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Sleep, inflammation, and 
hemodynamics in rodent models 
of traumatic brain injury
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Traumatic brain injury (TBI) can induce dysregulation of sleep. Sleep disturbances 
include hypersomnia and hyposomnia, sleep fragmentation, difficulty falling 
asleep, and altered electroencephalograms. TBI results in inflammation and 
altered hemodynamics, such as changes in blood brain barrier permeability 
and cerebral blood flow. Both inflammation and altered hemodynamics, which 
are known sleep regulators, contribute to sleep impairments post-TBI. TBIs are 
heterogenous in cause and biomechanics, which leads to different molecular 
and symptomatic outcomes. Animal models of TBI have been developed to 
model the heterogeneity of TBIs observed in the clinic. This review discusses 
the intricate relationship between sleep, inflammation, and hemodynamics in 
pre-clinical rodent models of TBI.
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1 TBI as a disease process

Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. TBI 
is caused by a mechanical insult to the brain that results in motor, cognitive, affective, and 
behavioral symptoms. Although TBI is a rapid onset condition, a complex disease process 
ensues and can progress chronically. TBI causes a robust inflammatory response triggered by 
tissue damage. Initially, inflammation can be beneficial and allow restoration and clean-up of 
damaged tissues. However, inflammation often progresses chronically post-TBI and creates a 
unique and progressive disease environment causing symptoms to evolve over time. Sleep is 
a biological system that is tightly coupled with inflammation due to the crossover in signaling 
molecules that are involved in both inflammatory and sleep processes. Furthermore, brain 
hemodynamics alter with sleep–wake state, which can become dysregulated post-TBI 
(Figure 1; Townsend et al., 1973; Madsen et al., 1991a,b; Bouma et al., 1992; Braun et al., 1997; 
Soustiel et al., 2005; Bangash et al., 2008; Salehi et al., 2017).

TBI can be broadly classified into three categories based on injury modality: diffuse, focal, 
and blast. These injury modalities are not mutually exclusive. Diffuse TBI is caused by the head 
or neck forcefully colliding with an object or surface. Common causes of diffuse TBI are falls, 
domestic violence, contact/collision sports, and motor vehicle accidents. In contrast, focal TBI 
results from a penetrating head wound, and common causes include gunshot wounds, skull 
fractures, and shrapnel injuries. Blast TBI results from shock waves, often associated with 
combat related explosions (Bass et al., 2012). Shock waves are transmitted through the brain 
causing direct movement and disruption of brain tissue (Säljö et al., 2008; Kovacs et al., 2014). 
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Furthermore, shock waves cause displacement and oscillations of 
blood and other fluids in vessels throughout the body, which is a 
second, but simultaneous, cause of blast-induced TBI (Long et al., 
2009; Kovacs et al., 2014).

A hallmark symptom of diffuse TBI is diffuse axonal injury. 
Diffuse axonal injury, characterized by damage to white matter tracts 
and axons, is present in all severities of diffuse TBI (Johnson et al., 
2013). There are many pathological features of diffuse axonal injury 
that contribute to the acute and chronic symptoms associated with the 
condition, for example structural axonal damage, disrupted axonal 
transport, and axonal swelling (Johnson et al., 2013). Diffuse axonal 
injury can progress to Wallerian degeneration, a type of 
neurodegeneration associated with physical damage to the neuron 
(Johnson et al., 2013; Koliatsos and Alexandris, 2019). Diffuse TBI 
does not exhibit immediate cell death; however, neuronal cell death 
does occur over time because of secondary inflammatory processes 
(Lifshitz et al., 2007, 2016). In contrast, focal TBI is characterized by 
overt tissue disruption and cell death at the site of injury as early as 
4–6 h post-TBI (Flygt et al., 2016; Díaz et al., 2023).

2 Pre-clinical models of TBI

TBI is often studied preclinically using animal models (Figure 2). 
Most commonly, rodent models are used, however, there are many 
other established models including ferrets, pigs, drosophila, cats, and 
rabbits (Ma et al., 2019). Diffuse TBI can be modeled using a closed 
head injury technique. Closed head TBI is often modeled using a 

weight drop technique. The weight drop injury (WDI) TBI model 
involves a gravity falling weight onto the head of a rodent where 
weight position and displacement of the force can be  altered. 
Variations in WDI models include the Feeney model that causes a 
direct impact to the dura or the Marmarou model that induces a 
diffuse impact due to a plate placed above the skull (Feeney et al., 
1981; Foda and Marmarou, 1994). The size of the object and the speed 
and height from which it is dropped change the severity and 
biomechanics of the weight drop generated injury (Bodnar et  al., 
2019). A controlled cortical impact (CCI) device can be used to deliver 
an impact to the intact skull causing acceleration/deceleration of the 
brain. Closed head piston driven methods can be performed with or 
without a rodent helmet and on either an intact scalp or exposed skull. 
For an in-depth review of closed head injury models refer to Bodnar 
et al. (2019). Another method to induce a diffuse TBI is midline fluid 
percussion injury (mFPI). To induce an mFPI, a craniectomy is 
performed on the sagittal suture between bregma and lambda 
markings on the skull. The fluid impulse is delivered to the intact dura 
through an injury hub assembly attached to the skull (Lifshitz et al., 
2016). The forces applied to the brain are dissipated through the tissue 
and cause pathology at multiple sites, determined by the structural 
properties of the skull (Beitchman et al., 2021).

Focal TBI is most studied using the CCI method. CCI was 
designed to administer focal TBIs to Ferrets in 1988 (Lighthall, 1988), 
but since has been adapted to many species (primate, mouse, swine; 
Kobeissy, 2015). Most commonly, CCI is used in mice and rats and 
involves craniectomy surgery to remove a small portion of the parietal 
bone. After removal of the skull, a pneumatic (or electromagnetic) 

FIGURE 1

Schematic of relationship between traumatic brain injury, pro-inflammatory cytokines, BBB disruption, cerebral blood flow, and sleep/EEG power 
spectra dysregulation. Created using BioRender.com.
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piston is driven into the brain tissue at the desired depth and velocity 
causing tissue disruption. Lateral fluid percussion injury (LFPI) results 
in focal brain damage at the site of the impact, and also causes diffuse 
pathology throughout the brain. LFPI requires a craniectomy in the 
parietal bone, and the assembly of an injury hub onto the skull. Using 
the fluid percussion device, a fluid impulse is delivered directly to the 
brain through the injury hub, onto the intact dura, which causes a 
focal lesion to the brain, as well as applying rotational forces to the 
brain that results in widespread diffuse pathology (Alder et al., 2011). 
The craniectomy site can be adjusted to change the location of the 
focal lesion (i.e., frontal bone; Ouyang et al., 2018).

To induce pathology associated with a blast, models of blast TBI 
(bTBI) use peak overpressure, and number of exposures as metrics 
(Skotak et al., 2019). Explosive bTBI methods can be modeled in 
rodents using an open field explosive device detonation which results 
in both primary and secondary blast pathology (Kovacs et al., 2014). 
To study the primary blast mechanism in the absence of secondary 
shockwave reverberations in the rat, blast tubes have been developed 
(Säljö et al., 2000; Risling et al., 2011). Blast tubes have also been 
invented to study blast injury in swine (Bauman et al., 2009). bTBI can 
also be induced in rodents using a pressure tube, in which build-up of 
compressed gas is used to rupture a breakable membrane which causes 
a shockwave to travel down the tube (Long et al., 2009; Reneer et al., 
2011). Blast injury with secondary shrapnel penetration can 
be modeled using a blast gun (Gamboa et al., 2021). Additionally, blast 
injury can be modeled using a modified air gun to administer focal 
injury via directed pressurized air (Heldt et al., 2014).

3 Sleep dysregulation after TBI

Sleep disturbances occur in 30–84% of patients post-TBI (Paredes 
et al., 2021). TBIs can induce profound sleep dysregulation, including 
hypersomnia and hyposomnia, sleep fragmentation, sleepiness, 

difficulty falling asleep, and altered electroencephalograms (EEGs; 
Sandsmark et al., 2017; Aoun et al., 2019; Green et al., 2020; Rowe and 
Griesbach, 2022). In the clinic, patients report both acute and chronic 
sleep disturbances, and these occur following mild, moderate, and 
severe TBI (Verma et al., 2007; Viola-Saltzman and Watson, 2012; 
Wickwire et al., 2016; Mollayeva et al., 2017). Rodent models of TBI 
are used to investigate sleep disturbances. Experimental TBI results in 
acute and chronic sleep disturbances, and these sleep disturbances 
occur following both mild and moderate TBI (Table 1). It is important 
to note that there are multiple factors that can influence sleep 
disturbances including the location of the injury, severity, depth of 
impact, diffuse or focal, pressure of blast, and brain area of injury.

Sleep disturbances can exacerbate pathology after a TBI and lead 
to longer recovery times in patients, thus, treating sleep disturbances 
is of high priority to increase the quality of life of TBI survivors 
(Wiseman-Hakes et al., 2013; Theadom et al., 2016; Sandsmark et al., 
2017; Morse and Garner, 2018). Unfortunately, there is a lack of 
effective long lasting sleep treatments for TBI (Wickwire, 2020). While 
the exact mechanisms responsible for sleep disturbances caused by 
TBI are complex and unknown, the contribution of pro-inflammatory 
cytokines and alteration of neurovascular hemodynamics is discussed 
in this review (Pop and Badaut, 2011; Viola-Saltzman and Watson, 
2012; Lok et al., 2015; Sandsmark et al., 2017; Aoun et al., 2019; Green 
et al., 2020; Rowe and Griesbach, 2022).

4 Models of TBI and sleep 
disturbances

Sleep has been studied post-TBI in a range of animal models 
(Table 1). Here, we discuss sleep post-TBI after diffuse, focal, and blast 
injuries. Most research on sleep post-TBI focuses on the acute period 
post-injury and details the post-traumatic sleep response (Rowe et al., 

FIGURE 2

Rodent models of traumatic brain injury. Weight drop injury (WDI), fluid percussion injury (FPI), controlled cortical impact (CCI), and blast traumatic 
brain injury (bTBI). Created using BioRender.com.
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TABLE 1 Summary of key sleep and EEG findings of studies involving rodent TBI models.

Citation TBI model Animal Focal or 
Diffuse

Craniectomy Injury site Severity Repetitive Methods Wake NREM REM Actigraphy

Konduru et al. 
(2021) CCI Mouse Focal Yes Right temporo-

parietal cortex
Moderate to 
severe No PSG ↑ Mean time at 

1 month

↓ Mean time at 
1 month
↑ Mean 
 normalized delta 
power 1 week

↓ Mean time 
at 1 week

N/A

Thomasy and 
Opp (2019) CCI Mouse Focal Yes Left parietal 

cortex Moderate No PSG

↑ # Bouts 
during dark 
period
↓ % Time 15 
and 30 days 
during dark 
period

↑ Delta power at 
3, 7
↑ % Time 15 and 
30 days during 
dark period

No change 
% Time N/A

Willie et al. 
(2012) CCI Mouse Focal Yes Left 

frontoparietal Moderate No PSG

↑ # Bouts 
during dark 
period
↓ Length of 
bouts during 
dark period

N/A N/A N/A

Hazra et al. 
(2014) CCI Mouse Focal Yes Posterior to 

bregma right side Mild No Home cage activity 
software N/A N/A N/A

↓ Mean sleep bout 
length dark period vs. 
light
↑ Wake light bouts
at week 4

Thomasy et al. 
(2017) CCI Mouse Focal Yes Left parietal 

cortex
Mild and 
moderate No PSG

↓ Moderate 
TBI % time 
dark period 
day 15

↑ Moderate TBI 
% time NREM 
dark period 
15 days post 
injury
↑ Delta power 
moderate 7 and 
15 days light 
period
↑ Mild TBI delta 
power day 7 dark 
period
↑ Moderate TBI 
Delta power day 
15 dark period
↓ Sham Delta 
power at day 7 
dark period

↑ % time
mild
light 7 and
15 days
↑ % time
moderate
light 7 days

N/A

Lim et al. 
(2013)

Fluid 
percussion Mouse Diffuse Yes Right parietal 

area Mild No PSG ↓ Peak 
frequency

No change peak 
frequency

↓ Peak 
frequency

N/A

(Continued)
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Citation TBI model Animal Focal or 
Diffuse

Craniectomy Injury site Severity Repetitive Methods Wake NREM REM Actigraphy

Skopin et al. 

(2015)

Fluid 

percussion
Rat Diffuse Yes

Left parietal 

cortex
Moderate No PSG

↑ # Bouts at 

day 6, 29 dark 

period

↓ Mean bout 

length at day 6, 

29 dark period

↓ NREM total 

time light period 

at day 29

↑ # Bouts at day 6 

and 29 dark 

period

↓ Mean bout 

length at day 29 

dark period

No change N/A

Rowe et al. 

(2014b)

Fluid 

percussion
Mouse Diffuse Yes

Between bregma 

and lambda
Moderate No Sleep cage system N/A N/A N/A

↑ % Sleep in injury 

and sham groups 

following sleep 

disruption

Rowe et al. 

(2014a)

Fluid 

percussion
Mouse Diffuse Yes

Between bregma 

and lambda
Moderate No Sleep cage system N/A N/A N/A

↑ % Time sleep during 

the first week post-

injury

↑ % Time sleep in TBI 

mice compared to 

uninjured during the 

dark cycle

↑ Mean length of sleep 

bout first week post-

injury

Modarres et al. 

(2017)

Fluid 

percussion
Mouse Diffuse Yes

Between bregma 

and lambda right 

parietal

Mild No PSG
↑ Theta:alpha 

amplitude ratio

No change 

Theta:alpha 

amplitude ratio

N/A N/A

(Continued)

TABLE 1 (Continued)
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TABLE 1 (Continued)

Citation TBI model Animal Focal or 
Diffuse

Craniectomy Injury site Severity Repetitive Methods Wake NREM REM Actigraphy

Rowe et al. 

(2014c)

Fluid 

percussion
Mouse Diffuse Yes

Centered between 

bregma and 

lambda

Mild or 

moderate
No Sleep cage system N/A N/A N/A

↑ % Sleep over the first 

6 h

↑ Median bout length 

over the first 4 h

Noain et al. 

(2018)
Weight drop Rat Mixed No Pre-frontocortical Mild No PSG

↓ % Wake/dark 

period at 

28 days

↑ % NREM/dark 

period at 28 Days

↑ Relative delta 

power at 7 days

No change 

%REM/dark 

period

N/A

 Büchele et al. 

(2016)
Weight drop Rat Mixed No

Anterior to 

bregma over the 

midline

N/A No PSG
No change % 

of light period

No change % of 

light period

No change 

% light 

period

N/A

Sabir et al. 

(2015)
Weight drop Mouse Mixed No

Lateral right of 

midline posterior 

to bregma

Mild No PSG

↓ # long bouts 

at day 1

 Relative delta 

activity 

blunted day 1 

higher day 2

No change 

relative delta 

activity

Relative 

delta activity 

not reported

N/A

Vigil et al. 

(2023)
Blast model Mouse Diffuse/blast No Head-on Mild

Yes (3 blasts with 24 

hr intervals between 

each occurrence)

PSG ↓ % Time
No Change % 

Time

No Change 

% Time
N/A

Mountney et al. 

(2021)

Penetrating 

balistics model
Rat Mixed model Yes

Anteroposterior 

and medio-lateral 

from bregma

Severe No PSG

↓ Ipsilateral 

alpha, beta, 

and sigma total 

power vs. 

ipsilateral 

sham

↓ Ipsilateral % 

vigilance state 

light period vs. 

ipsilateral 

sham

No change total 

power

↑ Ipsilateral % 

vigilance state 

light period vs. 

ipsilateral sham

↓ Ipsilateral 

alpha and 

beta total 

power vs. 

ipsilateral 

sham

↓ Ipsilateral 

% vigilance 

state light 

period vs. 

ipsilateral 

sham

N/A

(Continued)
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Citation TBI model Animal Focal or 
Diffuse

Craniectomy Injury site Severity Repetitive Methods Wake NREM REM Actigraphy

Bibineyshvili 

et al. (2022)

Secondary 

blast
Mice Diffuse/blast No

Right parietal 

region
Not reported No PSG

↑Delta/apha 

ratio high delta 

group 0, 1, 2, 3 

days post

↑Delta/apha ratio 

high Delta group 

0, 1, 2, 3, 4 days 

post

↑Delta/

alpha ratio 

high delta 

group 0, 1, 

2, 3 days 

post

N/A

Konduru et al. 

(2022)
CCI Mice Focal Yes

Right temporo-

parietal cortex

Moderate to 

severe
No EEG N/A

↑ Mean delta 

power 1 week and 

1 month

↓ Mean time 

at 1 week, 

reverts to 

baseline at 

1 month

N/A

Portillo et al. 

(2023)

Blast, Closed 

head injury 

(CHI), and 

rotational

Mice
Mixed 

models
No

Blast = frontal 

exposure

CHI = bregma

Mild Yes Sleep cage system

N/A N/A N/A ↑ % Sleep in male 

injury/stress mice 

during the dark phase. 

No change for females

Korthas et al. 

(2022)

High frequency 

head impact 

(HF-HI) and 

CCI

Mice Mixed Yes for CCI HF-HI: Varies

CCI: center of left 

parietal bone

Mild (HF-HI) 

and Severe 

(CCI)

Yes for HF-HI  

(5 a day for 6 d)

EEG No changes for 

either group

No difference in 

% sleep or bout 

length for either 

group

No 

difference in 

% for either 

group, but 

HF-HI led 

to shorter 

bouts during 

light cycle

N/A

Holden et al. 

(2021)

CCI Mice Focal Yes Anteroposterior 

and medio-lateral 

from bregma

Mild No Electrocorticography 

(ECoG)

N/A Fewer spindles 

ipsilateral to 

injury site 

compared to 

contralateral side

N/A N/A

Nichols et al. 

(2016)

Weight drop Mice Mixed No Centered between 

bregma and 

lambda

Mild Yes Sleep cage system N/A N/A N/A ↑ % Total Sleep after 

injury

(Continued)

TABLE 1 (Continued)
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TABLE 1 (Continued)

Citation TBI model Animal Focal or 
Diffuse

Craniectomy Injury site Severity Repetitive Methods Wake NREM REM Actigraphy

Saber et al. 

(2021)

Fluid 

percussion

Mice Diffuse Yes Centered between 

bregma and 

lambda

Mild to 

moderate

No Sleep cage system N/A N/A N/A ↑ % Totalsleep after 

injury with shorter 

mean bout lengths

Saber et al. 

(2020)

Fluid 

percussion

Mice Diffuse Yes Centered between 

bregma and 

lambda

Mild to 

moderate

No Sleep cage system N/A N/A N/A ↑ % Total sleep for 

both sexes in L/D 

cycles. Male TBI mice 

slept 11–17% more 

than female TBI mice

Rowe et al. 

(2019)

Fluid 

percussion

Mice Diffuse Yes Centered between 

bregma and 

lambda

Mild to 

moderate

Yes Sleep cage system N/A N/A N/A ↑ Cumulative sleep for 

TBI and r-TBI mice 

during dark cycle and 

↓ cumulative sleep 

during light cycle

Rowe et al. 

(2018)

Fluid 

percussion

Mice Diffuse Yes Centered between 

bregma and 

lambda

Moderate No Sleep cage system N/A N/A N/A ↑ % Sleep for vehicle 

TBI mice during the 

first light cycle

Borniger et al. 

(2018)

CHI Mice Mixed No Anteroposterior 

from bregma

Mild Yes No change % time No change % 

time

No change % 

Time

No change 

% time

N/A

Harrison et al. 

(2015)

Fluid 

percussion

Mice Diffuse Yes Centered between 

bregma and 

lambda

Mild to 

moderate

No Sleep cage system N/A N/A N/A ↑ Sleep bouts for TBI 

mice during the first 

light period post-

injury

Petraglia et al. 

(2014)

Closed head 

acceleration-

deceleration

Mice Mixed No Varies Mild Yes EEG ↑ % Time ↓ % NREM shift 

to higher 

frequencies

↑ bouts

No change 

% time

N/A

Komoltsev et al. 

(2021)

Fluid 

percussion

Rat Diffuse Yes Centered on 

parietal bone

Mild to 

moderate

No ECoG No change SWD occurrence 

higher in TBI rats 

7 DPI in 

transition from 

wake to NREM

No change No change

(Continued)
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2014c, 2019). Few studies assess sleep at chronic post-injury time 
points. This is an important area for investigation since individuals 
with TBI report sleep dysregulation occurring 6 months or longer 
following TBI (Baumann et al., 2007).

4.1 Sleep after diffuse and mixed-model 
TBI

It is well established that diffuse TBI causes an acute increase in 
sleep, known as a period of ‘post-traumatic sleep’. There is a robust 
increase (over 50%) in time spent asleep in the first 6 h post-injury in 
mice (Rowe et al., 2014c). This period of post-traumatic increase in 
sleep occurs regardless of injury severity or time of day the injury 
occurs (Rowe et al., 2014c). This increase in sleep extends to the first 
week after mFPI, where brain-injured mice slept more than sham 
controls (Saber et al., 2020). Additionally, evidence suggests that sex 
differences in sleep responses to TBI occur with male mice sleeping 
more than female mice acutely after a TBI (Saber et al., 2020). While 
chronic sleep disturbances post-TBI are often reported in the clinic, 
enhanced sleep from mFPI was not sustained chronically in the mouse 
(Rowe et al., 2014a). After LFPI, a mixed model of diffuse and focal 
TBI, acute (6 days post-TBI) and chronic (29 days post-TBI) sleep 
disturbances were observed (Skopin et al., 2015), although there were 
no differences in sleep architecture at the midpoint (19 days post-TBI).

One study found that 6 days post-LFPI mice had increased bouts of 
NREM sleep (Skopin et al., 2015). Differences in sleep responses to TBI 
in rodents are shown to occur mostly during the dark period, which 
might be due to ceiling effects from their increased sleep during the light 
period. Nevertheless, increases in EEG delta power after weight drop are 
observed 7 days post-injury (Noain et al., 2018). Decreased long bouts of 
wakefulness during the dark period 1 day after TBI and increased EEG 
delta activity during the second day after weight drop are reported (Sabir 
et al., 2015). Increased bouts of NREM sleep following LFPI have also 
been observed during the dark period in rats (Skopin et al., 2015).

4.2 Sleep after focal TBI

After CCI, mice have identifiable gliosis and changes in sleep and 
EEG delta power (Willie et al., 2012; Hazra et al., 2014; Thomasy et al., 
2017; Thomasy and Opp, 2019; Konduru et al., 2021, 2022). Another 
study found that EEG delta power during NREM sleep decreased by 55% 
after CCI at 7 days post-injury, and theta power (5.5–8.5 Hz) increased 
59% during REM sleep. However, the same study found that there were 
no differences in time spent awake, in REM, or in NREM sleep after CCI 
at 7 days post-injury (Korthas et al., 2022). At 1–2 months post-TBI, CCI 
mice had greater sleep efficiency and altered sleep architecture compared 
to sham controls (Konduru et al., 2021). CCI mice also exhibited increased 
epileptiform activity acutely at week 1 or chronically at 1, 2, or 3 months, 
which may further cause sleep disruptions (Konduru et al., 2021).

4.3 Sleep after blast TBI

Hypersomnia and reduced EEG gamma power during a slow-
wave-sleep state post-injury was reported in one bTBI study (Vigil 
et al., 2023). However, the polysomnography (PSG) surgery occurred C
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post-TBI so proper baseline normalization of EEG signals was not 
done and sleep was assessed 24 h after the injury where inflammation 
and surgical procedures could affect sleep responses (Beuckmann 
et al., 2019). Another bTBI and PSG study in rats reported 24 h post-
injury hypersomnia effects and did not show persistent effects or 
determine hallmarks of bTBI sequalae (Mountney et al., 2021). A 
third study found hypersomnia and EEG delta/theta ratios but only 
assessed within 1 week post-injury (Bibineyshvili et al., 2022).

5 TBI-induced mechanisms that 
dysregulate sleep

5.1 Pro-inflammatory cytokines and sleep

Cytokines are small cell-signaling molecules that have multiple 
functions including immune, inflammatory, vasoregulatory, and sleep 
regulatory functions. Many pro-inflammatory cytokines can alter 
sleep, electroencephalogram (EEG) power spectra, and induce 
sleepiness, and cytokines with anti-inflammatory properties tend to 
attenuate sleep responses to sleep promoting stimuli (Zielinski and 
Gibbons, 2022). Interleukin-1 beta (IL-1β), tumor necrosis factor-
alpha (TNF-α), and IL-6 are the most well characterized 
pro-inflammatory cytokines that regulate sleep (Kinoshita et al., 2002; 
Krueger, 2008; Krueger et  al., 2011). These cytokines are largely 
enhanced in sleep regulatory brain areas, such as the cortex, brainstem, 
and basal forebrain, and enhance non-rapid eye movement (NREM) 
sleep and EEG delta power (0.5–4 Hz frequency) after stimulation by 
sleep loss, disease, or injury (Krueger, 2008; Krueger et al., 2011). 
Pro-inflammatory cytokines can also alter sleep architecture, for 
example, they result in suppressed or delayed rapid eye movement 
(REM; Krueger et al., 2011; Zielinski and Gibbons, 2022).

Inflammation can promote sleep or result in sleep fragmentation 
depending on the stimuli severity or dose, stimuli duration, or timing 
post-stimuli (Zielinski and Gibbons, 2022). IL-1β, TNF-α, and IL-6 
are increased in the circulation after sleep loss (Krueger, 2008). 
Application of IL-1β or TNF-α directly to the brain enhances NREM 
sleep (Dickstein et  al., 1999; Baker et  al., 2005). Inhibiting these 
cytokines or their receptors with transgenic mice, pharmacologically, 
or with small interfering RNA reduces sleep responses to sleep 
promoting stimuli (Krueger, 2008). Moreover, nucleotide-binding 
domain and leucine-rich repeat protein-3 (i.e., NLRP3) 
inflammasomes, which are sensing protein complexes that induce the 
somnogenic molecules IL-1β and IL-18 and are a critical regulator or 
NREM sleep and EEG delta power, are activated in the brain from 
sleep loss, pathogens, altered metabolism, and following a TBI 
(Zielinski et al., 2017; Carey et al., 2023). This further implicates the 
role of pro-inflammatory cytokines in TBI-induced sleep 
dysregulation. Although speculative, it is likely that sleep dysregulation 
following TBI is, in part, caused by both activation and modulation of 
cytokines and their receptors, and the reciprocating changes in these 
molecules caused by altering sleep amounts and sleep fragmentation.

There is a temporal association between the acute increase in sleep 
observed after diffuse TBI, and levels of pro-inflammatory cytokines 
(Rowe et al., 2014c). Consistent with diffuse TBI models, cytokines 
IL-1β and TNF-α are elevated hours after injury in CCI and LFPI 
models of focal TBI which can potentially contribute to sleep 

dysregulation (Dalgard et  al., 2012; Perez-Polo et  al., 2013). The 
literature reports that bTBI animal models can increase 
pro-inflammatory somnogenic cytokines in the brain, such as IL-1α, 
IL-1β, and IL-6 that could contribute to sleep dysregulation (Heyburn 
et al., 2023). Additionally, patients with TBI have elevated serum levels 
of pro-inflammatory cytokines (Morganti-Kossman et  al., 1997; 
Morganti-Kossmann et al., 2002), including IL-1β (Tasçı et al., 2003). 
These findings are consistent with studies of increased sleepiness after 
TBI in humans and level of TBI severity with IL-1β potentially 
increasing sleepiness after injury (Watson et al., 2007). Cellular and 
molecular mechanisms other than those involving inflammation can 
also contribute to the sleep effects, such as loss of hypocretin neurons 
post-TBI (Thomasy and Opp, 2019), changes in hypocretin ligands 
and receptors (Korthas et al., 2022), and changes in circadian gene 
expression (e.g., Clock, Per1, Per 2, Bmal, Cry1, Cry2; Boone et al., 
2012; Govindarajulu et al., 2023).

5.2 The blood–brain-barrier and cerebral 
blood flow post-TBI

The mechanical force of TBI can cause disruption to the blood–
brain-barrier (BBB) upon impact (Cash and Theus, 2020). However, 
secondary BBB damage can occur due to ongoing inflammatory 
processes including pro-inflammatory cytokine signaling (Figure 1; 
Cash and Theus, 2020). Both focal and diffuse brain injuries disrupt 
the BBB, but the type of damage differs between brain injury models 
(Chodobski et al., 2011). For example, CCI and LFPI cause immediate 
shearing of blood vessels upon impact. Diffuse and closed head injury 
models also cause some bleeding upon impact; however, this is not 
due to the penetration of a metal piston or fluid impulse, this is due to 
compression of the brain from acceleration/deceleration forces. Blast 
TBI causes widespread disruption of the BBB, consisting of many 
microbleeds (Kawoos et al., 2021). One study found that in 8/10 brain 
regions tested there was significant bleeding within 15 min of blast 
induced TBI in rats (Logsdon et al., 2018). Mechanistically, the diffuse 
BBB disruption caused by blast TBI is due to disruption of tight 
junctions from loss of transmembrane and adhesion molecules (Hue 
et al., 2013; Heyburn et al., 2019). Furthermore, increased permeability 
of the BBB has been observed chronically post-injury, regardless of 
severity (Andrews et al., 2016). Damage to cerebral vasculature can 
cause long term alteration in cerebral blood flow (CBF; Golding, 2002; 
Monson et al., 2019). Reduced CBF can worsen patient outcomes and 
prolong secondary inflammation post-TBI (Jenkins et  al., 1989; 
Robertson et al., 1992). After TBI, hyperpermeability of the cerebral 
vasculature can cause edema which increases intracranial pressure 
and decreases cerebral perfusion pressure (Alluri et al., 2018).

5.3 Cerebral blood flow and sleep post-TBI

CBF is intrinsically related to changes in neuronal activity and 
functions to support the rapid need for glucose and oxygen from 
changing brain demands (Zheng et al., 2016). An interaction between 
neuronal activity and CBF is referred to as neurovascular coupling and 
it is tightly regulated (Iadecola, 2017). Altered CBF often accompanies 
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TBI as early as hours after injury in the very acute post-injury phase 
with decreases observed in patients (Bouma et al., 1992; Soustiel et al., 
2005; Salehi et al., 2017), although an increase in CBF is reported in 
day 1–5 post-injury and is associated with better outcome (Kelly et al., 
1997). Intriguingly, CBF is also reported to be  reduced at 6 and 
12 months post-injury in TBI survivors compared to healthy controls 
(Gaggi et  al., 2023). There are physiologic, neurologic, and 
immunologic changes that mediate changes in neurovascular 
hemodynamics to affect CBF and link alterations in sleep. Specifically, 
cytokines such as TNF-α and IL-1β can modulate CBF (Vila and 
Salaices, 2005). For example, chronic intracerebroventricular infusion 
of IL-1β reduces CBF in rodent models suggesting that chronic IL-1β 
might be involved in the TBI hypoperfusion (Maher et al., 2003).

5.4 CBF and sleep

Evidence indicates that CBF and sleep have a dynamic 
relationship, which alludes to the potential effects on this relationship 
from TBI since both CBF and sleep are altered by TBI (Viola-Saltzman 
and Watson, 2012; Salehi et al., 2017). Broadly, global decreases in 
CBF during NREM compared to wake are observed (Townsend et al., 
1973; Madsen et al., 1991a,b; Braun et al., 1997; Bangash et al., 2008). 
A further decrease in CBF during NREM was found in humans as well 
as parallel findings in measurements of cerebral metabolic rate 
(Townsend et  al., 1973; Madsen et  al., 1991b; Braun et  al., 1997; 
Bangash et  al., 2008). Recent reports demonstrate both vascular 
diameter and hemoglobin concentrations increase in NREM and 
REM compared to awake brain states in mice (Turner et al., 2020). 
Typically, blood flow increases to areas of the brain by vessel dilation, 
although reductions in microvascular pressure and myogenic 
mechanisms can also modulate CBF (Cipolla, 2009). Consequently, it 
is plausible that pro-inflammatory cytokines, which can induce 
vasodilation, can affect hemodynamics, in part, from the modulation 
of cytokines from TBI (Vila and Salaices, 2005). Nevertheless, in both 
humans and rodents, blood flow changes during sleep states and 
during sleep state transitions, suggesting that altered hemodynamics 
from TBI could influence sleep or vice versa (Zielinski and 
Gibbons, 2022).

6 Treating TBI-induced sleep 
disturbances

Sleep disturbances are experienced by TBI survivors; however, 
treating sleep disturbances has proven challenging. Therapeutics are 
typically administered to mitigate the dominant symptom or treat a 
specific sleep–wake disorder. Clinical studies support the potential use 
of pharmacological compounds that promote wakefulness, such as 
modafinil, to treat excessive daytime sleepiness in TBI patients. Wake-
promoting agents have shown some success in ameliorating excessive 
sleepiness after TBI (Kaiser et al., 2010; Menn et al., 2014), while 
stimulants have been less studied in the clinical setting. In a preclinical 
model of TBI, modafinil attenuates neuroinflammation and exerts 
neuroprotective effects (Ozturk et al., 2021). These anti-inflammatory 

actions may underlie the effectiveness of modafinil in treating 
excessive daytime sleepiness after a brain injury.

Treating the underlying pathology, as opposed to the dominant 
symptom, has shown efficacy in preclinical TBI models. Novel 
compounds that target cytokines have been administered to reduce 
inflammation and subsequently prevent TBI-induced sleep 
disturbances in the mouse (Rowe et al., 2018; Apostol et al., 2022). 
Importantly, when acute TBI-induced sleep is reduced with a 
pharmacological intervention, mice have improved functional 
outcomes (Rowe et al., 2018; Apostol et al., 2022). This highlights the 
importance of treating sleep disturbances with the goal of improving 
functional recovery and quality of life.

Other novel treatments for TBI-induced sleep disturbances 
include light therapy, dietary supplementation, and cognitive-
behavioral therapy. Dietary supplementation with branched chain 
amino acids (BCAAs) improves wakefulness and cognition in a rodent 
model of TBI (Lim et  al., 2013; Elkind et  al., 2015). BCAA 
supplementation also improved insomnia severity and sleep measures 
determined by actigraphy, in the chronic phase of recovery from TBI 
in a cohort of veterans (Elliott et al., 2022). In a mechanistic study to 
investigate the action of BCAAs on TBI-induced sleep disturbances it 
was identified that BCAAs restore excitatory glutamate within 
presynaptic terminals on wake-promoting orexin neurons (Elliott 
et al., 2018).

Survivors of TBI experience medical, psychological, and mental 
health comorbidities during the long-term recovery process that 
complicate treatment strategies. Comorbidities associated with TBI 
include pain, headaches, and endocrine dysfunction, which further 
exacerbate sleep disturbances (Rowe and Griesbach, 2022). It should 
be  noted that treatment of these comorbidities can include 
medications that interfere with healthy sleep. There is a critical gap in 
the current literature around combination therapies to treat 
TBI-induced sleep disturbances and comorbid symptoms. Further 
research is needed to elucidate effective treatment strategies for TBI 
survivors. A combination of therapies that include targeted 
pharmacological intervention, dietary supplementation, light therapy, 
and behavioral therapies should be explored.

7 Conclusion

Sleep is dysregulated post-TBI regardless of severity, and injury 
biomechanics which is consistent with reports in humans. There are 
diverse changes in sleep architecture, inflammation, and 
hemodynamics after TBI. Many of these differences are driven by the 
biomechanics of the injury model such as diffuse, focal, or blast 
injury, and by the brain regions injured. Understanding the complex 
interactions between the biological systems affected by TBI is 
essential in progressing both research and patient treatments.
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