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Objective: SWI image signal is related to venous reflux disorder and perfusion 
defect. Computed tomography perfusion (CTP) contains perfusion information 
in space and time. There is a complementary basis between them to affect the 
prognosis of cerebral infarction.

Methods: Sixty-six patients included in the retrospective study were designated 
as the training set. Effective perfusion indicator features and imaging radiomic 
features of the peri-infarction area on Susceptibility weighted imaging (SWI) and 
CTP modality images were extracted from each case. Thirty-three patients from 
the prospectively included group were designated as the test set of the machine 
learning model based on a sparse representation method. The predicted results 
were compared with the DWI results of the patients’ 7–10  days review to assess 
the validity and accuracy of the prediction.

Results: The AUC of the SWI  +  CTP integrated model was 0.952, the ACC was 
0.909, the SEN was 0.889, and the SPE was 0.933. The prediction performance 
is the highest. Compared with the value of AUC: the SWI model is 0.874, inferior 
to the performance of the SWI  +  CTP model, and the CTP model is 0.715.

Conclusion: The prediction efficiency of the changing trend of infarction 
volume is further improved by the correlation between the combination of the 
two image features.
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Introduction

Ischemic stroke is a severe neurological disease and a leading cause of disability and death 
worldwide (Li and Zhang, 2019; Wang et al., 2020). The most important treatment for acute 
ischemic stroke (AIS) is recanalization of the occluded vessel within a strict time window to 
salvage the ischemic penumbra (PEN) (Miteff et al., 2009; Shuaib et al., 2011). Over the past 
40 years, imaging studies on ischemic penumbra identification have greatly extended the time 
window for reperfusion therapy and better predicted post-reperfusion clinical outcomes 
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relative to treatment time by delineating the infarct core volume, 
expanding the cohort of patients benefiting from reperfusion therapy 
who were excluded due to time constraints (Bivard et  al., 2015; 
Kawano et al., 2017). This provided a better regimen for selecting AIS 
patients for reperfusion therapy, perfectly interpreting “tissue is as 
important as time” beyond time is brain (Ermine et al., 2021).

Recent studies on the heterogeneity of the ischemic penumbra 
evaluated high-risk ischemic penumbra in patients with acute 
ischemic stroke (AIS) by using infarct core growth rate (ICGR). 
Infarct core growth rates were calculated by dividing the core volume 
by the time between onset and image acquisition, with units of mL/h 
(Lin et al., 2021; Sarraj et al., 2021). ICGR was highly correlated with 
final infarct volume and degree of neurological impairment, indirectly 
revealing the evolution process of ischemic penumbra to infarction, 
which largely depends on collateral circulation status (Renú Jornet 
et al., 2020). AIS patients with faster infarct core growth generally have 
poorer collateral circulation and benefit more from reperfusion 
therapy (Lin et al., 2021). Slow progressors represent small infarct 
cores and better collateral circulation. However, collateral circulation 
is unstable and may either maintain a relatively good state or 
deteriorate, becoming part of the infarct core (Vagal et al., 2018). 
Therefore, rapidly progressive patients can be screened by ICGV for 
timely reperfusion therapy to benefit, but clear clinical decisions 
cannot be made regarding whether slowly progressive patients need 
reperfusion therapy (Rocha et  al., 2019). If subsequent infarction 
changes could be predicted, those expected to have infarct enlargement 
could receive timely intervention, while those not requiring 
reperfusion could avoid the risks of thrombectomy.

Changes in the core of cerebral infarction are a dynamic process 
due to the local hemodynamic impairment that occurs around the 
infarction and changes spatially over time. Therefore, the 
pathophysiological process of brain infarction contains both temporal 
and spatial dimensions. By extracting imaging features from early 
perfusion images around the VOI region, features about lesion growth 
dynamics can be captured, and tissue outcomes predicted.

Simultaneous perfusion techniques can provide functional and 
circulatory information about the pia mater and secondary collateral 
pathways by adding a temporal dimension (Keedy et  al., 2012). 
However, most studies have focused on time-based perfusion maps, 
suggesting that patients with good collateral circulation have less flow 
delay (Campbell et al., 2013) and greater perfusion volume (Marks 
et al., 2014; Vagal et al., 2016). The downside of these perfusion-based 
global modeling approaches is that differences in affected tissue 
location have no relevant effect on tissue outcomes and are performed 
independently for each VOI, still ignoring the valuable spatial 
information that perfusion can provide.

SWI is a high-resolution T2* MRI technique with a three-
dimensional gradient-echo sequence sensitive to magnetization rate 
differences (Liu et al., 2017). Metabolic changes in hypo-perfused 
brain tissues (Haacke et al., 2009; Tsui et al., 2009) can be studied by 
acting on the sensitivity of paramagnetic materials.

Studies have shown that SWI also plays an essential role in 
predicting the prognosis of patients with acute cerebral infarction 
(Chen et al., 2015; Mundiyanapurath et al., 2015). Decreased flow and 
increased OEF in ischemic areas of the brain lead to more 
deoxyhemoglobin, resulting in prominent venous hypo-signal on SWI 
images, the so-called Venous Protrusion Syndrome (PVS) described 
in the MRI-SWI sequence (Park et al., 2014; Polan et al., 2015). Studies 

have shown that asymmetric cortical venous low signal correlates with 
increased MTT and TTP in perfusion parameters and is positively 
correlated with the degree of perfusion defects in the ischemic core, 
which can be used as a marker of the ischemic penumbra (Kao et al., 
2012). The more prominent veins, the larger the volume of 
hypoperfusion tissue, and it is related to early changes in NIHSS score 
after acute treatment (Jensen-Kondering and Bohm, 2013).

In conclusion, there are complementarities between the two in 
detecting blood perfusion. To further improve the model’s prediction 
performance, the two are fused to build a comprehensive model. 
We use the sparse representation method to screen and clarify the 
image markers affecting the prognosis of cerebral infarction and 
establish the prediction model of cerebral infarction prognosis.

Methods

Research object

The study was registered in Chinese Clinical Trial Registry 
(Registration number: ChiCTR2100045753). Ethical approval for this 
study was obtained from the institutional review board at Minhang 
Hospital, Fudan University, Shanghai, China. The study was 
performed by the ethical standards as laid down in the 1964 
Declaration of Helsinki and its later amendments or comparable 
ethical standards. The need for consent for this study was waived by 
the institutional review board (the institutional review board at 
Minhang Hospital, Fudan University, Shanghai, China) due to 
its design.

Case collection

Enrollment criteria
All enrolled patients sought medical help within 3 days of the 

onset of symptoms. They exhibited newly surfaced neurological deficit 
symptoms and signs that align with the clinical presentation of acute 
ischemic stroke. After admission, all patients underwent a 
non-contrast CT scan immediately to rule out intracranial hemorrhage 
and other etiologies. All met the diagnostic criteria for acute cerebral 
infarction. All were diagnosed by imaging and neurological physical 
examination, such as cranial CT or cranial MRI (the cranial CTP was 
done immediately after the first cranial MRI), with NIHSS scores of 
0–25 and within 72 h of onset.

Treatment approach
For patients suitable for endovascular thrombectomy or 

intravenous thrombolysis, we  followed the guidelines to initiate 
treatment as soon as possible without delay for imaging studies. Upon 
admission, patients were provided with timely standardized treatment 
following the guidelines—including but not limited to antiplatelet or 
anticoagulant therapy—depending on their individual 
medical condition.

Retrospective analysis
Sixty-six inpatients with acute cerebral infarction who visited the 

Department of Neurology, Minhang Hospital, Fudan University, from 
January 2018 to June 2021.
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During the study period, 489 patients with cerebral infarction 
admitted within 3 days of onset were collected, 135 patients who did 
not have MR-DWI + CTP + SWI within 3 days were excluded, and 218 
patients who did not have a repeat MRI-DWI were excluded. 136 
patients completed two MRIs and had a combination of previous 
cerebral infarction or other diseases causing neurological deficits, 
including brain tumors, hemorrhagic stroke, demyelinating disease, 
and traumatic brain injury (n = 16); incomplete imaging and clinical 
data (n = 33); poor image quality (n = 7); and a maximum diameter of 
DWI high signal area <1 cm (n = 14). Ultimately, 66 patients were 
included in this study (Figure 1).

Prospective validation
After the model was established, 33 inpatients with acute cerebral 

infarction admitted to the Department of Neurology in our hospital 
from July 2021 to December 2021 were prospectively included and 
signed the consent form (Figure 1).

Sixty-six patients from this retrospective study were assigned 
to the training set, and 33 patients from prospective enrollment 
were assigned to the test set. The flow chart of all patients enrolled 
in the study is shown in Figure 1. It can be seen from the data 
collection process that although 489 patients were included in the 
initial stage of this study, 99 patients were eventually included in 
the study due to various reasons such as incomplete MRI 

examination modes, missing follow-up data, low imaging quality, 
and patient factors.

Imaging examination and biochemical 
examination

Imaging examination
To ensure the examination did not interfere with those eligible for 

reperfusion therapy within the time window. The examinations were 
typically scheduled 24 h after admission and within 3 days.

Cranial MRI parameters
All MRI examinations were performed using a single 3.0 T 

magnetic resonance scanner (umr780, Shanghai Lianying) to maintain 
consistency across the study, using a commercial 24-channel head and 
neck coil. The MRI scheme is as follows:

T1 – weighted fast spin-echo (FSE) sequence [repetition time 
(TR)/echo time (TE) = 2048/11.96 ms; Turning angle (FA) = 135°; Slice 
thickness/gap = 5/1.5 mm; Bandwidth = 180 Hz/PX; FOV = 230 × 
200 mm2; Acceleration factor = 2].

T2 weighted FSE sequence (TR/TE = 4107/88.2 ms; FA = 145°; 
slice thickness/gap = 5/1.5 mm; bandwidth = 180z/PX; FOV = 230 × 
200 mm2; Acceleration factor = 2).

FIGURE 1

Flow chart of enrolled patients in the brain parenchyma-related model study.
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T2 – FLAIR sequence (TR/TE = 7500/96.66 ms; FA = 150°; slice 
thickness/gap = 5/1.5 mm; bandwidth = 220 Hz/PX; FOV = 230 
× 190 mm2).

SWI sequence (TR/TE = 30.2/20 ms; FA = 15°; slice thickness/
gap = 2/1 mm; bandwidth = 130 Hz/PX; FOV = 224 × 190 mm2).

DWI adopts single-shot echo planar imaging (EPI) sequence (TR/
TE = 2800/75.4 ms; FA = 90°; slice thickness/gap = 5/1.5 mm; 
bandwidth = 1790 Hz/PX; FOV = 230 × 220 mm2). 2 b values (0 and 
1000s/mm2).

Parameters of cranial CTP examination
For the CTP examination, the same Siemens Somatom Force CT 

scanner, which is the third generation of dual-source force CT, was 
used for all scans. After the patient’s head was fixed in the supine 
position, the cranial CT scan was first performed with a tube voltage 
of 120 kv, automatic milliamperes, and a layer thickness of 5 mm. Fifty 
milliliters of Uvexan (370 mg/mL) was injected by a high-pressure 
syringe through the elbow vein using a 20G puncture needle. 
Physiological saline 20 mL, injection rate 6 mL/s, 5 s delay after 
injection to start CTP scan. The scanning range was from the level of 
the carotid bifurcation to 224 mm at the cranial apex. 1.5 s for a single 
scan, 26 consecutive dynamic scans, and 26 volumetric data were 
obtained, and the total scanning time was 39.39 s. The layer thickness 
of each sequence was 1 mm for thin-layer reconstruction.

Biochemical examination
The patient shall complete relevant laboratory examinations 

within 24 h after admission, including three routine examinations of 
hematuria and stool, blood glucose, glycosylated hemoglobin, 
D-dimer, four coagulation tests, renal function, low-density 
lipoprotein, homocysteine, fasting blood glucose, etc.

Clinical evaluation

Severity assessment of neurological symptoms
NIHSS scores were recorded on admission and before discharge 

(about 7–10 days), as well as the mRS score scale for follow-up 
evaluation at about 90 days after onset.

Feature extraction method based on image 
patch sparse representation

We first expanded the DWI segmented image in the previous 
section by 20 pixels outside the lesion area and matched the 
segmentation results of SWI images on the corresponding interface. 
Then, 513 gray features, texture, and wavelet features are extracted 
from the SWI image, as described in the Supplementary methods.

Collection and formation of perfusion 
indicators

Time-density curve
The time-density Curve (TDC) of patients were obtained from the 

CTP image, as described in the Supplementary methods. Figure 2 

shows Gaussian fitting on the TDC curve of one patient’s data at the 
one-pixel point.

Reconstruction of a pseudo color image of 
perfusion index

According to the time density curve of each pixel and the 
definitions of TTP, CBF, and CBV, TTP, CBF, and CBV pseudo-color 
images are constructed (Figure 3).

Figure 3A illustrates the area of high signal intensity on DWI, 
representing the true infarction core. Figure 3B depicts the area 
segmented by extending approximately 2–3 mm beyond the high 
signal intensity region on DWI. Figures 3C–E shows peak time 
TTP pseudo-color map, relative cerebral blood volume CBV 
pseudo-color map, and relative cerebral blood flow CBF pseudo-
color map at the same level, respectively. It can be visualized from 
the figure that the infarction and the surrounding area blood flow 
changed because of the infarction area blood vessel blockage, so the 
peak time is relatively long, and the infarction area value in 
Figure 3C is relatively large because the infarction area blood vessel 
blockage, so the infarction area cerebral blood volume and flow are 
relatively small, the infarction area value in Figures  3D,E is 
relatively small.

Feature extraction of perfusion index

High-throughput features of infarction and surrounding areas 
(the segmented area in Figure 3B) were extracted from CBV images, 
CBF images, and TTP images, as described in the 
Supplementary methods.

Sparse representation feature selection

After high-throughput feature extraction, there may be a vast 
amount of feature redundancy. On the one hand, these redundant 
features added a lot of computation to the subsequent classification 
and recognition. On the other hand, they could also harm recognition 
accuracy. Therefore, it is essential to screen out the features with high 
resolution. The feature selection is conducted by establishing a sparse 
representation feature selection model. The formula for the sparse 
representation coefficient is Equation 1 as follows:

	

2
02ˆ

w
argminl Fw ww η= − +

�
(1)

Where m  is the number of training samples, l Rm∈  is the label 
of training samples, F f f f Rm

T m K� � � � �
1 2

2
,   is the feature set 

of training samples. η  is the sparse representation control 
parameters. The absolute values of the elements in sparse 
representation coefficient w correspond to the importance of 
features. When w is obtained, a small number of features with 
high importance to classification can be  selected to sort its 
absolute value.
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Imaging radiomics classification prediction 
model

Finally, the radiomic features of the peri-infarct region of 
SWI + CTP were extracted from each case. The volume of the infarct 
core area was obtained, and the images before and after treatment 
were compared. The difference was used as the grouping basis. The 
patients were divided into the reversal group and the 
enlargement group.

The increased or decreased infarction core volume was converted 
into a machine learning binary classification problem, and a sparse 
representation classifier based on non-parametric training was 
established for classification prediction. The sparse representation 
classifier first uses sparse coding and reconstruction to calculate the 

distance between the sample to be tested and each class of samples in 
the training set. It then judges the class classification process of the test 
sample according to the K-proximity criterion. Specifically, it can be 
expressed as Equations 2:

	

2
02

ˆ argmin f F
β

ββ β γ= − || + ||| |||
�

(2)

where f  denotes the features of the samples to be tested after 

feature selection, F F F Fc C� �� ��1,   is the training sample feature 

set, and C is the total number of sample classes. For the binary 
classification problem here, C = 2. γ  is the sparse representation 

FIGURE 2

Fitting time density curve by voxel grayscale.

FIGURE 3

Perfusion indexes TTP, CBF, and CBV are blood flow parameters for pixel numerical imaging. (A) True cerebral infarction location; (B) the segmented 
area; (C) TTP; (D) CBV; (E) CBF.
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control parameter. When the sparse representation coefficient β


 is 
obtained, the distance between the samples to be tested and each class 
of samples in the training set is calculated, i.e., the representation 
residuals of each class is Equations 3 as follows:

	
( ) ( ) [ ]ˆ , 1,2, ,c cr f f F c Cδ β= − = 

�
(3)

where �c .� �  denotes the coefficient corresponding to the 
selection of the cth classes of features. The class with the smallest 
residual is the class of the test sample, so the final class of the sample 
to be tested is Id argminrf f

c
c� � � � � .

Imaging radiomics model validation

After the model was established, 33 inpatients with acute cerebral 
infarction who visited our neurology department from July 2021 to 
December 2021 were prospectively included. The imaging radiomics 
features of the patients were extracted and screened by the model for 
inclusion in the prediction model. The predicted results were 
compared with the DWI results of the patients’ 7–10 day review to 
assess the validity and accuracy of the prediction.

Statistical analysis and model evaluation

Baseline variable statistics
All grouped data were tested for Shapiro–Wilk normality by the 

shaporo.test () function in the R language. Variables such as 
demographics, clinically relevant indicators, and experimental 
examinations were used using the tableone package in R1 to compare 
differences between groups with different infarct change trend, as well 
as training set and test set differences. Age, sex, NHISS score, mRS 
score, infarct volume, and DWI-ASPECTS score were non-normally 
distributed continuous variables expressed as median (quartiles) and 
were compared between the two groups using the Wilcoxon test. MR 
examination time from the onset and laboratory tests were normally 
distributed as continuous variables and were compared between the 
two groups using the t-test, all expressed as mean (standard deviation). 
Risk factors and thrombolysis are classified variables, expressed as 
counts (percentage), and the fisher’s exact test was used when 
comparing the two groups. p < 0.05 was considered 
statistically significant.

Predictive model statistics
MATLAB software was used to establish four prediction models 

by sparse representation: DWI imaging-based radiomics model, CTP 
imaging-based radiomics model, SWI imaging-based radiomics 
model, and DWI + CTP + SWI imaging-based radiomics model.

Use the evalmod function in the precrece package of R language to 
calculate the basic evaluation index for the specified model. It includes 
accuracy (ACC), specificity (SPE), sensitivity (SEN), error (ERR), 
precision (precision), Matthews correlation coefficient (MCC), and 

1  https://mirrors.sjtug.sjtu.edu.cn/cran/web/packages/tableone/index.html

F-score. The scatter diagram between normalized rank values was 
used as the reference for selecting the truncation value, as described 
in the Supplementary methods.

Results

Clinical features

The patients were grouped according to DWI reversal and DWI 
high signal enlargement (DWI enlargement for short), and the 
statistics of clinical index-related variables were conducted. 
Univariate analysis showed that the following variables were 
significantly correlated with the changing trend of infarct volume: 
the previous history of cerebral infarction (p = 0.023), low-density 
lipoprotein (p = 0.028), DWI-ASPECT score (p = 0.026), NIHSS 
score at discharge (p =  0.007), NIHSS score change during 
hospitalization (p < 0.001), mRS score at discharge (p = 0.001), and 
mRS score at 90 days (p = 0.001). There was no difference (ΔmRS) 
between the two (p = 0.423). In addition, hypertension (p = 0.138), 
diabetes (p =  1), hyperlipidemia (p =  1), coronary heart disease 
(p = 0.235), smoking (p = 0.672), drinking (p = 1), homocysteine 
(p =  0.374), glycosylated hemoglobin (p =  0.647), fasting blood 
glucose (p = 0.816), serum creatinine (p = 0.97), urea (uric acid), 
uric acid (AC), international normalized ratio (p =  0.165), 
fibrinogen (p = 0.51), platelet (p = 0.582), Baseline NIHSS score at 
admission (p = 0.816) (Tables 1, 2). Nineteen patients in this cohort 
received intravenous thrombolysis. MRI-DWI examination was 
after intravenous thrombolysis, and the distribution of the infarct 
change trend was not statistically significant.

Besides differences in the laboratory indexes, including fasting 
blood glucose (p =  0.018), urea (p =  0.014), platelets (p  = 0.016), 
DWI-ASPECT score (p = 0.038), there were no significant differences 
in the distribution of the primary features of the training and the test 
set between the two groups.

There was no significant difference between the basic infarct 
volume (p = 0.408) and mRS at 90 days between the training set and 
the test set (p = 0.628) (Tables 3, 4).

Performance comparison of prediction 
models

When modal images are included, the model has a different 
prediction performance. The AUC of the SWI + CTP comprehensive 
model was 0.952, ACC was 0.909, Sen was 0.889, and SPE was 0.933. 
The prediction efficiency was the highest. Compared with the value of 
AUC, the SWI model was 0.874, and the CTP model was 0.715 
(Table 5).

The performance of the SWI prediction model is evaluated, and 
its evaluation metrics are at the optimum when the value of the 
standardization level is equal to 0.575: ACC of 0.848 reaches the 
highest value, ERR of 0.151 is the lowest value, the accuracy rate of 
0.842 is relatively high, MCC of 0.694 is the highest value, and F score 
of 0.919 is the highest value (Figure 4).

The performance of the CTP prediction model is evaluated, and 
its evaluation metrics are at the optimum when the value of the 
standardization level is equal to 0.576: ACC is 0.727, reaching the 
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highest value, ERR is 0.273, reaching the lowest value, and the 
accuracy rate is 0.737, a relatively high value, MCC of 0.449 is the 
highest value, and F-score of 0.756 is the highest value (Figure 5).

The performance of the CTP + SWI prediction model is 
evaluated, and its evaluation metrics are at the optimum when the 
value of the standardization level is equal to 0.515: ACC is 0.909, 
reaching the highest value; ERR is 0.091, reaching the lowest value; 
accuracy is 0.941, a relatively high value; MCC is 0.819, reaching 
the highest value; and F score is 0.900, reaching the highest value 
(Figure 6).

Discussion

There is a correlation between venous reflux disorder and perfusion 
defect of SWI image signal. CTP contains perfusion information in 
space and time. There is a complementary basis between them. By 
establishing a comprehensive model to predict the changing trend of 
infarction volume in patients with cerebral infarction, the prediction 
efficiency has improved, proving the complementarity of the two 
images. It verifies the correlation between the combination of the two 
image features and the changing trend and infarction prognosis.

Although CTP is currently superior to SWI in determining 
ischemic penumbra, SWI is increasingly proving to be  a helpful 
imaging sequence for evaluating acute stroke. Because of its lack of 
contrast and the absence of radiation associated with CT, as well as its 
reliability in detecting ischemic penumbra, it has increasingly become 

a powerful tool for detecting ischemic penumbra in the treatment and 
management of acute cerebral infarction (Abu-samra et al., 2021).

SWI is a less time-consuming technique that does not require a 
contrast agent and can be  considered an alternative to CTP and 
MRP. SWI has great value in detecting penumbra and helping to guide 
patients quickly for thrombolytic therapy (Kao et al., 2012; Liu et al., 
2016). SWI can provide a metabolic examination capability similar to 
The Mean Transit Time (MTT) (Jiang et al., 2021) and correlate with 
other perfusion indicators (Luo et al., 2017). Further research suggests 
that SWI-DWI mismatch and DWI-PWI (MTT) mismatch have 
similar effects (Dejobert et al., 2016; Wang et al., 2017).

Some studies have used SWI to predict changes in infarction 
volume, and mismatched SWI-DWI and MTT-DWI can predict 
infarction enlargement (Kao et al., 2012). But the study had a limited 
number of patients, mainly because the imaging studies were incomplete. 
What’s more, the ASPECTS system is used, which has certain subjective 
score differences. Moreover, the ASPECTS system is insensitive to subtle 
infarction changes. Our study can solve the subjectivity of visual 
evaluation using image radiomics methods and improve accuracy.

Other studies suggest that SWAN’s quantitative evaluation of low 
signal areas in medullary or cortical veins can provide information 
on venous reflux and can be used to predict infarction growth in 
patients with non-reperfusion large artery occlusion (Yamaguchi 
et al., 2018). At the same time, some studies have tried to quantify 
the low signal area in a medullary or cortical vein by measuring the 
number of pixels for the evaluation of reperfusion treatment and 
achieved effective results (Lou et al., 2014). To avoid the influence of 

TABLE 1  Risk factors of DWI reversal and enlargement in patients with cerebral infarction and grouping features of relevant experimental examination.

Feature factors Total DWI-reversal 
(n =  48)

DWI-enlargement (n =  51) p-value

Age (year) median (IQR) 67.00 [58.00, 1.50] 65.00 [54.75, 69.25] 68.00 [58.00, 74.00] 0.089

Sex, n (%) 72 (72.7) 36 (75.0) 36 (70.6) 0.79*

Risk factors, n (%)

Hypertension 64 (64.6) 27 (56.2) 37 (72.5) 0.138

Diabetes 24 (24.2) 12 (25.0) 12 (23.5) 1

Hyperlipidemia 16 (16.2) 8 (16.7) 8 (15.7) 1

Coronary disease 6 (6.1) 1 (2.1) 5 (9.8) 0.235

Smoking 67 (67.7) 31 (64.6) 36 (70.6) 0.672

Drinking 16 (16.2) 8 (16.7) 8 (15.7) 1

Stroke history, n (%) 7 (7.1) 0 (0.0) 7 (13.7) 0.023*

Laboratory examination

Low-density lipoprotein (mmol/l) 3.02 (0.91) 2.80 (0.84) 3.22 (0.93) 0.028*

Homocysteine (HCY) 16.04 (11.96) 17.22 (14.86) 14.96 (8.52) 0.374

Glycosylated hemoglobin (%) 6.88 (2.01) 6.98 (2.25) 6.78 (1.76) 0.647

Fasting blood glucose (mmol/L) 6.69 (2.96) 6.62 (3.25) 6.76 (2.70) 0.816

Serum creatinine (μmol/L) 80.16 (26.68) 80.27 (31.86) 80.06 (21.08) 0.97

Carbamide (mmol/L) 4.84 (1.84) 5.12 (2.28) 4.58 (1.28) 0.161

Uric acid (μmol/L) 304.87 (98.64) 299.49 (94.97) 309.89 (102.75) 0.622

International normalized ratio 0.97 (0.12) 0.95 (0.16) 0.99 (0.06) 0.165

Fibrinogen 2.60 (0.73) 2.54 (0.90) 2.65 (0.55) 0.51

Platelet (PLT) 206.80 (61.79) 202.57 (57.90) 210.85 (65.69) 0.528

*Indicating a significant difference.
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TABLE 2  Clinical-related grouping features of DWI reversal and DWI enlargement in patients with cerebral infarction.

Feature factors Total DWI-reversal 
(n =  48)

DWI-enlargement (n =  51) P-value

NIHSS score at admission 

(median [IQR])

4.00 [2.00, 6.00] 4.00 [2.00, 6.25] 4.00 [3.00, 5.50] 0.816

Thrombolytic rate (%) 19 (19.2) 10 (20.8) 9 (17.6) 0.883

NIHSS score after thrombolysis 

(median [IQR])

3.00 [0.00, 5.25] 2.00 [0.00, 4.00] 3.50 [0.25, 5.75] 0.471

NIHSS score at discharge 

(median [IQR])

3.00 [2.00, 6.00] 2.00 [1.00, 4.25] 4.00 [2.00, 7.00] 0.007*

ΔNIHSS −0.63 (2.60) −1.56 (2.78) 0.25 (2.09) <0.001*

mRS score at discharge (median 

[IQR])

2.00 [1.00, 3.00] 2.00 [1.00, 3.00] 3.00 [2.00, 4.00] 0.001*

mRS score at 90 days (median 

[IQR])

1.00 [0.00, 3.00] 0.00 [0.00, 2.00] 1.00 [0.00, 3.00] 0.024*

ΔmRS −0.90 (1.54) −0.77 (1.75) −1.02 (1.30) 0.423

Time from onset to MR 

examination (h)

37.2 ± 16.1 35.6 ± 14.6 38.8 ± 16.3 0.268

Infarction volume 16011.12 (26807.22) 12894.33 (21523.70) 18944.57 (30901.99) 0.264

DWI-ASPECTS at admission 

(median [IQR])

2.00 [2.00, 4.00] 2.00 [1.00, 3.00] 3.00 [2.00, 6.00] 0.026*

DWI-ASPECTS, diffusion-weighted imaging – Alberta early stroke CT Score; mRS, modified ranking score; n, quantity; NIHSS, National Institutes of Health Stroke Scale; Δ NIHSS, 
discharged NIHSS – hospitalized NIHSS. ΔmRS = 90-day mRS score – discharge mRS score; *Indicates a significant difference.

TABLE 3  Risk factors of the training set and the test set in patients with cerebral infarction and grouping features of relevant experimental examination.

Feature factors Total Training set (n =  66) Test set (n =  33) P-value

Age (year) 67.00 67.00 63.00 0.42

Median (IQR) [58.00, 71.50] [58.00, 73.75] [58.00, 70.00]

Sex, n (%) 72 (72.7) 45 (68.2) 27 (81.8) 0.231

Risk factors, n (%)

Hypertension 64 (64.6) 44 (66.7) 20 (60.6) 0.71

Diabetes 24 (24.2) 19 (28.8) 5 (15.2) 0.214

Hyperlipidemia 27 (27.3) 17 (25.8) 10 (30.3) 0.811

Coronary disease 6 (6.1) 5 (7.6) 1 (3.0) 0.655

Smoking 67 (67.7) 48 (72.7) 19 (57.6) 0.197

Drinking 16 (16.2) 10 (15.2) 6 (18.2) 0.923

Stroke history, n (%) 7 (7.1) 5 (7.6) 2 (6.1) 1

Laboratory examination

Low-density lipoprotein (mmol/l) 3.02 (0.91) 3.09 (0.84) 2.87 (1.02) 0.28

Homocysteine (HCY) 16.04 (11.96) 15.39 (9.51) 17.26 (15.71) 0.484

Glycosylated hemoglobin (%) 6.88 (2.01) 7.23 (2.09) 6.18 (1.66) 0.018*

Fasting blood glucose (mmol/L) 6.69 (2.96) 7.16 (3.25) 5.83 (2.09) 0.043

Serum creatinine (μmol/L) 80.16 (26.68) 81.65 (27.61) 77.29 (24.99) 0.463

Carbamide (mmol/L) 4.84 (1.84) 5.18 (1.96) 4.19 (1.39) 0.014*

Uric acid (μmol/L) 304.87 (98.64) 303.46 (100.80) 307.63 (95.88) 0.852

International normalized ratio 0.97 (0.12) 0.98 (0.06) 0.95 (0.19) 0.264

Fibrinogen 2.60 (0.73) 2.68 (0.76) 2.43 (0.66) 0.142

Platelet (PLT) 206.80 (61.79) 217.85 (55.07) 184.70 (69.22) 0.016*

*Indicating a significant difference.
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subjective factors, we further use imaging radiomics in our study to 
more simply and effectively predict the changes of infarction.

The CTP is a four-dimensional spatiotemporal image that contains 
features of both spatial and temporal entities (Giacalone et al., 2018). 
The time signal of the original perfusion image has demonstrated the 
ability to predict the lesion evolution of cerebral infarction, and the 
time information also plays a role in quantifying collateral blood flow 
(Kim et al., 2014). Firstly, the perfusion information of each VOI in 
the original perfusion CT image was numerically simulated. Then the 
spatial information of VOI and adjacent voxels was expressed in image 
brightness and texture features. The spatial information was 
incorporated through the graphical features, and the changing trend 
of infarction was directly predicted using these extracted image 
features, which completes the integration of temporal and spatial 
information of blood flow into the prediction model.

Although CTP plays an important role in mismatch detection, it 
is not as good as SWI in predicting infarction changes because 
vascular hydrodynamics needs a complex modeling process. To 
simplify the model, we first assumed that the blood flow in the blood 
vessel is uniform and stable. On this premise, we  established a 
perfusion index model. Although fluid dynamics may not have a 
significant impact based on perfusion (time density curve), the lack of 
blood flow factors (especially venous reflux factors) will affect the 

model’s performance and ultimately affect the prediction results. The 
SWI model can predict the changes of infarction more accurately 
because it provides venous reflux information.

Compared to the perfusion indicator feature model, the SWI feature 
model used fewer indicator features while obtaining higher classification 
prediction performance, suggesting to some extent the importance of 
the correlation of venous return in prediction. Additionally, SWI is 
proficient at reflecting impediments in venous outflow and ischemic 
areas, which are highly correlated with the trajectory of infarct progress. 
Therefore, the sensitivity of the SWI model was as high as that of the 
SWI + CTP model. Of course, combining the two features to form the 
model gives better results, suggesting the complementary nature of the 
two to some extent. The cerebral vasculature can be  considered a 
complex system of large and microvascular circulation, including large 
and small arteries, capillaries, and large and small veins. This complex 
cerebral vascular structure, hemodynamics, and tissue perfusion may 
significantly affect the function of the adjacent brain parenchyma, 
affecting the infarction changes (Liebeskind, 2015; Liu et al., 2018). 
Thus, the complex combination of perfusion and venous return changes 
has predictive value for infarction changes.

Of course, adding spatiotemporal information will inevitably lead 
to a massive increase in data. Therefore, we  selected the image 
information of the adjacent cerebral infarction area and obtained a more 
accurate prediction performance by aggregating local space and time, 
consistent with some studies (Giacalone et al., 2017). Using regional 
image patches instead of the single-voxel method can predict cerebral 
infarction tissue fate and reduce data redundancy. At the same time, 
we used the feature screening method of sparse representation to analyze 
the correlation between multi-dimensional complex data of regional 
image patches. Select key features with spatiotemporal information to 
clarify the law of changes in the infarction and surrounding areas, in 

TABLE 4  Clinical-related grouping characteristics of the training set and the test set in patients with cerebral infarction.

Feature factors Total Training set
(n =  66)

Test set
(n =  33)

P-value

NIHSS score at admission

(median [IQR])

4.00 [2.00, 6.00] 4.00 [2.25, 6.00] 5.00 [2.00, 6.00] 0.86

Thrombolytic rate (%) 19 (19.2) 13 (19.7) 6 (18.2) 1

NIHSS score after thrombolysis

(median [IQR])

3.00 [0.00, 5.25] 3.50 [0.25, 5.75] 2.00 [0.00, 4.00] 0.471

NIHSS score at discharge

(median [IQR])

3.00 [2.00, 6.00] 3.50 [2.00, 6.00] 3.00 [2.00, 6.00] 0.843

ΔNIHSS −0.63 (2.60) −0.68 (2.82) −0.52 (2.12) 0.765

mRS score at discharge

(median [IQR])

2.00 [1.00, 3.00] 2.50 [2.00, 3.00] 2.00 [1.00, 3.00] 0.27

mRS score at 90 days

(median [IQR])

1.00 [0.00, 3.00] 1.00 [0.00, 3.00] 1.00 [0.00, 2.00] 0.628

ΔmRS −0.90 (1.54) −0.92 (1.33) −0.85 (1.91) 0.818

Time from onset to MR 

examination (h)

37.2 ± 16.1 38.69 ± 14.36 36.50 ± 15.77 0.675

Infarction volume 16011.12 (26807.22) 14423.82 (28410.70) 19185.73 (23359.07) 0.408

DWI-ASPECTS at admission

(median [IQR])
2.00 [2.00, 4.00] 2.00 [1.25, 3.00] 4.00 [2.00, 5.00] 0.038*

DWI-ASPECTS, diffusion-weighted imaging – Alberta early stroke CT Score; mRS, modified Rankin Score; n, quantity; NIHSS, National Institutes of Health Stroke Scale; Δ NIHSS, 
discharged NIHSS – hospitalized NIHSS. ΔmRS, 90-day mRS score – discharge mRS score; *Indicates a significant difference.

TABLE 5  Performance of different prediction models.

Models AUC ACC SEN SPE PPV NPV

SWI 0.874 0.848 0.889 0.800 0.842 0.857

CTP 0.715 0.727 0.778 0.667 0.735 0.714

SWI + CTP 0.952 0.909 0.889 0.933 0.941 0.875
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FIGURE 4

The predictive power of SWI model features for predicting the changing trend of infarction.
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FIGURE 5

The predictive power of the CTP model features for predicting the changing trend of infarction.
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FIGURE 6

The predictive power of the SWI  +  CTP model features for predicting the changing trend of infarction.
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which the spatial information was included through the image screening 
features, and then the screened features were interpreted reverse. It 
provides a preliminary basis for the later clinical application.

In this study, although nearly 500 patients were included in the 
data collection process in the early stage, due to the poor accessibility 
of MRI examination, the modality was incomplete or could not 
be rechecked according to the process, and the influence of imaging 
quality, patient tolerance, and other factors, only about 100 patients 
was finally included in the study, resulting in a relatively small number 
of cases in the current study.

The difficulty in collecting image data (especially multimodal 
MRI) in the process of data inclusion is because the role of image 
modality in stroke diagnosis and treatment is not very clear, which 
leads to clinicians’ insufficient understanding of the importance of 
image data in stroke diagnosis and treatment guidance and prediction. 
Therefore, a thorough image examination scheme has not been 
formed to standardize the clinical stroke diagnosis and treatment.

Based on the current research results, we  will gradually 
standardize the imaging examination process for stroke in the later 
stage. Subsequently, we will further expand the data set and enrich the 
experimental verification to improve the reliability and robustness of 
the model to obtain more convincing results. In addition, the single-
center data experiment also has certain limitations. In the later stage, 
we  will collect multi-center data, constantly improve the feature 
extraction, feature screening, and classification model technology, and 
iterate to improve the model effect.

Notably, our current results indicate that a portion of patients 
outside the time window experienced infarct reversal, and these 
changes could be predicted based on imaging features reflecting the 
complex interplay between perfusion and venous return alterations, 
which hold predictive value for infarct progression. To some extent, 
this suggests that interventions tailored to each patient’s specific 
perfusion and venous return status might pave the way for exploring 
effective treatment approaches beyond the established time window. 
Investigating potential therapeutic avenues for the post-window 
period is an area we may explore in future studies.
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