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Multi-consensus formation 
control by artificial potential field 
based on velocity threshold
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This study proposes a multi-consensus formation control algorithm by artificial 
potential field (APF) method based on velocity threshold. The algorithm 
improves the multi-consensus technique. This algorithm can split a group of 
agents into multiple agent groups. Note that the algorithm can easily complete 
the queue transformation as long as the entire proxy group is connected initially 
and no specific edges need to be removed. Furthermore, collision avoidance 
and maintenance of existing communication connectivity should be considered 
during the movement of all agents. Therefore, we design a new swarm motion 
potential function. The stability of multi-consensus formation control has 
proven to be  effective in avoiding collisions, maintaining connectivity, and 
generating formations. The final numerical simulation results show the role of 
the controller we designed.

KEYWORDS

artificial potential field, formation control, multi-consensus, velocity threshold, swarm 
motion potential function

1 Introduction

With its great application potential, multi-agent systems (MAS) have experienced rapid 
development in both theoretical research and engineering applications in recent years. In 
terms of information acquisition, fault tolerance, and completion of complex tasks, MAS has 
incomparable advantages over a single agent (Sui et al., 2020a,b). Currently, MAS has found 
extensive research applications in precise mapping, environmental monitoring, and military 
domains, among others.

Formation control is a critical research area in the field of MAS, involving collaborative 
behaviors among multiple agents to achieve specific tasks or objectives. The primary methods 
for formation control include leader–follower methods, virtual structure methods, APF 
methods, and distributed control methods (Wu and Li, 2023), among others. Leader–follower 
methods (Yu and Chen, 2021) are one of the most common strategies in formation control. In 
this approach, one or more agents are designated as leaders, and their actions dictate the 
collective behavior of the entire formation. The remaining agents act as followers, adjusting 
their positions or velocities to maintain specific relative positions with respect to the leaders. 
This method is often used in hierarchical tasks where leaders provide guidance and objectives 
for the formation. Virtual structure methods introduce virtual connections or structures, such 
as spring-mass systems, to achieve formation control. In this approach, each agent is influenced 
by virtual connections with adjacent agents. These virtual connections are defined using 
models like spring systems or other forms of interactions to maintain the desired formation 
shape. Virtual structure methods (Ren and Beard, 2005) are typically employed in tasks that 

OPEN ACCESS

EDITED BY

Ziming Zhang,  
Worcester Polytechnic Institute, United States

REVIEWED BY

Linlin You,  
Sun Yat-sen University, China
Qing Wang,  
Beihang University, China
Yun Yue,  
Worcester Polytechnic Institute, United States

*CORRESPONDENCE

Xiaofei Chang  
 changfei83@sina.com

RECEIVED 08 January 2024
ACCEPTED 26 February 2024
PUBLISHED 25 March 2024

CITATION

Chang X, Jiao J, Li Y and Hong B (2024) 
Multi-consensus formation control by 
artificial potential field based on velocity 
threshold.
Front. Neurosci. 18:1367248.
doi: 10.3389/fnins.2024.1367248

COPYRIGHT

© 2024 Chang, Jiao, Li and Hong. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 25 March 2024
DOI 10.3389/fnins.2024.1367248

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1367248﻿&domain=pdf&date_stamp=2024-03-25
https://www.frontiersin.org/articles/10.3389/fnins.2024.1367248/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1367248/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1367248/full
mailto:changfei83@sina.com
https://doi.org/10.3389/fnins.2024.1367248
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1367248


Chang et al. 10.3389/fnins.2024.1367248

Frontiers in Neuroscience 02 frontiersin.org

require maintaining specific geometric configurations, such as multi-
robot formations or aerial vehicle formations. APF methods emulate 
the concepts of physical fields and forces in the natural world to guide 
agents toward specific goals or shapes. In this method, each agent is 
influenced by a potential field that directs them to avoid obstacles and 
collaborate with other agents. APF methods (Li et al., 2022) are widely 
used in robot navigation and autonomous flight due to their 
adaptability and real-time characteristics. Distributed control (Wang 
et al., 2019) methods emphasize local communication and decision-
making among agents to coordinate their behaviors without the need 
for a central coordinator. This approach is particularly useful in large-
scale MAS, allowing agents to adapt in real time to changing 
environments and tasks. Distributed control methods include 
consensus-based methods, model predictive control, and 
reinforcement learning, among others. The book “Graph Theoretic 
Methods in Multiagent Networks” (Mehran and Egerstedt, 2010) 
provides an overview of the application of graph theory methods in 
multi-agent networks. It explores the applications of distributed 
control methods in MAS. The choice of formation control method 
typically depends on the nature of the task, interactions between 
agents, and environmental conditions. However, traditional control 
methods are only suitable for scenarios where multiple agents form a 
single coherent MAS. In practice, situations can be more complex, 
requiring different formations to accomplish multiple objectives. 
Therefore, MAS needs to establish multi-consensus formation control 
as depicted in Figure 1.

In the realm of formation control, achieving consensus among 
multiple agents is a fundamental and intricate challenge. Beyond 
traditional consensus, where agents aim to converge to a single 
common value, multi-consensus adds a layer of complexity by 
targeting agreement on multiple quantities of common interest. This 
nuanced concept opens up new avenues for research and applications, 
addressing scenarios where diverse objectives must be met within a 
multi-agent system (Han et al., 2016). Ren and Beard (2005) made 
significant contributions to the field by analyzing the convergence of 
high-order MAS operating under consensus algorithms. Their work 
not only delved into the theoretical underpinnings of convergence but 
also provided necessary and sufficient conditions for achieving it. 
Their research is instrumental in understanding the theoretical 

foundations of multi-consensus. Guo et  al. (2014) introduced an 
innovative distributed event-triggered transmission strategy. This 
strategy facilitates MAS in achieving multi-consensus by allowing 
agents to converge to different values at different stages of the 
interaction. This adaptive approach recognizes that within complex 
tasks, not all agents need to reach the same consensus simultaneously, 
but rather, multiple consensuses can evolve iteratively, aligning with 
the dynamics of the task. Zhu et al. (2015) proposed a segmental 
unmanned aerial vehicle (UAV) formation control strategy founded 
on the principle of information consistency. They not only presented 
the concept but also conducted comprehensive simulations to validate 
the rationality and effectiveness of the strategy. Such real-world 
application of multi-consensus strategies is crucial for confirming 
their practical utility.

In addition, it is crucial to underscore the paramount significance 
of collision avoidance and the maintenance of connectivity in the 
realm of multi-subgroup formation control. These two aspects remain 
pivotal challenges that MAS grapple with, particularly during the 
intricate process of switching network topologies (Dong et al., 2021). 
Current research indicates that MAS network topologies are often 
artificially designed, introducing a level of uncertainty and 
sub-optimality. This uncertainty can pose hindrances to the stable 
preservation of formations under multi-agent control, necessitating 
innovative solutions. To address the trajectory tracking problem, 
noteworthy efforts have been made by researchers. For instance, 
Mondal et al. have devised a pioneering multi-agent formation control 
approach that not only steers clear of collisions but also meticulously 
upholds connectivity within the system (Mondal et al., 2017). On a 
similar note, Liu et  al. (2019) have proposed a distinctive MAS 
formation generation strategy hinged on a network topology that 
employs an event-triggered mechanism. Although this method 
showcases promise, it does require the establishment of internal 
topology connections within sub-formations. These endeavors mark 
significant advancements in the field and offer potential solutions to 
these persistent challenges.

Based on the aforementioned analysis, this study conducts 
research on the multi-agent formation control problem and presents 
an APF method suitable for multi-subgroup formations based on 
velocity thresholds. This approach constructs communication 

FIGURE 1

Concept of multi-consensus formation control.
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topologies, allowing agents to maintain predefined formations 
effectively. The main contributions are summarized as follows:

 (i) Based on an enhancement of established multi-consensus 
algorithms, we  introduce a novel decentralized multi-agent 
consensus formation control algorithm. This innovation 
involves the decentralization of a set of MAS into multiple 
groups, eliminating the requirement for subgroup 
network conditions;

 (ii) In our quest to achieve precise trajectory tracking and 
ensure sustained connectivity in the domain of multi-
subgroup formation control, we  have developed a 
sophisticated group motion potential energy function 
inspired by the principles of artificial potential fields. This 
innovative approach serves as a guiding force, orchestrating 
the coordinated movement of the agents in complex 
environments, thereby enabling seamless trajectory tracking 
and effective maintenance of connectivity;

 (iii) Furthermore, our comprehensive strategy involves the 
implementation of tailored velocity thresholds for each 
individual agent. These specific thresholds are meticulously 
designed to optimize the stability and safety of the system while 
enhancing the ability of the agents to navigate within the 
formation. This dual-pronged approach not only advances the 
field of MAS but also opens new avenues for addressing 
collaborative control challenges across various domains.

2 Preliminaries

2.1 Graph theory

In this paper, the weighted undirected graph is used to describe 
the communication relationship between the agents in the system 
(Luo and Cao, 2014).

First, in this paper, the undirected graph is defined as  . We define 
the set of points of the undirected graph as  = …{ }1 2, , ,n  and the set 
of edges as Ε = ∈ ≠{ }e i j i jij | , , . Then, the adjacency matrix is 
defined as ∈ ×n n . n  denotes the number of agents in the system. 
The elements of the adjacency matrix are aij , indicating the adjacency 
of the i-th vertex at the j -th vertex. Agent i and agent j  are 
concatenated when eij ∈  and aij =1, but not vice versa. Furthermore, 
when i j aij= =, 0. In addition, if agent i is connected to agent j , 
information about each other can be obtained when eij  exists between 
agents. The connection set for agent i is defined as i ijj e= { }| . The 
degree matrix of the graph is defined as D  :  = …{ }diag d d dn1 2, , ,  
where d ai

j

n
ij=

=
∑

1
. The Laplacian matrix  of the unweighted 

undirected graph can be expressed as follows:

 L D A= −  (1)

When the communication is restricted, the communication 
strength between agent i and agent j  is affected by the relative distance. 
Considering the above situation, the element aij  in the adjacency 

matrix   needs to be modified. The modified matrix elements are 
values on a continuous space, and aij  can be expressed as follows:
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where we define τ  as the communication-limited decay rate and 
R as the farthest communication boundary. x tij ( ) is denoted as the 
distance between agent i and agent j  at moment t x t x tij i, ( ) = ( ) −  
x tj ( ). ·  is the 2-norm. The model is referenced from Fang et al. 
(2016).   can be defined as a n n×  matrix whose i j,( ) element is 

a diag d d dij n, : = 1 2, , ,…{ } , and d di
j

n
ij=

=
∑

1

. The weighted 

Laplacian matrix is defined as follows:

 L D A= −  (3)

It is worth noting that each element in   is a time-varying 
continuous function between related agents. Furthermore, the 
elements of  are closely related to the undirected time-varying graph 
 . aij  may jump when   changes. Unless otherwise stated, all graphs 
in this paper are undirected graphs.

2.2 Multi-consensus

We describe the dynamics of a second-order multi-agent system 
with n agents as follows:

 





x t v t
v t u t i
i i

i i

( ) = ( )
( ) = ( ) ∀ ∈







,
,  

(4)

where u ti ( ) is the control method to be designed in this study. 
It is obvious that x ti ( )∈  represents the position of agent i and 
v ti ( )∈  represents the velocity of agent i. Additionally, all 
assumed states in this study are one-dimensional. The Kronecker 
(Choi et al., 2020) product can be used if it is necessary to extend 
the methods of this study and the states such as position to 
multiple dimensions.

In a second-order (Pan and Nian, 2014) multi-intelligence system 
(Eq.  4) with n agents, multi-agent is considered to have reached 
consensus if they achieve a smooth consistency. Smooth consistency 
between agents i and j  is defined as follows (Han et al., 2016):
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lim lim

t
i j
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(5)

The consensus of agents implies that their states reach an 
agreement. By achieving identical states, the MAS can accomplish 
collective behavior (Gulzar et al., 2018).
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Lemma 1 [Laplacian matrix (Han et  al., 2016)]. We define a 
Laplacian matrix ̂  under multiple consensus:
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(6)

where ωi means the intelligence degree of the agent i ij.  indicates the 
i j,( ) element of the Laplacian matrix .

In an MAS, agents, i and j  can achieve a common consensus if 
agent i and j  have the same degree of intelligence, i.e., the agents i 
and j  satisfy Eq. (5) if ω ωi j= . In another sentence, with multiple 
different degrees of intelligence, the MAS can achieve multiple 
consensus. Accordingly, the MAS can form different numbers of 
clusters through assigning the appropriate degree of intelligence. 
Compared to traditional consensus protocols that aggregate all 
agents to the same state, this study uses intelligence to achieve 
multiple consensuses in a more convenient way. More details can 
be found in Han et al. (2016).

2.3 Artificial potential field

The APF method is a classic control algorithm with universality. 
Various APF methods have been proposed for formation control 
(Yu and Chen, 2020). The algorithm regards the target and the 
obstacle as objects with attraction and repulsion to the agent, 
respectively, and the agent moves along the resultant force of 
attraction and repulsion.

The sticking point to the algorithm is to construct an artificial 
potential field. Suppose the agents move in a plane, we would get the 
potential field as shown in Figure 2. The peak in the figure is the 
potential field at the location of each agent. The potential field 
generates attractive forces at a distance from the agent before reaching 

the position specified in the formation, and the potential field can also 
generate repulsive forces at a closer distance from the agent.

2.4 Problem formation

In multi-subgroup decentralized control, agents need to consider 
avoiding collisions and maintaining connectivity.

To this end, we design a suitable artificial potential energy field 
algorithm. The group motion potential functions V t( )  we designed 
include collision avoidance potential function G t1 ( ) and connectivity 
preserving potential functionG t2 ( ). Due to the potential energy field 
having a certain range of action, the collision avoidance potential 
function satisfies G t G1 1( ) < max . Similarly, G t G2 2( ) < max  to maintain 
connectivity. To ensure that the designed formation control law works 
at all times, the designed group motion potential function should satisfy

 

V t G

V t G

( ) ≤
( ) ≤


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

1

2

max

max

 
(7)

3 Controller design and stability 
analysis

This section proposes the multi-consensus control method, and 
we prove the stability of the control method theoretically using the 
Lyapunov function approach.

3.1 Obstacle avoidance strategy design

The safe distance from the obstacle is rint , and the working 
boundary is routt . In other words, the obstacle avoidance potential 
function takes effect when r x rin

t
ij out

t″ ″ . The obstacle avoidance 
boundary is smaller than the communication distance, so each agent 
can detect obstacles within the obstacle avoidance area.

Define the collision avoidance neighbor of agent i as i
q , which 

can be denoted as

 
i
q

i qj n x x r= ∈{ } − ≤{ }1, , out� � �:
 (8)

where xq is the position of the obstacle.
The potential function is designed as follows:
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(10)

Then, the collision avoidance control for agent i at xi is defined as

FIGURE 2

Example of the potential field.
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u G xi
q

j N
x ij

i
q

i
= ∇ ( )

∈
∑ 1

 
(11)

where ∇xi  is the gradient along xi.
In the collision avoidance area, the relative distance between the two 

agents is less than rout. The smaller the relative distance, the greater the 
input of the control law. The MAS can comply with collision avoidance.

3.2 Connectivity preservation

This part is designed to keep the intelligent agent connection 
within a certain range R. When r x Rout ij< ≤ , the formation 
maintenance function works. As communication between agents is 
limited, for agent i in the communication range, there is a set of 
connectable agent ensembles denoted as in .

 i
l j n i j= ∈{ } ∼{ }1, , :  (12)

where i j∼  indicates i j,( )∈  or j i,( )∈ , which means that 
communication is possible between agent i and agent j .

The connectivity-preserving potential function is designed 
as follows:
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(14)

where ρ ρ ρij i j= −  refers to the required relative position. ρi  
refers to the target state of the agent i when forming a formation shape.

Then, the connectivity preservation control input of agent i can 
be designed as

 
u G xi
l

j N
x ij

i
l

i
= ∇ ( )

∈
∑ 2

 
(15)

In addition, we design the potential function G xij3 1( ) =  when 
x Rij > . This design allows the connection to be  broken between 
agents if necessary. Therefore, the network can be flexibly changed to 
achieve the desired formation.

Another point to note, the agent spacing of the expected formation 
should be set between on r Rout ,[ ]. In other words, the states of agent 
i and agent j  need to satisfy the following inequation:

 
0 < ≤ ≤ ∀ ∈ = ≠r R i j i jij i jout  ρ ω ω, , , ,

 (16)

3.3 Decentralized multi-consensus 
formation control method

For each sub-formation in the MAS system described in Eq. (4), 
the relative configurations between the agents of the formation 
subgroups designed in this study need to satisfy the 
following requirements:

 x i j i jij ij i j= ∀ ∈ ≠ =ρ ω ω, , , , .  (17)

This study is designed with displacement-based formations. 
Displacement-based formation (Fang et al., 2016) is a different type of 
formation than distance-based formation that may flip or rotate a 
designated graph. The configuration of MAS is unique under 
this method.

To solve the multi-subgroup formation problem, we propose a 
multi-consensus formation algorithm. The key of this algorithm is 
to redistribute the formation of different subgroups by changing 
the intelligence degree ωi i V,∀ ∈  of the agent. The difference in ωi  
also affects the different distances between subgroups (Oh 
et al., 2015).

During formation control, only the subgroup formation 
information including ρi  and ωi  needs to be specified and no other 
manual settings are required. In the initial state, there can be agents 
that are not connected to the subgroups in each subgroup formation, 
but the network of the MAS needs to be connected.

Definition 1. As usual, the condition for formation of a formation 
is that the state between agents satisfies (Eq. 17). Referring to the quasiα
-lattice concept in (Choi et al., 2019), this study considers the effect of 
error δ >( )0  in the formation of the formation. The following inequality 
is generated.

 ρ δ ρ δ ω ωij ij ij i jx i j i j− ≤ ≤ + ∀ ∈ ≠ =, , , and  (18)

The above inequality shows that the formation formed by MAS is 
a formation with a certain error influenced by δ .

 
δ ρ

ω ω
= −

=
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(19)

In this study, we propose decentralized multi-consensus control 
methods with collision avoidance and connectivity preservation:
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where vm is the maximum safe speed . ,ε ρk
p

k kx k= − = 1 2, , ,⊃ n
, and α β, > 0. When the subgroup reaches the target, vi = 0. We can 
also obtain the APF function between r Rin ,( ) of agent l  in the group, 
as shown in Figure 3.

3.4 Stability analysis

This part is about the proof of system stability. First, we define the 
Lyapunov function (Xin et al., 2023).

Definition 2. (Choi et al., 2019) For the input (Eq. 20) proposed in 
this study, the Lyapunov function is defined as follows:
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1 2
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(22)

where îv  is vi
iω
.

We want to prove the stability proof of the system needs to 
consider two cases. First, we demonstrate the stability of the MAS 
network when the connection is fixed. Then, this study proves the 
stability when the topology is dynamically changed.

Theorem 1. (Xin et  al., 2023) When the control input is multi-
consensus control method (Eq. 20), the MAS with a fixed network topology 
of static and dynamics of Eq. (4) can achieve any number ( ″ n ) of 
formation control. For the target formation, there are the following 
conditions to be satisfied:

 (i) ωi i≠ ∀ ∈0, 
 (ii) V 0( ) is bounded
 (iii) The displacement between agents needs to satisfy Eq. (16)

Proof. To prove the stability of the Lyapunov function V , it is 
necessary to derive it. We  first compute the G1 part of the 
Lyapunov function.
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According to the above equation, the derivative of V  can 
be transformed into

 

( ) ( ) ( ) ( )

( )

1 2

2
1 1 ˆ ˆ, ,

i i
q q
i i

T T
i x ij i x ij

N j N j N

Ti
m i i ii j

i

x G x x G x

V
S v v v vρ ρα ε ε

ω

∈ ∈

=

 ∇ + ∇
 
 =  

  + +    

∑ ∑
∑



 



 

(25)

in Eq. (25), the following equation exists
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here, v v v vn
T= …[ ]1 2, , , . Let Λ  diag nω ω ω1 2, , ,…[ ] , and 

we define
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according to the Eq. (20), then
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one can easily notice 
1 1,ˆ ˆu v vu − −= Λ = Λ  and u  can be written as

 
2 2

1 2u G G S vα β∗ ∗ ∗= −Λ − Λ − −  (29)

FIGURE 3

APF function area between agents.
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Bringing the multi-consensus control law n into the derivative of 
the Lyapunov function, we get

 
( )2 1 2 2

1 2 1 2ˆT T T TV v G G v S v G G S vν α α β∗ ∗ − ∗ − ∗ ∗ ∗= + + Λ + Λ −Λ − Λ − −

 
2 1ˆ ˆ ˆT T Tv S v S v vα α β− ∗ − ∗= Λ − Λ −

 ˆ ˆ 0Tv vβ= − ≤  (30)

The Lyapunov’s stability determination requires two proofs. The 
first point is that V  is a semi-positive definite and the second point is 
that the derivative of V  is negative semi-definite. According to 
Eq. (30), the second point can be obtained. In this study, the initial 
value V0 of the Lyapunov function is constant and V  is positive and 
constant at all times, so it is always positive and finite.

 V t V t( ) ≤ ( ) = ∀ ≥0 0Θ∞ ,  (31)

The Lyapunov function needs to satisfy two threshold constraints 
to achieve collision avoidance and connectivity preservation.
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There is the maximum collision avoidance potential function 
max

11G kG=  and the maximum collision avoidance potential function 
max

22G kG=
. Then, Eq. (32) can be transformed as
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To ensure collision avoidance, connectivity preservation, and 
multi-subgroup formation generation, it is necessary to set k  to 
the larger value between V

G
0

1

 and V
G
0

2

. Let 

( ) ( )( ) ( ) ( ){ }, | 0 , 0x t v t V t V tΓ = ≤ ∀ ≥ . According to LaSalle’s 

invariance principle (Tong et al., 2015), each of the solutions starting 
in “  closes to the largest invariant set  = ( ) ( )( )∈ ( ) ={ }x t v t t, VΓ |  0  

as t →∞. In Eq. (30), V = 0 if ,ˆ 0i iv = ∀ ∈  which yields V = 0 and 
v v vn1 2 0= = = = ; i.e., this indicates that all agents have reached the 

same speed and all have a speed of 0. In other words, the speed of the 
agent reaches a stable consensus. When t ui→∞,  can be simplified 
from Eq. (20) to:
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When the system converges, x uij ij i= ρ ,  can be rewritten as
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accordingly,

 
ˆ ˆ 0nu xxα α= − = − Λ =   (37)

We expect that the control input ui to be 0 only when the agents 
in MAS reach multi-consensus.

The above proof is in the case where the MAS connection is a static 
network. We need to extend Lyapunov’s stability proof to the case where 
the network topology is dynamic. We define the network topology graph 
at moment t  as G LGt t( ) ( ).  is the Laplace matrix at moment t . The ωi  
changes when the subgroup assigned by the agent changes dynamically 
(Olfati-Saber, 2006). In line with this, the multi-consensus control 
method is a segmented continuous function. The control input function 
jumps when the network topology graph of the target formation changes. 
From Choi et al. (2019), we can obtain that the system whose network 
topology changes with time is the switching system.

Then, this study requires a stability analysis of the above system 
with dynamic networks. In this study, we refer to the definition of 
residence time for analysis. In the switching system, this study 
refers to the concept of minimum dwell time (MDT). In the 
concept, the subsystem before and after switching is a progressively 
stable system, and then, the switching system is also a progressively 
stable system (Xu et al., 2021). We assume that the network changes 
at moment tk  and the next moment of change is tk+1. However, the 
topology is fixed in the time from tk  to tk+1 and this time interval 
is large enough. The residence time is defined as τ t( ) in this study 
and refers to the time interval between moments of network 
change, as follows:

 τ t t t k Nk k k( ) = − ∀ ∈+1 ,  (38)

Assumption 1. In this study, the minimum residence time is defined 
as τd, and the minimum residence time τd  is large enough to ensure the 
switching system stability. All time intervals of network topology 
switching are longer than the minimum residence time, that is, 
τ τtk d( ) ≥ > 0 . Following this, the ensemble of all possible network 
topology diagrams in the MAS system is c.

Furthermore, according to Theorem 1, if the initial topological 
map of the MAS is an element in c, then the transformed topological 
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FIGURE 4

Desired formation for the simulation.

map remains in the c under the action of the control methods, i.e., if 
 0 ∈ c , then  t c t∈ ∀ ≥, 0.

Corollary 1. If Theorem 1 and Assumption 1 established, then this 
MAS can have stability in dynamic network.

Proof. Since τ τd kt≤ ( ), the network topology of the MAS is 
asymptotically stable from 0. The system network topology t  at time 
t  is asymptotically stable, and then, the intermediate switching system 
is also stable.

It is worth noting that the control method (Eq. 20) proposed in 
this study requires a network constraint that is the initial network 
connection of the MAS. The algorithm in this study allows networks 
between subgroups to be disconnected. Although the agents may not 
receive the information of other agents in the same sub-term, each 
subgroup can reach the split formation based on ω.

4 Simulation

4.1 Multi-consensus formation simulation

This part is the simulation part of the study, which can verify our 
proposed algorithm. This study generates three formations using 20 

agents with initial network connections. The initial position of all 
agents is random within a certain range. The number of agents for the 
three separate formations is 8, 6, and 6, respectively (Tong et al., 2015). 
They have slightly different degrees of intelligence (ω), 1, 1.1, and 1.2.

The whole system satisfies the initial network constraints. The 
initial network is connected between all agents. In addition, the 
algorithm allows the agents between each grouping to exist 
disconnected at the beginning. The formation configuration that the 
simulation wants to form in this section is a diamond, rectangle, and 
triangle. Table 1 contains the relevant parameters required for the 
simulation in this subsection. The state space of agents is 
two-dimensional in the simulation.

The details of the network connections in this simulation are shown 
in Figure  4. In Figure  5A, the black line indicates that the distance 
between the agents is less than R; that is, there is connectivity between 
them. The entire MAS network is initially connected. In Figure 5B, it 
shows the network connections between the green subgroups. Similarly, 
the connections between the red and blue subgroups are indicated in 
Figures 5C,D, respectively. The dotted line refers to the circle with the 
agent as the center and the communication range R as the radius.

Through Figures 6A–D, the temporal process of simulation is 
displayed, revealing the formation process of the formations. Over 
time, the agents gradually adjust their positions and velocities to 
achieve the desired formation shapes.

The first and the second-dimensional consensus among multiple 
agents are shown in Figures 7A,B. By observing the graphs and data, 
we can evaluate the performance of the algorithm and its adaptability to 
different formation shapes. As seen in the figures, the formation process 
is smooth, consistency is quickly achieved, and the communication 
connections between agents remain stable. This indicates that the 
algorithm has good feasibility in practical applications.

4.2 Dynamic formations

This subsection is about the simulation of the dynamic network 
of the MAS. It shows the flexibility of the algorithm in this study 
we proposed.

TABLE 1 Parameters for numerical simulations.

Parameter Value

Communication boundary, R 50[m]

Formation-limit boundary, ′R 40[m]

Exclusion outer boundary, rout 5[m]

Exclusion inner boundary, rin 0.5[m]

Potential function gain, (k k1 2, ) (10, 5)

Control parameters, (α β, ) (1.8, 1.8)

Intelligence degree, ω (1, 1.1, 1.2)

Communication attenuation rate, τ 0.6

Connectivity lower bound,  0.2
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The simulation in this subsection increases the number of agents to 
25. In the simulation process of this section, the first graph of Figure 8 
is formed from the disordered state, and then, the second graph is 
formed. On the one hand, we changed the number of agents, and on the 
other hand, we changed the configuration of the formed formations. 
The initial state of all agents is random within a certain range. The other 
parameter domains used for the simulation are the same as in Table 1.

Figures 9A–D refers to the time course of the dynamic formation 
simulation. Although the formation of the targets is changing 

dynamically, the system establishes an ordered configuration under 
the action of the control method. The first multi-consensus and second 
multi-consensus between multiple agents are shown in Figures 10A,B.

5 Conclusion

In this study, we  designed an improved APF method for 
distributed multi-formation control that enables multi-formation 

FIGURE 5

Initial network topology configuration of the MAS. (A) Initial agent distribution, (B) Green group(ω = 1), (C) Red group(ω = 1.1), (D) Blue group(ω = 1.2).

FIGURE 6

Simulation results of the multi-subgroup formation control. (A) t = 0s, (B) t = 2s, (C) t = 5s, (D) t = 10s.

FIGURE 7

Consensus of two different latitudes. (A) The first dynamic multi-consensus, (B) The second dynamic multi-consensus.
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tasks and places restrictions on the inputs, which makes the 
system secure. A distributed controller is designed based on an 
improved APF method that ensures collision avoidance and 
maintains the communication topology during formation changes. 

Simulation results demonstrate the effectiveness of our designed 
controller. In future work, the optimization of multi-intelligence 
assignments in multiple formations can be  considered. The 
allocation problem requires consideration of the environment and 

FIGURE 8

Scenario of time-varying formations.

FIGURE 9

Formation simulation history process in the time-varying scenario. (A) t = 0s, (B) t = 10s, (C) t = 12s, (D) t = 20s.

FIGURE 10

Multi-consensus formation during the time-varying scenario. (A) The first dynamic multi-consensus, (B) The second dynamic multi-consensus.
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task requirements and can be  considered to be  solved by 
optimizing the allocation algorithm.
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