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Hippocampal pyramidal neurons exhibit diverse spike patterns and gene 
expression profiles. However, their relationships with single neurons are not fully 
understood. In this study, we designed an electrophysiology-based experimental 
procedure to identify gene expression profiles using RNA sequencing of 
single hippocampal pyramidal neurons whose spike patterns were recorded 
in living mice. This technique involves a sequence of experiments consisting 
of in vivo juxtacellular recording and labeling, brain slicing, cell collection, 
and transcriptome analysis. We  demonstrated that the expression levels of a 
subset of genes in individual hippocampal pyramidal neurons were significantly 
correlated with their spike burstiness, submillisecond-level spike rise times 
or spike rates, directly measured by in vivo electrophysiological recordings. 
Because this methodological approach can be  applied across a wide range 
of brain regions, it is expected to contribute to studies on various neuronal 
heterogeneities to understand how physiological spike patterns are associated 
with gene expression profiles.
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Introduction

The hippocampus is composed of millions of excitatory pyramidal neurons, and their 
cooperative spike activity underlies information processing in episodic learning and memory 
(Scoville and Milner, 1957; Zola-Morgan et al., 1986). A number of physiological studies with 
large-scale multiunit recordings from the hippocampus have demonstrated that spike patterns 
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(e.g., frequency, burstiness, inter-spike interval, synchronicity with 
other neurons) are not homogenous but are rather considerably 
variable across individual pyramidal neurons during spatial encoding 
and memory processing in living animals (Ylinen et  al., 1995; 
Csicsvari et al., 2000; Mizuseki and Buzsaki, 2013), highlighting the 
need for further investigation of the physiological diversity of 
hippocampal pyramidal neurons.

However, evidence has accumulated that hippocampal pyramidal 
cells are highly heterogeneous and can be  classified into distinct 
subpopulations based on their developmental processes (Cavalieri 
et al., 2021; Huszar et al., 2022), morphological characteristics (Graves 
et  al., 2012; Thome et  al., 2014), and gene expression profiles 
(Cembrowski et al., 2016; Habib et al., 2016; Saunders et al., 2018; 
Cembrowski and Spruston, 2019). Furthermore, recent advancements 
in spatial transcriptome analysis have enabled the evaluation of how 
the gene expression patterns of hippocampal neurons are spatially 
distributed in the hippocampal tissue (Rodriques et al., 2019; Stickels 
et al., 2021). A key question is how these heterogeneous molecular 
characteristics of hippocampal neurons are associated with their 
diverse physiological spike patterns.

Several techniques have been applied to neocortical neurons to 
address the issue of linking physiological and molecular characteristics. 
For example, in vivo two-photon calcium imaging to record activity 
patterns of neurons is combined with subsequent multiplexed 
fluorescent in situ hybridization (Xu et al., 2020; Bugeon et al., 2022) 
or sampling of the imaged neurons for single-cell RNA sequencing 
(Lee et al., 2019; Liu et al., 2020; O'Toole et al., 2023). Although these 
imaging-based approaches are effective for the analysis of neocortical 
neurons, they are not well-suited for analyzing hippocampal neurons, 
where the excitation light for optical imaging is less accessible, and the 
synchronization of spike patterns with extracellular oscillations on a 
millisecond level plays a crucial role in learning and memory.

To target the hippocampal neurons, we used in vivo juxtacellular 
recording (Pinault, 1994, 1996; Oyama et al., 2013; Dempsey et al., 
2015), an electrophysiology-based single-cell spike recording 
technique, to reveal the link between spike patterns and gene 
expression patterns. In vivo juxtacellular recording is a unique method 
to locate the recorded neurons and is therefore useful in combination 
with other methods such as morphological analysis (Hodapp et al., 
2022) and in situ hybridization (Mallet et al., 2006). Our procedures 
involved juxtacellular recording from hippocampal neurons, followed 
by a series of experiments, including cell labeling, cell sampling 
(Hempel et  al., 2007), and single-cell RNA sequencing (Sasagawa 
et  al., 2018). Here, we  demonstrate that several genes are indeed 
correlated with the spike patterns of hippocampal neurons recorded 
from a head-fixed mouse.

Materials and methods

Experimental animals

All experiments were performed with the approval of the 
Experimental Animal Ethics Committee at the University of Tokyo 
(approval number: P29-7) and the Committee on Animal Experiments 
at Tohoku University (approval number: 2022 PhA-004) and 
according to the NIH guidelines for the care and use of animals. A 
total of 25 male ICR mice (21 days old; SLC, Shizuoka, Japan) were 

used. The mice were housed on a 12-h light/12-h dark schedule with 
lights off at 8:00 PM. Food and water were readily available.

Surgery

All the mice were anesthetized with urethane (2.25 g/kg, i.p.) 
(Nishimura et  al., 2020, 2021). In a previous study, hippocampal 
neurons were active under urethane-induced anesthesia (Yagishita 
et al., 2020). After confirming that there was no righting reflex in 
response to hind limb pinching, the mice were fixed in a stereotaxic 
instrument (Narishige, Tokyo, Japan) with two ear bars and a nose 
clamp. An incision was made along the midline of the scalp, from the 
area between the eyes to the back of the head, and the periosteal soft 
tissue within the incised area was removed. An area for the cranial 
window (1.5 × 2.0 mm2; 1.8 mm posterior to the bregma and 1.8 mm 
ventrolateral to the sagittal suture) was marked. The skull surface 
outside the cranial window was coated with dental resin, and a plastic 
plate (designed and printed using a 3D printer) was fixed to the head 
using dental cement. The mice were moved to another stereotaxic 
instrument (O’Hara & Co., Ltd., Tokyo, Japan), a craniotomy was 
performed to create a rectangular hole, and the dura was removed. 
The cranial window was covered with phosphate-buffered saline (PBS; 
pH 7.4) until glass pipettes were inserted.

In vivo juxtacellular recordings

Through the window, a borosilicate glass pipette (4.5–16.1 MΩ) was 
inserted at 100 μm/s to a depth of 900 μm from the brain surface, and 
the PBS on the cranial window was replaced with 1.7% agar. The 
electrode was slowly lowered at 0.2 μm/s into the hippocampus, and a 
juxtacellular recording was obtained from a neuron in the CA1 stratum 
pyramidale. The intra-electrode solution consisted of the following 
reagents: a fluorescent dye (1 mM Alexa 488 hydrazide and/or 1 mM 
Alexa 594 hydrazide), 1.5% biocytin, 135 mM NaCl, 5.4 mM KCl, 5 mM 
HEPES, 1.8 mM CaCl2, and 1 mM MgCl2. The solution was adjusted to 
pH 7.2–7.3 and 285–300 mOsm and filter-sterilized through a 0.2-μm 
filter. Extracellularly recorded signals were amplified with an ELS-03XS 
amplifier (NPI Electronic, Tamm, Germany), digitized at 20 kHz with 
Axon Digidata 1550 B (Molecular Devices, San Jose, CA, USA), and 
analyzed using pCLAMP  12.1 software (Molecular Devices). 
Juxtacellular recordings were maintained under two criteria: the 
electrode resistance was <2.5 times the baseline that was observed at the 
beginning of recordings; the amplitude of spike waveforms was 
>1.5 mV. During the period that met these criteria, recordings were 
obtained for up to a maximum of 30 min. The cell labeling was then 
performed as described in the next paragraph. When the downward 
components of the spikes disappeared during recordings, recordings 
were immediately terminated, resulting in a recording duration of less 
than 30 min, and the cell labeling was then performed. No significant 
correlations were found between recording durations and expression 
levels of 25 metagenes (n = 40 cells, p > 0.05, Spearman’s correlation).

We attempted to insert an electrode into the brain with the two 
Alexa fluorescent dyes three times for each hemisphere, resulting in 
up to six attempts in total in one mouse. Based on our skills, the 
success rate of obtaining a juxtacellular recording was 
approximately 60%.
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Cell labeling

After recording, the recorded neurons were labeled with an Alexa 
fluorophore through electroporation using one of the following 
methods. A current-based method (Pinault, 1994, 1996) was 
performed by injecting rectangular current pulses (5–20 nA, 500 ms 
on/off or 250 ms on/off) for 3–10 min. The amplitude of the current 
for each neuron was adjusted such that the neuron emitted spikes in 
response to the current pulses. In addition to the evoked spikes, 
fluctuations in the baseline voltages were enhanced during current 
injection. A voltage-based method (Oyama et al., 2013; Dempsey 
et al., 2015) was performed by injecting 300 monophasic pulse trains 
(−10 V, 0.5 ms) at 100 Hz. Successful labeling was signaled by the 
transient broadening of evoked spikes and the disappearance of the 
downward components of the evoked spikes. Both methods 
successfully labeled a single neuron in each experiment. Current- and 
voltage-based methods were applied to 8 neurons in 7 mice and 32 
neurons in 19 mice, respectively. No significant differences were 
detected for all of the 25 metagenes tested (n = 8 and 32 cells, p > 0.05, 
Student’s t-test).

Acute slice preparation

After cell labeling, the mice were decapitated under 
anesthesia. The brains were removed quickly, and coronal 
hippocampal slices (200–300 μm thick) were prepared using a 
vibratome in ice-cold, oxygenated modified artificial 
cerebrospinal fluid (modified ACSF) (Sasaki et al., 2011), which 
consisted of 222.1 mM sucrose, 27 mM NaHCO3, 1.4 mM 
NaH2PO4, 2.5 mM KCl, 1 mM CaCl2, 7 mM MgSO4, and 0.5 mM 
ascorbic acid. The slices were incubated in oxygenated ACSF, 
which consisted of 127 mM NaCl, 1.6 mM KCl, 1.24 mM KH2PO4, 
1.3 mM MgSO4, 2.0 mM CaCl2, 26 mM NaHCO3, and 10 mM 
d-glucose, for 30 min.

Sampling of labeled neurons from acute 
slices

The slices were placed in a disposable plastic dish with 
oxygenated ACSF. Under epifluorescence microscopy (Eclipse 
FN1, Nikon Solutions Co., Ltd., Tokyo, Japan), the labeled neurons 
were located from the slices based on the fluorescence of Alexa 488 
and/or Alexa 594. After confirming that single neurons, not 
multiple neurons, were fluorescently labeled, a glass pipette 
(15–25 μm tip diameter) under very weak positive pressure 
(<10 mbar) was placed in close contact with the fluorescently 
labeled neuron (Hempel et  al., 2007) (Figure  1E). The intra-
solution of the glass pipette consisted of ACSF with 1 U/μL 
SUPERase•In RNase Inhibitor (Thermo Fisher Scientific, Waltham, 
MA, USA). Negative pressure (20 mbar) was then applied to the 
glass pipette, and the soma of the labeled neuron was collected. The 
glass pipette was carefully withdrawn by maintaining a weak 
negative pressure to avoid soma loss. Each collected sample was 
immediately transferred to a lysis buffer (0.111 μM barcoded RT 
primers, 0.12 mM dNTP mix, 0.3% NP-40, 1 unit/μL RNasin Plus). 
The samples were stored at −80°C until use.

Quartz-Seq2 single-cell RNA-seq analysis

The cryopreserved single-cell lysate was used to construct a 
sequence library in accordance with the methods described in the 
original Quartz-Seq2 study (Sasagawa et al., 2018). The library was 
sequenced using an Illumina HiSeq X sequencer (Illumina, San Diego, 
CA, USA). The sequence specifications of the Quartz-Seq2 library 
were as follows: Read1, 23 bp (15-bp cell barcode +8-bp UMI); index1, 
6 bp; Read2, 91 bp. The Cell Ranger Software Suite v7.1.0 (10x 
Genomics, Pleasanton, CA, USA) was used to perform sample 
de-multiplexing, barcode processing, single-cell 3′ unique molecular 
identifier (UMI) counting and generating the gene-barcode expression 
matrix. The matrix was imported into Seurat v4 (Hao et al., 2021) for 
quality control and downstream analyses. Except in certain situations, 
default parameters were used in all operations. Sctransform in Seurat 
was used to normalize the UMI count in each sample. Z-scores for 
gene expression levels were calculated for each gene across all samples.

Spike analysis

The LFP signals were high-pass filtered at 500 Hz. The envelope of the 
filtered LFP traces was calculated by Hilbert transformation, and spikes 
were detected if the peaks of the envelope exceeded a manually defined 
threshold (0.25–1 mV) so that the spike signals could be separated from 
the noise. To compute the rise time from the spikes in each neuron, 
nonfiltered spike signals were aligned to the peak times of the individual 
spikes, and all aligned filtered traces were then averaged. In the averaged 
trace, a spike onset was defined as a time when a spike trace first exceeded 
one standard deviation above the mean of the baseline voltages 0.5–2.0 ms 
before the peak of the trace. The rise time was calculated as the difference 
between the onset and peak times.

Identification of bursty and non-bursty 
cells

Neurons were classified into bursty and non-bursty neurons, as 
described previously (Latuske et al., 2015; Ebbesen et al., 2016; Coletta 
et  al., 2018). A principal components analysis was applied to a 
distribution (i.e., 30-dimensional vector) of inter-spike intervals less 
than 15 ms (bin = 0.5 ms) (Figure 2A). Neurons were grouped into two 
clusters, including bursty and non-bursty neurons, through k-means 
clustering applied to the first three principal components 
(Supplementary Figure S2). Subsequently, a Fisher’s linear 
discriminant separating between bursty and non-bursty neurons was 
computed. For each neuron, a burstiness was defined as a distance 
from the linear discriminant (Ebbesen et  al., 2016). Bursty and 
non-bursty neurons had positive and negative distance, respectively.

Hierarchical classification

Based on Word’s minimum variance method and Spearman’s rank 
correlation coefficient as a measure of similarity in the R software (The R 
Foundation, Vienna, Austria), hierarchical cluster analysis was performed 
to group all 8,462 genes and 40 cells according to the degree of similarity 
present in the gene expression data. In the resulting dendrogram of the 
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genes, we defined 25 metagenes using the tree-cut method implemented 
through the cuttree function in R software.

Statistical analysis

R v4.3.0 (R Core Team) and MATLAB 2020a (MathWorks, Natick, 
MA, USA) were used for statistical analyses. Differentially expressed 
genes were identified using the ‘poisson’ likelihood ratio test from 
FindMarkers function in Seurat package. Spearman’s rank correlation 
coefficients were computed between gene expression levels and rise 
times or firing rates of individual neurons. The null hypothesis was 
rejected at p < 0.05. To control the false discovery rate in the multiple 
comparison tests, we  calculated the q-value using the Benjamini-
Hochberg method. The details of the statistical tests are provided in 
the corresponding legends of the figure panels.

Results

Gene expression analysis from 
juxtacellularly recorded neurons in vivo

We designed an experimental approach to measure the gene 
expression profiles in neurons whose spike patterns were recorded in 

vivo (Figure 1A). To measure neuronal activity in live mice, we applied 
a juxtacellular recording technique that measures spike patterns at the 
single-cell level and subsequently labeled the recorded neurons with 
a fluorophore through electroporation (Pinault, 1994, 1996; Oyama 
et al., 2013; Dempsey et al., 2015). Mice were anesthetized and their 
heads were fixed in a stereotaxic device, and a juxtacellular recording 
was obtained from a dorsal hippocampal CA1 pyramidal neuron 
using a glass pipette filled with Alexa fluorescent dye (Figure 1B). In a 
single mouse, we recorded up to four neurons by using two fluorescent 
dyes and by targeting both sides of the hemispheres. After recording 
the extracellular voltage signals, including spikes for 28.8 ± 7.2 min 
(n = 40 neurons), electroporation was performed by injecting electrical 
pulses to introduce the fluorescent dye into the recorded neuron. The 
injected pulses evoked burst-like spikes with increased baseline 
voltage fluctuations in the recorded neurons, which are typical signs 
of successful cell labeling (Figure 1C and Supplementary Figure S1). 
Immediately after cell labeling, the brains were removed from the 
mice, and acute hippocampal slices with a thickness of 200 μm were 
prepared. In the sequence of slices, hippocampal neurons in the CA1 
cell layer labeled with fluorescent dye were identified using 
fluorescence microscopy (Figure 1D and Supplementary Figure S1). 
The success rate of identifying the labeled neuron was 39.5% (45 
neurons / 114 recordings). The labeled neurons were collected using 
a glass pipette at a negative pressure of 20 mbar (Figure  1E and 
Supplementary Figure S1). This step was not successful in a minority 

FIGURE 1

Application of RNA sequencing analysis to juxtacellularly recorded hippocampal neurons from head-fixed mice. (A) Experimental procedures. A 
fluorescently labeled neuron identified in a slice is indicated by an arrow. (B) Juxtacellularly recorded high-pass-filtered (500  Hz) voltage trace 
including spikes. (C) Trace showing spikes in response to current injections for labeling of the recorded neuron. (D) Superimpositions of the locations 
of all recorded neurons (black dots) on the dorsal hippocampal CA1 cell layer in sequential coronal brain sections. (E) Representative sequential images 
and fluorescent pictures (from top to bottom) for sampling of a labeled neuron in panel (C). After attaching a glass pipette to the soma of the labeled 
neuron (i), a negative pressure with 20  mbar is applied to the pipette to suck the cell (ii). After sufficient suction, the pressure was released (iii). (F) Log-
normalized counts of all 40 neurons sampled, illustrating genes with relevant neuronal markers (housekeeping, excitatory, inhibitory, and non-neuronal 
cell markers).
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of neurons (3 / 45 neurons) due to photobleaching. The collected 
neurons were subjected to single-cell RNA sequencing analysis using 
the Quartz-Seq2 method (Sasagawa et al., 2018). Two neurons with a 
read count of less than 5,000 were excluded, resulting in a dataset of 
transcriptomes from 40 neuron samples (with 50,457 ± 13,599 read 
counts). In this dataset, all samples were confirmed as excitatory 
neurons showing stronger expression of housekeeping genes and 
excitatory neuronal marker genes, but not inhibitory neuronal and 
non-neuronal marker genes (Figure 1F). Overall, the success rate of 
total steps from cell labeling to gene expression analysis was 34.5% (40 
neurons / 114 recordings).

Gene expressions between bursty and 
non-bursty hippocampal neurons

CA1 pyramidal neurons are diverse in the levels of burst firing 
patterns (Jensen et al., 1996; Jarsky et al., 2008). In our datasets, 40 
neurons were classified into 7 (17.5%) bursty and 33 (82.5%) 
non-bursty neurons based on a PCA and k-means clustering (Latuske 
et al., 2015; Ebbesen et al., 2016; Coletta et al., 2018) (Figures 2A,B and 
Supplementary Figure S2), consistent with previous studies (Jensen 

et al., 1996; Jarsky et al., 2008). Gene expression patterns related to the 
differences between these two cell types were analyzed (Figure 2C and 
Supplementary Data S1, n = 8,462 genes and 40 cells; adjusted p-value 
<0.05). Overall, 256 and 36 genes showed significantly higher and 
lower expressions in bursty neurons, respectively. Especially, several 
genes in the Atp5 family were significantly upregulated in the bursty 
neurons (Figure  2D; Atp5a1: p = 1.7 × 10−10, q = 5.1 × 10−8; Atp5b: 
p = 1.2 × 10−18, q = 1.0 × 10−10; Atp5g1: p = 6.0 × 10−4, q = 0.024; Atp5h: 
p = 2.4 × 10−6, q = 3.1 × 10−4; Atp5l: p = 3.9 × 10−4, q = 0.0017; Atp5o: 
p = 8.0 × 10−5, q = 6.0 × 10−3).

Gene expressions correlated with firing 
rates in hippocampal neurons

Consistent with previous reports (Mizuseki and Buzsaki, 2013), 
the firing rates of the hippocampal pyramidal neurons that were 
recorded using our recording methods varied substantially across 
neurons, ranging from 0.019 to 1.87 Hz (Figures 3A,B; n = 40 neurons). 
We sought to identify the gene expression profiles associated with 
these firing rates. All 8,462 genes were classified into 25 metagenic 
groups based on hierarchical clustering (Supplementary Figure S3 and 

FIGURE 2

Gene expression profiles between bursty and non-bursty cells. (A) (Left) High-pass-filtered (500  Hz) voltage traces of two representative neurons (cells 
#40 and #4). The rectangle dotted areas are expanded in the right panels. (Right) Histograms of inter-spike intervals computed from the neurons. 
(B) The distribution of burstiness indices from all recorded neurons (n  =  40 neurons classified into 7 bursty and 33 non-bursty neurons). (C) A scatter 
plot of log2 fold changes against the average expression levels for individual genes. Genes with significant differential expressions between bursty and 
non-bursty neurons (Padj  <  0.05, n  =  292 out of 8,462 genes) are marked in red. (D) Violin plots showing the expression levels of Atp5 family genes 
identified as the differentially expressed genes. Each gray dot represents a single cell. Atp5a1: p  =  1.7  ×  10−10, q  =  5.1  ×  10−8; Atp5b: p  =  1.2  ×  10−18, 
q  =  1.0  ×  10−10; Atp5g1: p  =  6.0  ×  10−4, q  =  0.024; Atp5h: p  =  2.4  ×  10−6, q  =  3.1  ×  10−4; Atp5l: p  =  3.9  ×  10−4, q  =  0.0017; Atp5o: p  =  8.0  ×  10−5, q  =  6.0  ×  10−3.
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Supplementary Data S2). The expression level of a metagene was 
computed as the average of the expression levels of all genes included 
in the metagene. We applied a multiple regression model fitting in 
which the contribution of each gene was fitted to the firing rate. This 
regression analysis showed that metagene 1, 2, 11, 15, 16, 21, 23, and 
25 had the maximum contribution rate estimated with the Akaike 
Information Criterion (R2

adj = 0.34, f = 3.53, p = 0.0054; Figure 3C). In 
addition, for each metagene, the Spearman’s correlation coefficient (rs) 
was computed between the expression levels and firing rates of 
individual neurons (Supplementary Figure S3). In particular, the 
expression levels of metagenes 1 and 21 were highly positively 
correlated with the firing rate (Figures  3C,D right; metagene 1: 
rs = 0.54, p = 3.3 × 10−4, q = 8.4 × 10−3; metagene 21: rs = 0.39, p = 0.014, 
q = 0.18).

Gene expressions correlated with rise 
times of spikes in hippocampal neurons

Next, we sought to identify genes related to the shape of the spike 
waveforms. The rise times of the juxtacellularly recorded spikes were 
computed as the duration between the spike onset and its peak in an 
averaged spike trace (Figure 4A). Rise times were also substantially 
variable across hippocampal pyramidal neurons, ranging from 0.22 to 
0.54 ms (Figures  4A,B; n = 40 neurons). As the rising phases of 
membrane potentials in spikes are mainly determined by voltage-
gated sodium channels with different properties (Westenbroek et al., 
1989; Boiko et  al., 2001; Mechaly et  al., 2005; Katz et  al., 2018), 
we  restricted the analysis to genes related to these channels. 
We  obtained the 11 genes from MGI database on AmiGO2 (on 
05.09.2023) (Carbon et al., 2009), using “regulation of voltage-gated 
sodium channel activity” (GO: 1905150) and “voltage-gated sodium 
channel complex” (GO: 0001518) as queried GO terms. Similar to the 
analysis of firing rates, we applied a multiple regression model fitting 
in which the contribution of each gene was fitted to the rise time 
(Figure 4C, left and middle). This regression analysis confirmed that 
Slmap, Scn1b, and Scn2b had the maximum contribution rate 
estimated with the Akaike Information Criterion (R2

adj = 0.31, f = 6.86, 
p = 9.0 × 10−4). In addition, we  computed Spearman’s correlation 
coefficient (rs) for each gene between its expression levels and the rise 
times of individual neurons (Figure 4C, right). Of the 11 voltage-gated 
sodium channel-related genes tested, Slmap showed a significant 
positive correlation between its expression levels and rise times 
(Figures 4C,D right; rs = 0.44, p = 4.6 × 10−3, q = 0.041), whereas Scn1a 
and Scn2b showed negative correlations (Scn1a: rs = −0.35, p = 0.028, 
q = 0.10; Scn2b: rs = −0.42, p = 7.5 × 10−3, q = 0.041). Taken together, 
these results demonstrate that the expression levels of some genes 
related to voltage-gated sodium channels are crucially associated with 
spike rise times in hippocampal pyramidal neurons.

Discussion

Here, we  introduce a series of experiments to identify gene 
expression profiles from single hippocampal neurons that were 
recorded using juxtacellular recording in living mice under head-fixed 
conditions. After recording and labeling the neurons with 
fluorophores, the labeled neurons were collected on slice preparations. 

Using these cell samples, we demonstrated that the expression levels 
of several genes and metagenes were significantly correlated with the 
burstiness, spike rise times and firing rates of individual neurons.

Hippocampal CA1 pyramidal neurons are classified into two 
types: bursty neurons and non-bursty neurons (Jensen et al., 1996; 
Jarsky et  al., 2008). Our analysis identified 292 genes that were 
differentially expressed between these two cell types. In particular, 
bursty neurons showed significantly higher expressions in genes of the 
Atp5 family encoding mitochondrial ATP synthase subunits, 
compared with non-bursty neurons. Previous studies indicated that 
neurons exhibiting stronger burst firing require more energy than 
those with weaker firing (Plessy et al., 2008; Moujahid et al., 2014). 
Consistently, our finding of the higher expression levels of Atp5a 
family genes in bursty neurons may represent their greater needs for 
instantaneous energy production.

Among the 25 metagenes tested, metagene 1 showed a significant 
correlation between its expression levels and neuronal firing rates. For 
example, metagene 1 was included genes related to microtubule 
cytoskeleton and regulation of dendrite extension such as Dscam 
(Bruce et al., 2017; Arimura et al., 2020), Smurf1 (Bryan et al., 2005; 
Cheng et al., 2011), Syt17 (Ruhl et al., 2019) (Supplementary Data S2).

We found that two genes related to voltage-gated sodium 
channel subunits, Scn2b and Slmap, are associated with the rise 
times of spikes. Scn2b encodes a type I transmembrane protein that 
regulates the localization of voltage-gated sodium channels (Dulsat 
et al., 2017; Cortada et al., 2019), leading to alterations of sodium 
channel currents (Mishra et al., 2011; Chen et al., 2012). Slmap 
encodes a transmembrane protein that shapes action potentials in 
cardiomyocytes (Ishikawa et  al., 2012; Mlynarova et  al., 2019). 
While Slmap has been shown to interact with Scn5a, a sodium 
channel subtype, this channel subtype is not expressed in the brain. 
Slmap may thus regulate other types of sodium channels, in the 
brain. In the Hippo-seq dataset (Cembrowski et al., 2016), these 
genes are differentially expressed between the superficial and deep 
layers; CA1 pyramidal neurons in the superficial layer show high 
expression of Scn2b and low expression of Slmap and those in the 
deep layer show the opposite tendency. Together with our results, 
CA1 pyramidal neurons in the deep layer may depolarize more 
slowly than those in the superficial layer. In the DropViz dataset 
(Saunders et al., 2018), there are various expression patterns of 
Scn2b and Slmap genes in the eight clusters of CA1 pyramidal 
neurons. Notably, clusters #5–3 and #5–4 show contrasting 
expression patterns in these two genes.

Recently, several methods that utilize optical multicell imaging 
have been developed to examine how neuronal activity patterns in 
living mice are linked to gene expression profiles. For instance, in vivo 
two-photon calcium imaging was used to monitor the spike patterns 
of a neuronal population in the living brain, followed by multiplexed 
fluorescent in situ hybridization to identify several gene expression 
profiles of the identical neurons (Xu et al., 2020; Bugeon et al., 2022). 
Another approach involves two-photon calcium imaging, followed by 
cell sampling of the imaged neurons using pipettes for subsequent 
gene expression analysis (Liu et  al., 2020). Compared with these 
imaging-based approaches, we used juxtacellular recording techniques 
to record neuronal spikes, which have unique advantages and 
disadvantages. First, electrophysiological recordings offer higher 
temporal resolution (generally tens of kilohertz) than optical imaging, 
which enables more precise isolation of single spikes within burst 
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firing and a detailed analysis of how they are temporally entrained by 
extracellular local field potential oscillations, such as hippocampal 
theta waves and sharp wave ripples. In addition, compared with 
conventional spatial transcriptomics targeting hundreds of genes in 
hippocampal neurons (Rodriques et al., 2019; Stickels et al., 2021), 
substantive cell sampling in our study allowed transcriptome 
sequences (e.g., Quartz-Seq2) targeting tens of thousands of genes 
through next-generation sequencers. However, one limitation is the 

throughput of data sampling because each juxtacellular recording and 
cell sampling can target only one to two neurons. In addition, there is 
a possibility that we missed some genes with very few copies from 
small amount of cell samples. To enhance the throughput of our 
method, incorporating additional fluorescent dyes with distinct 
colors, such as Alexa 350 hydrazide, will allow us to increase our 
attempts of juxtacellular recordings to more than 10 trials per mouse. 
Furthermore, employing unique molecular identifiers (e.g., barcode 

FIGURE 3

Gene expression profiles correlated with firing rates. (A) High-pass-filtered (500  Hz) voltage traces of two representative neurons (cells #15 and #24). 
(B) The distribution of firing rates from all recorded neurons (n  =  40 neurons). (C) (Left top) Neurons were aligned according to their firing rates (n  =  40 
neurons). (Left bottom) A heatmap showing expression levels of metagenes from the individual neurons. Here, the metagenes that used in the multi 
regression model are shown (see Supplementary Figure S3 and S4 for all 25 metagenes). The metagenes are sorted by their partial regression 
coefficients (β) computed from the liner regression model (middle). **p  =  0.0010, *p  =  0.013, #p  =  0.0033. (Right) Spearman’s rank correlation 
coefficients (rs) between their gene expression levels and the firing rates of the individual neurons. $$q  =  8.4  ×  10−3, $q  =  0.18. (D) Relationship between 
the expression levels of metagene 1 (left), 21 (middle) or 11 (right) and the firing rates. Each dot represents a cell (n  =  40 cells; metagene 1: rs  =  0.54, 
p  =  3.3  ×  10−4, q  =  8.4  ×  10−3; metagene 21: rs  =  0.39, p  =  0.014, q  =  0.18; metagene 11: rs  =  −0.12, p  =  0.45, q  =  0.95).

https://doi.org/10.3389/fnins.2024.1360432
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yagishita et al. 10.3389/fnins.2024.1360432

Frontiers in Neuroscience 08 frontiersin.org

labeling) may be  effective to circumvent the constraints of cell 
sampling using fluorescent dyes.

Overall, our method specializes in assessing spike activity patterns 
on a strict sub-millisecond timescale and further uncovers their 
comprehensive gene expression profiles in juxtacellularly recorded 
neurons. Because recording electrodes can access nearly all brain 
regions, including deep brain areas that are difficult to access by 
optical imaging, our method is applicable not only to hippocampal 
pyramidal cells but also to a variety of brain regions and neuron types. 
In addition, by taking advantage of the applicability of juxtacellular 

recordings in freely moving animals (Herfst et al., 2012; Tang et al., 
2014), our method is expected to be  valuable for unveiling how 
behavior-relevant spike patterns are associated with the gene 
expression profiles of individual neurons.

Data availability statement

The gene expression dataset presented in the study is deposited in 
the Gene Expression Omnibus, accession number GSE262930.

FIGURE 4

Gene expression profiles correlated with spike rise times. (A) (Left) A juxtacellularly recorded spike waveform (high-pass filtered at 500  Hz). (Right) 
Magnified averaged spike waveforms from two representative neurons (cell #19 and #24). (B) The distribution of spike rise times from all recorded 
neurons (n  =  40 neurons). (C) (Left top) Neurons were aligned according to their rise times. (Left bottom) A heatmap showing expression levels of 
genes related to voltage-gated sodium ion channels. The genes are sorted by partial regression coefficients (b) computed from the multi regression 
model (middle). **p  =  9.8  ×  10−3, *p  =  0.099, ##p  =  0.080. (Right) Spearman’s rank correlation coefficients (rs) between their expression levels and the rise 
times of the individual neurons. $$$q  =  0.041, $$q  =  0.10, $q  =  0.041. (D) Three genes showing significant positive or negative correlations (Slmap: rs  =  0.44, 
p  =  4.6  ×  10−3, q  =  0.041; Scn1a: rs  =  −0.35, p  =  0.028, q  =  0.10; Scn2b: rs  =  −0.42, p  =  7.5  ×  10−3, q  =  0.041). In each graph, the rise times of the individual 
neurons are plotted against their gene expression levels (n  =  40 neurons).
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