis

Macaque Parkinson’s disease

OTX2 Mouse Glaucoma

OTX2 antagonists Mouse Amblyopia

Mouse Anxiety-like behavior

Penetratin, a cell-penetrating peptide corresponding to the third helix of the Antennapedia 
homeodomain has been widely used for the in vitro and in vivo internalization of a large 
number of peptides, phospho-peptides, and oligonucleotides. Here is recalled the in vivo use 
of Penetratin to internalize in midbrain neurons a siRNA targeting the Orf2p sequence 
present in the LINE-1 polycistronic mRNA. OTX2 antagonists used are single-chain anti-
OTX2 antibodies and an OTX2-derived peptide competing for OTX2 binding to PV-cell 
extracellular matrix and its ensuing internalization. See references in text.
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phenotype is observed in the Swiss En1-Het mouse (Lebœuf et al., 
2023). Human recombinant EN1 (hEN1) injected intrathecally at 
lumbar 5 (L5) in mice gains access to the spinal cord parenchyma 
and is specifically captured by αMNs and γMNs, but not by any 
other cell type (Lebœuf et al., 2023). This specificity is dependent 
on a GAG-binding domain upstream of the HD, as was observed 
for the internalization of OTX2 by PV cells. A single 1 μg injection 
of hEN1 is sufficient to block αMN degeneration and restore 
endplate innervation with full neuromuscular strength for 3 months 
(Lebœuf et al., 2023). This long-lasting effect strongly suggests that 
EN1 activity engages epigenetic mechanisms, highly reminiscent of 
its activity in mDA neurons. Based on this similarity, a bioinformatic 
study was undertaken to identify genes expressed in human MNs 
that are differentially expressed in the Swiss En1-Het mouse 
substantia nigra and interact with one of the 4 main genes mutated 
in ALS familial forms (SOD1, FUS, TARDBP-43 and C9orf72; 
Rekaik et al., 2015; Lebœuf et al., 2023). This approach generated a 
list of 20 genes, including p62/SQSTM1 which was the only gene to 
interact with the 4 ALS genes (Lebœuf et al., 2023). p62/SQSTMI is 
mutated in some familial forms of ALS (Fecto et al., 2011; Shimizu 
et  al., 2013; Hadano et  al., 2016; Doherty and Baehrecke, 2018; 
Yilmaz et al., 2019; Foster and Rea, 2020) and encodes an autophagy 
protein that is considered a marker of aging (Hensley and Harris-
White, 2015; Menzies et  al., 2015; Tai et  al., 2016; Leidal et  al., 
2018). p62/SQSTM1 expression increases with age in αMNs of WT 
mice and is increased in En1-Het mice or when EN1 transfer into 
αMNs is antagonized in WT mice (Lebœuf et al., 2023). In contrast, 
its expression is down-regulated following EN1 treatment of En1-
Het mice (Lebœuf et al., 2023). Taken together, these results suggest 
that αMNs show accelerated aging in En1-Het mice and that EN1 
is a “therapeutic” anti-aging protein working at an epigenetic level.

The regulation of cerebral plasticity by 
OTX2 and its therapeutic outcomes

The cerebral cortex adapts to the surrounding environment during 
CPs of heightened plasticity that allow neural circuits to be remodeled 
by experience (Hensch, 2005). These CPs take place postnatally in 
different brain regions and involve many functions: visual, auditory, 
sensory-motor, linguistic, social, cognitive, etc. (Reh et al., 2020). Since 
the seminal studies of Hubel and Wiesel on binocular vision (Hubel 
and Wiesel, 1965, 1970; Wiesel and Hubel, 1965a,b; Wiesel, 1982), the 
CP for ocular dominance (OD) plasticity has garnered much attention. 
In the mouse, this CP opens at postnatal day 20 (P20), peaks around 
P28, and closes by P40, paralleling progressive PV cell maturation in 
response to OTX2 capture, which is mediated by specific binding to 
GAGs present within condensed extracellular matrix perineuronal 
nets (PNNs) that form around PV cells (Sugiyama et  al., 2008; 
Beurdeley et al., 2012; Miyata et al., 2012). This capture of OTX2 is 
also progressive, with OTX2 levels being undetectable prior to CP 
onset, and then increasing in parallel with PNN levels (Sugiyama et al., 
2008; Lee et al., 2017). OTX2 has a precise role in controlling CP 
timing. A gain of function of OTX2 at P17 results in peak plasticity at 
P20 and CP closure at P25, thus accelerating the entire maturation 
process (Sugiyama et al., 2008). Conversely, decreased OTX2 import 
into PV cells delays CP opening in the visual, auditory, and medial 
prefrontal cortices (Bernard et  al., 2016; Lee et  al., 2017). At the 
epigenetic level, OTX2 directly and rapidly upregulates Gadd45ß at 
CP onset, leading to changes in the pattern of CpG methylations that 
can impact transcription and chromatin structure (Apulei et al., 2018). 
OTX2 transfer from choroid plexus to PV cells is maintained 
throughout life, with maximal steady-state levels in the adult cortex 
(Spatazza et al., 2013). Long-term closing of one eye during CP, but 

FIGURE 1

Hypothetical sites and mechanisms of homeoprotein non-cell autonomous activities based on the study of EN1, EN2, and OTX2. Homeoproteins 
secreted by physiological sources or injected in vivo gain access to specific target cells thanks to a glycosaminoglycan “fingerprint” recognition code. 
Once internalized they have both cytoplasmic and nuclear activities related to several aging hallmarks including, mitochondrial activity, protection 
against oxidative stress, regulation of proteostasis, the regulation of expression of neuroprotective genes and the protection of the chromatin 
landscape allowing for the repression within the heterochromatin of illegitimate genes presenting neuronal harming properties. References in the text.
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not before or after, induces experimental amblyopia in the mouse, a 
condition also encountered in humans with juvenile monocular 
defects, such as strabismus or cataract, if not treated before 8 years of 
age (OD CP closure). Interestingly, transiently reopening plasticity by 
pharmacological OTX2 reduction in the adult cures experimental 
amblyopia in the mouse (Spatazza et al., 2013; Bernard et al., 2016; 
Apulei et al., 2018). Since OTX2 is captured by PV cells throughout 
the cortex (Spatazza et al., 2013), restoration of binocular vision in the 
amblyopic mouse is an example of a therapeutic protocol that may 
be of value for other neurodevelopmental diseases. Consistent with 
this idea, delaying OTX2 import interferes with the development of 
auditory tonotopic maps and mood-related behaviors (Lee et  al., 
2017). Strikingly, anxiety-like behaviors are attenuated in the Otx2-Het 
mouse and can be returned to normal in the adult by overexpressing 
OTX2  in the choroid plexus (Vincent et  al., 2021). Conversely, 
reducing OTX2 levels in the cerebrospinal fluid installs a hypoanxious-
like behavior implicating medial prefrontal cortex PV cells in the adult 
mouse (Vincent et al., 2021).

Concluding remarks on 
homeoproteins as time-controlling 
agents

Molecular studies in PD animal models, and the long-lasting 
activity of a single EN1 injection on αMN survival and activity, strongly 
suggest that EN1/2 exert important functions at an epigenetic level. 
This hypothesis has weight in the context of neurodegenerative diseases 
for which age is a major risk factor, even in familial forms provoked by 
mutations that remain silent for several years. The primary hallmarks 
of aging include genomic instability, epigenetic alterations, loss of 
proteostasis, disabled macro-autophagy, and telomere attrition (López-
Otín et al., 2023). In neurons, telomere attrition is not operational but 
it is striking that in EN1/2 protective activities are associated with 
LINE-1 repression, the restoration of most epigenetic marks, and the 
restoration of autophagy by p62/SQSTM1 regulation. Given that 
chromatin modifications, loss of autophagy and the upregulation of 
mobile genetic elements of the LINE family are associated with aging 
(Laurent et al., 2010; Maxwell et al., 2011; Li et al., 2013; Meter et al., 
2014; Krug et al., 2017; Simon et al., 2018, 2019; Valle et al., 2022), 
EN1/2 has potential as an anti-aging and even a reverse-aging 
therapeutic protein for mouse mDA neurons and αMNs. But timing 
does not only implicate aging, as illustrated by the importance for 
proper synchrony between circuit refinement and environmental 
information in postnatal learning. This need is well illustrated by how 

the exact timing of CP windows is essential for physiological alignment 
between environmental inputs and intrinsic programs of circuit 
maturation. This makes OTX2 transfer a key factor in determining 
when functional plasticity opens and closes during postnatal 
development, with the kinetics and epigenetic impact of OTX2 
accumulation in PV cells providing temporal control of neural circuit 
maturation to define CP timing. In this context, the fact that decreasing 
OTX2 levels in PV cells reopens plasticity after CP closure suggests that 
manipulating the OTX2 pathway can be used to “reverse” cortical aging 
and phenocopy juvenile properties in the adult. It will thus be of high 
interest to evaluate if such time-controlling functions identified for 
EN1 and OTX2 are valid for the other HPs expressed in neuronal 
populations affected in several neurological and psychiatric pathologies.
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