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Background: Alzheimer’s disease (AD) is a common, refractory, progressive 
neurodegenerative disorder in which cognitive and memory deficits are highly 
correlated with abnormalities in hippocampal brain regions. There is still a lack 
of hippocampus-related markers for AD diagnosis and prevention.

Methods: Differently expressed genes were identified in the gene expression 
profile GSE293789 in the hippocampal brain region. Enrichment analyses GO, 
KEGG, and GSEA were used to identify biological pathways involved in the 
DEGs and AD-related group. WGCNA was used to identify the gene modules 
that are highly associated with AD in the samples. The intersecting genes of the 
genes in DEGs and modules were extracted and the top ten ranked hub genes 
were identified. Finally GES48350 was used as a validation cohort to predict the 
diagnostic efficacy of hub genes.

Results: From GSE293789, 225 DEGs were identified, which were mainly associated 
with calcium response, glutamatergic synapses, and calcium-dependent 
phospholipid-binding response. WGCNA analysis yielded dark green and bright 
yellow modular genes as the most relevant to AD. From these two modules, 176 
genes were extracted, which were taken to be intersected with DEGs, yielding 51 
intersecting genes. Then 10 hub genes were identified in them: HSPA1B, HSPB1, 
HSPA1A, DNAJB1, HSPB8, ANXA2, ANXA1, SOX9, YAP1, and AHNAK. Validation of 
these genes was found to have excellent diagnostic performance.

Conclusion: Ten AD-related hub genes in the hippocampus were identified, 
contributing to further understanding of AD development in the hippocampus 
and development of targets for therapeutic prevention.
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1 Introduction

Alzheimer’s disease (AD) is a complex multi-factorial neurodegenerative disorder with a 
hidden onset that affects more than 50 million people worldwide (Liu et al., 2022). AD is the 
leading cause of mortality in dementia and due to its non-curable reality based on current 
medical development status, it has brought extreme economic burden to patients’ households 

OPEN ACCESS

EDITED BY

Jessica Rosati,  
Fondazione IRCCS Casa Sollievo della 
Sofferenza, Italy

REVIEWED BY

Jin Zhang,  
University of Mississippi Medical Center,  
United States
Shalaka Wahane,  
Illumina Ventures, United States

*CORRESPONDENCE

Zuojun Geng  
 1980756261@qq.com

RECEIVED 21 December 2023
ACCEPTED 28 February 2024
PUBLISHED 07 March 2024

CITATION

Chen Y, Li Z, Ge X, Lv H and Geng Z (2024) 
Identification of novel hub genes for 
Alzheimer’s disease associated with the 
hippocampus using WGCNA and differential 
gene analysis.
Front. Neurosci. 18:1359631.
doi: 10.3389/fnins.2024.1359631

COPYRIGHT

© 2024 Chen, Li, Ge, Lv and Geng. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 07 March 2024
DOI 10.3389/fnins.2024.1359631

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1359631&domain=pdf&date_stamp=2024-03-07
https://www.frontiersin.org/articles/10.3389/fnins.2024.1359631/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1359631/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1359631/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1359631/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1359631/full
mailto:1980756261@qq.com
https://doi.org/10.3389/fnins.2024.1359631
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1359631


Chen et al. 10.3389/fnins.2024.1359631

Frontiers in Neuroscience 02 frontiersin.org

as well as continuous distress. The main clinical signs and symptoms 
of AD include subjective cognitive decline (SCD), behavioral change, 
and dementia (Jessen et al., 2014). However, before clinical symptoms 
are observed, alterations in neurons, microglia, and astroglia have 
already driven insidious progression of the disease (De Strooper and 
Karran, 2016). The preclinical phase was termed as the cellular phase 
of AD (Scheltens et al., 2021). However, in most cases when AD could 
be definitively diagnosed, the patient is already in the dementia stage. 
Recent studies have found that intervention and prevention before the 
onset of AD may delay or even prevent the occurrence and 
development of the disease (Feng et al., 2021; McDade et al., 2021). 
And, current medications and FDA-approved treatments cannot cure 
AD and AD-related dementia (Fang et  al., 2022). Therefore, it is 
significant to find effective biomarkers for early diagnosis and early 
prevention of AD.

Researches have confirmed that the precipitating features of AD 
involve multiple factors, among which most studies believe that AD, 
as a progressive and extensive neurodegenerative disease, is 
characterized by extensive gliosis, and the accumulation of amyloid β 
(Aβ) in the form of extracellular plaques and intracellular 
neurofibrillary tangles, ultimately leading to neurodegeneration and 
dementia (Joe and Ringman, 2019). Meanwhile, existing studies have 
found that excitatory neurotransmitter deficiencies or dysfunctions, 
as well as cerebrovascular dysfunction, are also involved in the 
development of AD (Fang et  al., 2022). And adult hippocampal 
neurogenesis (AHN), an important neuroplasticity process, is also 
involved in the development of AD. A decrease in AHN may lead to 
hippocampal degeneration manifested by progressive memory loss 
and even the development of cognitive impairment (Moreno-Jimenez 
et al., 2021; Kim et al., 2022). In addition to the decrease in AHN, the 
presence of plaques and tangles in the hippocampus is also strongly 
associated with cognitive decline. However, there is no consensus on 
the core cause of cellular dysfunction in AD. Research over the last 
5 years has focused on the use of proteomics, genomics and 
transcriptomics to investigate the pathogenesis of key metabolic 
pathways and regulators of Alzheimer’s disease (Nativio et al., 2020; 
Horgusluoglu et al., 2022). In this study we aimed to identify novel 
hub genes involved in AD development in the hippocampal brain 
region by differential gene screening combined with WGCNA 
analysis, providing new targets for clinical diagnosis and 
treatment of AD.

2 Materials and methods

2.1 Data extraction and differential gene 
expression analysis

Gene Expression Omnibus (GEO) is a public functional genomics 
data repository of high-throughput gene expression data, chips, and 
microarrays. Two datasets GES29378 and GES48350 related to AD 
were extracted from the GEO database. We extracted the expression 
profile data of the hippocampal region tissues in the GES29378 
(divided into AD and normal groups). Specific data information is 
shown in Table 1. The obtained expression profile data of patients have 
been normalized for total expression and then log2FC transformed. 
Differently expression gens (DEGs) were obtained by using “limma R” 
packages in R software with |log2 Fold Change (FC)| > 0.5 and p < 0.05. 

All samples were corrected by using the “limma” package in the R 
software (version 4.1.3) (Ritchie et al., 2015). R software was used for 
statistical analysis, and the difference was statistically significant when 
p < 0.05. Visualization was performed by the “ggplot2 R” package. 
Volcano plot, heatmap, and PCA plot of the DEGs were generated by 
using “ggplot2” and “pheatmaps” packages in R software (version 
4.1.32).

2.2 GSEA analysis of samples and 
functional enrichment analysis of DEGs

The functional enrichment of DEGs was divided into three 
categories of gene ontology (GO) domain: biological process (BP), 
cellular component (CC) and molecular function (MF). The KEGG 
database contains pathway datasets involving biological functions, 
diseases, chemicals and drugs. We subjected the DEGs of GES29378, 
modular genes in WGCNA, and intersecting genes to GO and KEGG 
analysis. In this investigation, these DEGs were analyzed by R langue 
(cluster profile package [version 3.14.3], Org.hs.eg. DB package 
[version 3.10.0] (for ID conversion)) (Yu et al., 2012). The detailed 
data was used ggplot2 package to demonstrate.

GSEA was performed using cluster profile in R (Martinez-
Zamudio et al., 2020). This method specified whether the pathways 
were randomly distributed at the top or bottom of the detected genes. 
The coefficients of Spearman correlation between genes and sample 
label were defined as the weight of genes. Statistical significance was 
assessed by comparing the enrichment score to enrichment results 
generated from 1,000 random permutations of the gene sets to obtain 
values (nominal value). GSEA analysis was performed on the 
expression profiles among samples of GES29378 to identify significant 
pathways involved in the development of AD.

2.3 WGCNA network construction for AD 
expression profiling

Overall, we calculated the Median Absolute Deviation (MAD) of 
each gene using the gene expression profiles of GES29378, eliminated 
the top 50% of genes with the smallest MAD, removed the outlier 

TABLE 1 Specific information on the source of the data.

Source 
database

Data type Data 
grouping 
information

Data 
grouping 
information

GEO
Transcriptome 

information
GSE29378

Hippocampal tissue 

samples from 

31 AD patients, 32 

normal 

hippocampal tissue 

samples

GEO
Transcriptome 

information
GSE48350

Hippocampal tissue 

samples from 

19 AD patients, 43 

normal 

hippocampal tissue 

samples
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genes and samples by using the goodSamplesGenes method of the R 
software package WGCNA, and further constructed a scale-free 
co-expression network using WGCNA (Langfelder and Horvath, 
2008). First, the Pearson correlation matrix and the average linkage 
method were computed for all paired genes, and then a weighted 
neighbor-joining matrix was constructed using the function. β is a 
soft-threshold parameter that emphasizes strong correlations between 
genes and penalizes weak correlations. After selecting powers of 16, 
the neighbor-joining matrix was transformed into a topological 
overlap matrix (TOM), which measures the network connectivity of 
a gene, defined as the sum of the neighbor-joining matrices of that 
gene and all other genes assigned to genes of the network, and the 
corresponding dissimilarity (1-TOM) was calculated. In order to 
group genes with similar expression profiles into gene modules, 
average connectivity hierarchical clustering was performed according 
to the TOM-based similarity metric, with the minimum size (genome) 
of the gene dendrogram being 30 and the sensitivity set to 3. To 
further analyze the modules, we computed the similarity of the genes 
characterizing the modules, selected the cut lines of the module 
dendrograms, and merged a number of modules. In addition, 
we merged modules with distances less than 0.25, resulting in 12 
co-expression modules, where gray modules were considered to be the 
set of genes that could not be assigned to any module.

2.4 Analysis of trait relationships between 
modules and AD

Correlations between co-expression modules and clinical traits 
were estimated based on whether the patient was under AD status, 
patients’ gender, and different hippocampal regions. Significant 
co-expression modules highly correlated with traits were identified. 
Module-trait relationships were calculated using the Pearson 
correlation test, and significant correlations were considered at 
p < 0.05.

2.5 Extraction and characterization of 
modular genes associated with AD 
pathological states

Gene screening requires the identification of module membership 
(MM) to determine the correlation between gene and given module. 
Therefore, MM values for each gene need to be calculated to identify 
important genes in the module. Correlation analysis was performed 
between the gene significance for AD occurrence and the MM of each 
module gene to test whether the MM is strongly associated with the 
AD occurrence status. After identifying several modules with the 
highest correlation (bright yellow module and dark green module), 
the specific genes in them were extracted. GO and KEGG analyses 
were also performed in the modules to further analyze the biological 
signaling pathways involved in the development of AD.

2.6 Identification of the hub genes in AD

We extracted intersecting genes from DEGs in AD and modular 
genes extracted from WGCNA. The extracted intersecting genes were 

then uploaded into the STRING database to further understand the 
interactions between the corresponding differential genes and 
construct protein interactions networks, using the composite 
score > 0.4 as the cutoff point. The obtained TSV files were downloaded 
and submitted to Cytoscape software to filter the top ten ranked hub 
genes by examining the topology of the protein–protein interaction 
network using the java module cytoHubba in Cytoscape.

2.7 External validation of the predictive 
efficacy of hub genes of AD

To further validate whether the obtained hub genes are diagnostic 
for the development of AD. We again extracted the AD-related dataset 
GSE48350, compared the transcript information of RNAseq data in 
normal hippocampus and hippocampus of AD patients. Then 
we analyzed the diagnostic ability of the hub gene, plotted the ROC 
curve using the R package “pROC,” and calculated the area under the 
ROC curve (AUC). The area under the ROC curve (AUC) was 
calculated. When the AUC was greater than 0.6, the relative molecule 
was regarded as a diagnostic marker with a certain degree of accuracy.

3 Results

3.1 Identification of AD-associated DEGs

The specific screening process for AD-related DEGs is shown in 
Figure 1. The AD-associated gene expression dataset GSE29378 was 
retrieved from the GEO database. The total expression of the samples 
was successfully normalized (Supplementary Figures 1A,B) and then 
uniformly log2FC transformed (Supplementary Figure  1C). The 
detailed information of the data is shown in Table 1. According to the 
screening criteria p > 0.05 and |log2FC| ≥ 0.5, we  obtained 
225 AD-associated DEGs from GSE29378, of which 85 were 
up-regulated genes and 140 were down-regulated genes. All DEGs 
were derived from the comparison of the expression profiles of 
hippocampal tissues from non-AD patients and AD patients. Both 
heatmap and volcano plot (Figures 2A,B) showed that the DEGs of 
hippocampal tissue mRNAs differed significantly between non-AD 
patients and AD patients. PCA plot (Figure 2C) from data between 
the non-AD patient group and the AD patient group showed 
differences in expression patterns between the AD group and 
non-AD group.

3.2 AD-related functional analysis

In order to further clarify the biological signaling pathways 
involved in the development of AD, we performed a GESA analysis 
between the AD and normal groups in GSE29378. This type of 
analysis was able to identify the overall signaling changes between the 
groups involved in AD and the normal group. The top ten signaling 
pathways involved in the AD and normal groups are shown in 
Figures 3A,B. Among these signaling pathways endocrine and other 
factors−regulated calcium reabsorb, nicotine addiction, synaptic 
vesicle cycle, taurine and hypotaurine metabolism, taurine and 
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hypotaurine metabolism, GABA ergic synapse, glutamatergic synapse, 
morphine addiction and oxidative phosphorylation were clearly 
upregulated in the AD group.

Meanwhile, we used GO and KEGG analysis to identify the 
signaling pathways involved in AD-associated DEGs. The results 

showed that DEGs derived from GSE29378 were mainly enriched 
in pathways such as cellular response to calcium ion, glutamatergic 
synapse, and calcium−dependent phospholipid binding 
(Figure 3C). These signaling pathways may mediate the process of 
AD development.

FIGURE 1

Specific process of analysis. The datasets used for each analysis, as well as the methods used for the analysis, are indicated by different color blocks.
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3.3 Weighting coefficient β value screening 
and identification of modules in 
co-expression networks

A co-representation network is characterized by a scale-free 
network is P (k) ∼ k-1, where k denotes the connectivity of the nodes. 

Therefore, according to the scale-free network rule, the weighting 
factor β must satisfy the condition that log (k) is negatively correlated 
with log [P (k)]. In order to determine the value of node connectivity 
K in a scale-free network, it is necessary to determine the optimal 
value of the weighting factor β. We transformed the expression profile 
of GSE29378 into a neighbor-joining matrix to construct TOM, 

FIGURE 2

Differential expression profiles of DEGs in the AD-related dataset (GSE29378). (A) Volcano plot of selected DEGs, with red color representing up-
regulated genes and blue color representing down-regulated genes, and the criteria for selecting DEGs marked with dashed lines. (B) Heatmap of 
selected genes in the samples in the AD and normal groups, with specific color blocks red and blue representing the up-and down-regulation of genes 
in samples from different groups. The range of variation in color block colors is plotted based on standard scores (Z-scores). (C) PCA plots of the 
overall differences in samples between groups, with confidence ellipses for the distribution of samples in each group indicated by different colors.
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disTOM and gene co-expression networks. The analysis can conclude 
that the co-expression network is scale-free network when β = 16, 
R2 = 0.87 (Figures 4A,B).

The hierarchical clustering tree was obtained by hierarchical 
clustering of disTOM (Figure 4C). Then, based on the dynamic tree-
cutting method, the minimum number of genes per module was 
defined as 30, and the intermediate level classification was selected to 
identify the key clusters. The dissimilarity of module feature genes was 
calculated under the condition of sensitivity = 3. The tangents of the 

module tree diagram were selected and the modules with distance less 
than 0.25 were merged (Figure 4C). Then, the genes that were not 
classified into any clusters in the previous step were classified into 
different clusters based on relevance to obtain a total of 12 modules 
(Figure  4C). One of the gray modules is a set of genes that are 
considered as a collection of genes that cannot be assigned to any 
module. The vectors between modules are characterized in 
Figure 4D. Pearson correlation coefficient was applied to cluster the 
samples to obtain the sample clustering tree shown in Figure 4E.

FIGURE 3

GSEA enrichment analysis of GSE29378 and GO and KEGG analysis of DEGs. (A,B) GSEA analysis of the GSEA dataset as a whole with the top ten 
pathways. (C) GO and KEGG pathways of DEGs obtained by screening, with specific pathways categorized as MF, BP, and CC.
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3.4 Screening and extraction of 
co-expression modules of AD trait-related 
genes

The first principal component in each module is termed ME, 
which is the single value that represents the highest percentage of 
variation among all gene expression values. Pearson correlation 
coefficients and clinical information were calculated for the MEs of all 
modules to determine which modules were associated with clinical 

features such as the development of AD and its distribution in 
hippocampal CA1 and CA3 brain regions (Figure 5A). The dark green 
module was significantly associated with the AD group (R = 0.38, 
p = 1.9e-3) and the control group (R = −0.38, p = 1.9e-3). The gray 60 
module and the steel blue module were significantly associated with 
the CA1 brain region (gray 60: R = 0.3, p = 0.02, steel blue: R = 0.3, 
p = 0.02) and the CA3 brain region (gray 60: R = −0.33, p = 8.1e-3, steel 
blue: R = −0.32, p = 9.7e-3). The royal blue module was significantly 
associated with the CA3 brain region (R = −0.25, p = 0.05). Each 

FIGURE 4

Analysis of co-expression modules. (A) Relationship between scale-free fit indices and various soft-threshold powers. (B) Relationship between 
average connectivity and various soft-threshold powers. (C) Clustering dendrogram of different genes with different colors representing different 
modules. (D) Vector clustering plot of module features. (E) Clustering dendrogram of the 62 samples in GSE29378.

https://doi.org/10.3389/fnins.2024.1359631
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2024.1359631

Frontiers in Neuroscience 08 frontiersin.org

FIGURE 5

Analysis of clinically important modules. (A) Relationships of the 6 features with the 12 modules; (B) Scatterplot describing the relationship between 
MM and GS in the dark green module; (C). Scatterplot describing the relationship between MM and GS in the bright yellow module. (D) GO and KEGG 
analysis of genes in the dark green module. (E) GO and KEGG analysis of genes in the dark green module.

https://doi.org/10.3389/fnins.2024.1359631
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2024.1359631

Frontiers in Neuroscience 09 frontiersin.org

module represents a specific clinical feature of AD patients and the 
highly co-expressed genes in the same module have potential 
biological significance.

To ensure the reliability of the identification results of the 
AD-associated modules, these modules were re-identified by 
calculating the average absolute gene significance (GS) values of the 
AD-associated genes in each module. The dark green module and the 
bright yellow module had the largest absolute mean values of GS 
associated with AD (Figures 5B,C). Hub gene screening requires the 
identification of module membership (MM) to determine the 
correlation between gene and given module. Therefore, the MM value 
for each gene needs to be  calculated to identify the genes in the 
module. Using MM threshold = 0.8, GS threshold = 0.1, and weight 
threshold = 0.1 criteria, we obtained 124 and 52 genes in dark green 
and bright yellow modules, respectively. These genes had the highest 
correlation with AD and may have an important relationship with the 
development of AD. To clarify the functions of these two groups of 
genes, GO and KEGG analyses were performed, respectively. The 
genes in dark green module were mainly associated with protein 
folding, response to unfolded proteins, endoplasmic reticulum 
chaperone complexes, and protein processing in the endoplasmic 
reticulum and other pathways (Figure 5D). The genes in the bright 
yellow module were mainly enriched in pathways such as regulation 
of extracellular matrix organization, intercellular junctions, genesis of 
the reproductive system, and calcineurin binding involved in 
intercellular adhesion (Figure 5E).

3.5 Identification of hub genes associated 
with AD

To further clarify the important hub genes mediating the 
development of AD, we obtained AD-associated DEGs intersected 
with dark green module genes and bright yellow module genes, 
respectively, and a total of 51 genes were obtained (Figure 6A). GO 
and KEGG analyses indicated that these intersected genes were mainly 
enriched in the response to unfolded proteins, cell-lining junction, 
calcium adhesion protein binding, and chaperonin-mediated protein 
folding pathways (Figure 6B). These 51 genes were put into the string 
database to obtain the interaction networks between their 
corresponding proteins (Figure 6C). Ten most closely linked genes 
(HSPA1B, HSPB1, HSPA1A, DNAJB1, HSPB8, ANXA2, ANXA1, 
SOX9, YAP1 and AHNAK) in the network data were extracted and 
identified as the hub genes of AD using the huba algorithm of 
cytoscape software (Figure 6D). They have important roles in the 
development of AD.

3.6 Revalidation of AD-related hub genes

To test whether the 10 hub genes have a diagnostic role in the 
development of AD. We  extracted another AD-related dataset 
(GES48350) as a validation cohort. The expression of these 10 hub 
genes was used as a diagnostic indicator to predict the occurrence of 
AD or not, and the corresponding ROC curves were made. As shown 
in Figure 7 among these 10 hub genes, HSPA1B and HSPB1 have weak 
diagnostic efficacy for AD (AUC < 0.6), DNAJB1, ANXA2 and 
AHNAK have some diagnostic efficacy for AD (0.6 < AUC < 0.75), 

while SOX9, HSPA1A, ANXA1, HSPB8 and YAP1 have significant 
diagnostic efficacy for AD (AUC > 0.75). The results suggest that 
external validation of these 10 hub genes indeed predicts the 
development of AD and may have an important role in the 
development of AD.

4 Discussion

AD is the most common cause of dementia, with 60–80% caused 
by genetic factors (Scheltens et al., 2021). Since the core mechanisms 
of molecular characterization and mechanistic pathways are still 
unknown, more precise pathogenic targets and key pathways can 
be obtained by using multiple integrated analytical methods to covary 
the histological data of AD. This may not be achievable with any single 
histological research method. Therefore, we aimed to jointly identify 
novel AD hub genes by analyzing DEGs and WGCNA for 
transcriptomic data information in the hippocampal region of AD.

Transcriptomic information from lesions in many brain regions 
should be  taken into account in the screening of DEGs for AD, 
including: posterior cortical atrophy for visuospatial impairments 
(Alladi et al., 2007), frontotemporal lobe degeneration for progressive 
aphasia and cognitive deficits (Bergeron et al., 2018; Graff-Radford 
et al., 2021), frontal neuroprogenitor fiber tangles for executive deficits 
(Townley et  al., 2020), corticobasal degeneration for motor 
dysfunction (Mathew et al., 2012), and hippocampus for learning and 
memory deficits (Mu and Gage, 2011). AD is often characterized by 
progressive memory loss and cognitive deterioration mostly related to 
hippocampal function, and the hippocampus as a specific, vulnerable 
brain region is often the first to be affected by AD lesions. Therefore, 
we chose to compare the transcriptomic information (GSE29378) of 
normal human hippocampal brain regions and hippocampal brain 
regions of AD patients to uncover AD-related hub genes.

In the GSE29378 dataset, we  compared AD and non-AD 
expression data with the help of differential genes to find AD-related 
DGEs (p < 0.05, |log2FC| ≥ 1). In the exploration of DEGs associated 
with previous diseases, the screening criteria for DEGs in brain 
tumors such as gliomas were mostly set at p < 0.05, |log2FC| ≥ 1.0 
(Huang et  al., 2020), and the screening criteria for neurological 
autoimmune diseases such as multiple sclerosis were also mostly set 
at this criterion (Li et al., 2021). However, after downloading and 
standardizing the data, it was difficult to obtain a sufficient number of 
DEGs associated with AD even at p < 0.05. When screening for 
differential genes, we initially chose to use p < 0.05, |log2FC| ≥ 1, but 
only got 8 differential genes. This suggests that we may have missed 
some important genes, and at the same time we cannot guarantee the 
novelty of those genes found. This is likely because mRNAs in the 
hippocampus are not as up-regulated or down-regulated in AD as in 
tumors and autoimmune diseases, or AD is a chronic process with 
complex gene involvement and ack of large gene expression in 
quantity. It is difficult for the genes to be involved in the same time to 
directly regulate the AD process and lack specificity. The screening 
criteria for the AD dataset have not yet been determined. A and B use 
|log2FC| ≥ 0.5, p < 0.05 as the criteria for screening DEGs (Wang et al., 
2021; Zhang et al., 2021). In order to ensure that a sufficient number 
of DEGs were obtained, we also chose this criterion for screening 
DEGs. However, this kind of screening will inevitably miss some 
important genes affecting the occurrence and development of 
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AD. Biological pathways involved in altered synaptic vesicle cycling, 
GABAergic synapses, and glutamatergic synapses are associated with 
altered traits between groups of AD and non-AD samples in 
GSE29378. Previous studies have shown that the function of neuronal 
axonal transport and synaptic vesicle release in neurons determines 
neuronal plasticity (Lazarevic et al., 2017; Palikaras and Tavernarakis, 
2020). In contrast, the regulation of Aβ through CDK5, calmodulin 
phosphatase signaling, and increased synaptic vesicle cycling in the 
AD state disrupts synaptic function and homeostasis, ultimately 
leading to cognitive decline and neurodegeneration (Wu et al., 2022). 
At the same time, APP, the precursor protein of Aβ, interacts with the 
neuron-specific potassium chloride (K + -Cl-) cotransporter KCC2/
SLC12A5 and regulates GABAergic synaptic levels and activity 
affecting synaptic vesicle release (Tang, 2019). Compensatory 
enhancement of excitatory signaling or remodeling in early AD 

correlates with an early and pronounced loss of glutamatergic synapses 
in its progression (Mitew et al., 2013). This suggests that the differences 
we defined between the AD and normal groups are indeed associated 
with AD, and after screening for DEGs, these DEGs were mainly 
enriched in the pathways of calcium-dependent phospholipid binding, 
glutamatergic synapse, and cellular response to calcium ion in line 
with the GESA analysis, which also suggests that these DEGs are 
indeed associated with AD.

However, a single approach still struggles to explain the 
importance of these 57 DEGs for AD, and we used the WGCNA 
analysis to avoid using p-values and logFC alone as the sole measure 
of hub genes. WGCNA is not only a systems biology approach for 
describing patterns of genetic correlation among microarray samples, 
using module signature genes to summarize these sample clusters, but 
also a signature gene network approach to correlate modules with 

FIGURE 6

Identification of hub genes. (A) Intersection of DEGs, bright yellow module genes and dark green module genes. (B) Functional enrichment analysis of 
the intersected genes. (C) PPI network of intersecting genes. (D) Calculated top ten ranked hub genes.
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each other and with external sample traits, as well as for calculating 
module membership metrics (Langfelder and Horvath, 2008; Zhao 
et al., 2010). Thus, this methodology is more of a holistic methodology 
that measures the co-expressed gene modules among samples and 
explores the linkages between these modules and sample traits. The 
performance of WGCNA in hub discovery for AD and other 

neurological disorders was well supported by the literature 
(Mukherjee, 2021; Lin et al., 2022). However, we must also realize that 
there are limitations in WGCNA analysis: 1. The samples in the 
selected dataset should be  larger than 15  in order to focus on the 
formation of effective modules. 2. WGCNA mostly uses default 
parameters to control the construction of the network and the 

FIGURE 7

Expression and functional validation of hub genes. 10 hub genes in the validation dataset GSE48350 ROC profile.
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extraction of the different modules, and does not preset the 
differentially expressed genes in advance. After our WGCNA analysis 
of the AD dataset, we focused on a few specific modules: the dark 
green module and the bright yellow module, which are positively 
correlated with AD status, the gray 60 module and the steel blue 
module, which are positively correlated with CA1, as well as the navy 
blue, steel blue, and gray 60 modules, which are negatively correlated 
with the CA3 brain region. However, we considered the hub genes 
should be more used for AD diagnosis and treatment, the relationship 
between the module genes and hippocampal subdivisions and their 
role on AD will be further elucidated in subsequent studies. One of 
the dark green modules we extracted 124 genes, these are mainly 
related to the response to unfolded proteins. The genes in bright 
yellow module, on the other hand, were mostly involved in 
intercellular adhesion, organ development, and other energies. This 
showed the consistency of processing with the development of AD 
occurrence. Finally, we obtained a total of 52 genes by intersecting 
these module genes with the DEGs of AD, and further analysis showed 
that these genes were associated with protein folding and intercellular 
adhesion, corroborating the previous analysis. Finally, we obtained 10 
hub genes among them: HSPA1B, HSPB1, HSPB8, HSPA1A, DNAJB1, 
ANXA2, ANXA1, SOX9, YAP1 and AHNAK.

10 AD-related hub genes were eventually identified, and these 
were supported in the literatures that some of them are involved in the 
development of AD. Five of these 10 hub genes (HSPA1B, HSPA1A, 
HSPB1, HSPB8, DNAJB1) are from the heat shock protein family. 
Heat shock proteins (HSPs) are molecular chaperones which can 
be categorized into nine subfamilies (HSP10 (HSPE), HSP20 (HSPB), 
HSP40 (DNAJA, DNAJB, DNAJC), HSP60 (HSPD), HSP70 (HSPA), 
HSP90 (HSPC), and the large HSPs) with forms and functions capable 
of being expressed and induced by stress to promote proper folding of 
newly synthesized polypeptides, regulate assembly and disassembly of 
multiprotein complexes, and regulate intracellular protein trafficking 
and transmembrane transfer (Tower, 2009; Hu et al., 2022). It was 
found that the A2 allele of HSPA1B was able to quantitatively affect 
the mental state of patients and attenuate the anti-cellular oxidative 
stress effect of HSPA1B, increasing the incidence of AD (Clarimón 
et al., 2016; Ramos et al., 2018). HSPA1A is an isoform of HSP70. 
HSPA1A was found to be  highly expressed in cerebrospinal fluid 
extracellular vesicles of AD patients directly involved in AD 
progression. HSPA1A expression was down-regulated in the 
prefrontal cortex of patients with advanced AD, and these may 
be directly related to its inhibition of the aggregation of tau protein 
isoforms (Voss et al., 2012; Kitzlerová et al., 2018; Muraoka et al., 
2020). Moreover, it has also been shown that HSPA1A is also a gene 
that mediates the interaction between AD and depression (Mathys 
et al., 2019). HSPB8 also has an important effect on the development 
of AD. In cell lines expressing amyloid precursor protein (AβPP), 
HSPB1 expression alters the expression and processing of AβPP and 
directly reduces the amount of Aβ42 released by the cell line protecting 
the cells from the potential toxic effects of Aβ (Conway et al., 2014). 
At the same time HSPB1 can segregate toxic Aβ oligomers and convert 
them into large non-toxic aggregates to eliminate the toxicity of Aβ 
oligomers to cells, potentially reducing plaque deposition in AD 
patients (Ojha et al., 2023). Inhibition of the lncRNA SNHG14/UPF1 
axis promotes HSPB8 expression, which inhibits apoptosis in AD 
neuronal cells (Tan et al., 2023). Meanwhile, HSPB8 can inhibit the 

production of D-Aβ1-40 and the formation of β-folds, and completely 
inhibit D-Aβ1-40-mediated cerebrovascular cell death (Wilhelmus 
et al., 2006). The DNAJB (Hsp40) family functions in protein folding 
or defolding, membrane trafficking, synaptic regulation, and 
mitochondrial function affect not only dopaminergic 
neurotransmission, but also Parkinson’s-associated neuropathological 
changes (Hasegawa et al., 2018). At the same time this chaperone 
protein interacts with β-proteins to promote intracellular aggregation 
of β-peptides and facilitates their translocation to mitochondria to 
exert toxic effects on AD patients (Ring et al., 2022). Annexin A1 
(ANXA1) is a glucocorticoid anti-inflammatory mediator in the 
peripheral system that efficiently and selectively removes apoptotic 
neuron-like cells (McArthur et al., 2010). In early AD, ANXA1 is 
increased in the brain, where it is able to reduce Aβ levels by increasing 
the enzymatic degradation of neprilysin in N2a cells and to stimulate 
phagocytosis of Aβ by microglia to reduce inflammatory mediators 
produced as a result of Aβ stimulation (McArthur et  al., 2010). 
ANXA1 levels were reduced in the peripheral plasma of patients with 
behavioral variants of AD and showed a correlation between ANXA1 
and the production and abatement of its peripheral inflammatory 
mediators (Fraga et al., 2019). We found that ANXA2 did not exhibit 
a direct association with AD, but it has been shown that ANXA2 
develops calcium-regulated membrane-cytoskeletal junctions that 
exhibit interactions with tau proteins in the context of Ca2+ segregation 
or elimination of differential capture of tau proteins by knockdown of 
ANXA2 (Gauthier-Kemper et al., 2011). SRY-box transcription factor 
9 (SOX9) is a positive regulator of astrocyte formation, and activation 
of miR-22-3p levels in the hippocampus of mice improves their 
cognitive performance through SOX9-mediated activation of the 
NF-κB signaling pathway (Xia et al., 2022). Yes-associated protein 1 
(YAP1), a transcriptional regulator that promotes tissue growth and 
regeneration, is also a potential regulator of AD (Xu et al., 2017). YAP 
was down-regulated and inactivated in hippocampal astrocytes of AD 
model mice in a hippocampal pathway-dependent manner, whereas 
activation of the YAP-CDK6 pathway improved cognitive function in 
both AD model mice and senescent mice (Ries et al., 2016). In the 
study of cognitive improvement by dexmedetomidine (Dex) in AD 
patients, the miR-129/YAP1/JAG1 axis may be a potential mechanism 
by which Dex protects against cognitive impairment in AD patients 
(Sun et al., 2020). However, we found that only 9 of these 10 hub genes 
were found to be directly associated with AD, among which the role 
of HNAK in AD has not yet been elucidated. Meanwhile, existing 
studies on the mechanisms of these molecules for the development of 
AD are still small and vary in depth, and these molecules still have 
great potential for research.

In the past literature, there is the identification of AD-related hub 
genes by using only the modular genes in DEGs or WGCNA to identify 
AD hub genes, which is still slightly insufficient in terms of in data 
selection and processing (Wu et  al., 2021; Liang et  al., 2022). In 
comparison, the strengths in our study: 1. The combination of two 
common methods can minimize the selection bias on hub genes. 2. 
Step-by-step analysis and validation, and try to be  biologically 
functional and clinically phenotypically oriented in screening. 3. 
Supplementary dataset as a validation cohort for secondary validation 
of clinical value. However, this study still has some limitations that are 
difficult to avoid. Firstly, due to the difficulty in obtaining tissue 
samples, the active state of the tissue cells cannot be guaranteed in 
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subsequent studies. Secondly, the present study was limited to the 
hippocampal region only, whereas the pathogenesis of AD is related to 
multiple brain regions, and a single role of the hippocampus cannot 
explain the multifactorial problem of AD. Meanwhile, since our criteria 
for screening hub genes were decided based on the existing analysis, 
there may still be some neglected important factors involved in the 
development of AD. In our subsequent studies we  will combine 
different brain regions for further and more favorable analysis and 
validation. By targeting some new key targets and pathogenic pathway 
pathways (vascular accidents and specific functional synapses), 
effective treatment of AD may be  realized (Shekhar et  al., 2021). 
Specifically, the follow-up studies, as shown in Figure 8, consisted of 
combining a multi-omics approach to probe AD-related hub genes 
within multiple brain regions based on the present study. Analyze and 
validate the roles of these hub genes in the dominant pathways and 
synapses. Based on this, experimental models were established to 
investigate the molecular mechanisms of AD regulation by these 
molecules. We will also explore the role of these molecules in predicting 
the course of the disease in the clinic and develop possible target drugs.

In conclusion, we  used a combination of differential gene 
screening methods and WGCNA sorting of modular genes to jointly 
identify hub genes that mediate AD onset and development in 
hippocampal brain regions. Ten hub genes, HSPA1B, HSPB1, 
HSPA1A, DNAJB1, HSPB8, ANXA2, ANXA1, SOX9, YAP1, and 

AHNAK, were identified by extracting genes intersecting the two 
modular genes in the DEGs and WGCNA. an external dataset 
validated the diagnostic significance of these molecules for AD. This 
study identifies new AD-related genes in the hippocampus and 
provides new potential therapeutic biomarkers, and 
molecular pathways.
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