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Characterization of the neural 
circuitry of the auditory thalamic 
reticular nucleus and its potential 
role in salicylate-induced tinnitus
Qian Dai †, Tong Qu †, Guoming Shen * and Haitao Wang *

School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 
China

Introduction: Subjective tinnitus, the perception of sound without an external 
acoustic source, is often subsequent to noise-induced hearing loss or ototoxic 
medications. The condition is believed to result from neuroplastic alterations in 
the auditory centers, characterized by heightened spontaneous neural activities 
and increased synchrony due to an imbalance between excitation and inhibition. 
However, the role of the thalamic reticular nucleus (TRN), a structure composed 
exclusively of GABAergic neurons involved in thalamocortical oscillations, in the 
pathogenesis of tinnitus remains largely unexplored.

Methods: We induced tinnitus in mice using sodium salicylate and assessed 
tinnitus-like behaviors using the Gap Pre-Pulse Inhibition of the Acoustic Startle 
(GPIAS) paradigm. We utilized combined viral tracing techniques to identify the 
neural circuitry involved and employed immunofluorescence and confocal 
imaging to determine cell types and activated neurons.

Results: Salicylate-treated mice exhibited tinnitus-like behaviors. Our tracing 
clearly delineated the inputs and outputs of the auditory-specific TRN. We 
discovered that chemogenetic activation of the auditory TRN significantly 
reduced the salicylate-evoked rise in c-Fos expression in the auditory cortex.

Discussion: This finding posits the TRN as a potential modulatory target for 
tinnitus treatment. Furthermore, the mapped sensory inputs to the auditory 
TRN suggest possibilities for employing optogenetic or sensory stimulations to 
manipulate thalamocortical activities. The precise mapping of the auditory TRN-
mediated neural pathways offers a promising avenue for designing targeted 
interventions to alleviate tinnitus symptoms.
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Introduction

Subjective tinnitus, the perception of non-existent sounds, burdens an estimated 14% of 
adults globally, with potentially severe consequences including anxiety, depression, and, in 
extreme cases, suicide (Rauschecker et al., 2010; Roberts et al., 2010; Leaver et al., 2011; 
Elgoyhen et  al., 2015; Henton and Tzounopoulos, 2021; Peng et  al., 2023). Despite its 
prevalence, there are currently no effective pharmaceutical treatments available for tinnitus 
(Henton and Tzounopoulos, 2021). Noise-induced trauma and ototoxic medications are the 
leading culprits (Eggermont and Roberts, 2004; Rauschecker et al., 2010; Roberts et al., 2010). 
Salicylate, a common anti-inflammatory and analgesic agent, is routinely used to elicit tinnitus 
in animal models (Guitton et al., 2003; Puel and Guitton, 2007; Ruel et al., 2008; Su et al., 2012; 
Yi et al., 2016). In addition to the commonly used rodent animal models, salicylate-induced 
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tinnitus studies have also been conducted in non-rodent animals. For 
instance, in monkeys administered salicylate orally, tinnitus-like 
behaviors and altered neural activity in the auditory cortex were 
observed, consistent with findings in rodent models (Rogenmoser 
et al., 2022). Similarly, cats receiving intraperitoneal salicylate injection 
exhibited increased spontaneous neural activity in the auditory system 
(Ochi and Eggermont, 1996; Eggermont and Kenmochi, 1998; 
Eggermont, 2008). These studies in rodent and non-rodent animals 
support the validity of salicylate-induced tinnitus models and provide 
valuable insights into the underlying mechanisms of tinnitus.

Research suggests that central neural plasticity, characterized by 
increased spontaneous neural firing and enhanced synchrony, 
underpins tinnitus pathology—a result of diminished central 
inhibition (Eggermont and Roberts, 2004; Llinas et al., 2005; Weisz 
et al., 2007; Roberts et al., 2010; Stolzberg et al., 2011; Llano et al., 
2012; Vianney-Rodrigues et al., 2019). Within the auditory cortex, 
inhibitory GABAergic interneurons serve to dampen neural 
excitability (Wang et al., 2006; Su et al., 2009; Studer and Barkat, 2022). 
Conversely, in the thalamus, particularly in the medial geniculate 
body (MGB), GABAergic neurons are sparse (Winer and Wenstrup, 
1994; Winer et al., 1999; Llinas et al., 2005). Instead, the thalamic 
reticular nucleus (TRN) provides potent inhibitory inputs to the 
thalamus, modulating its output through reciprocal connections that 
dictate thalamocortical rhythmicity (Steriade et al., 1993; Contreras 
et al., 1996; Steriade, 2005; Halassa et al., 2014). In a unique anatomical 
position, the TRN is referred to as the “gatekeeper” of thalamocortical 
information flow, influencing processes like change detection, 
attention, and consciousness (Steriade, 1996; Steriade, 2005; Yu et al., 
2009a; Li et al., 2020). It consists of distinct sectors serving limbic and 
various sensory modalities—visual, auditory, and somatosensory—as 
evidenced by anatomical and physiological data (Yu et al., 2009a, 2011; 
Dong et al., 2019; Martinez-Garcia et al., 2020; Wang et al., 2023). The 
auditory sector of the TRN (aTRN), in particular, receives and 
processes ascending auditory signals, exerts inhibitory control over 
the MGB, and shows more stimulus-specific adaptation, emphasizing 
its role in auditory attention (Yu et  al., 2009a,b; Antunes and 
Malmierca, 2014). Inputs from visual systems and limbic regions, such 
as the visual cortex and the amygdala, suggest the TRN’s role in multi-
sensory integration and affective aspects of auditory processing (Yu 
et al., 2009a; Aizenberg et al., 2019).

Given the critical role of inhibition in generating tinnitus and the 
inhibition mediated by TRN (Steriade, 2005; Llano et al., 2012; Galazyuk 
et al., 2019), boosting TRN-mediated inhibition may relieve tinnitus-
related hyperactivity within the central auditory system (Richardson et al., 
2012). Traditional tracing methods, such as horseradish peroxidase, lack 
cellular specificity, and electrophysiological recordings fall short of 
accurately demarcating the boundaries of aTRN (Yu et al., 2009a; Kimura 
et  al., 2012). However, due to their efficiency and trans-synaptic 
properties, viral tracing techniques have revolutionized the mapping of 
neural circuits, particularly when combined with transgenic mice 
expressing Cre recombinase, which allows for cell type-specific targeting 
(Xu et al., 2020; Liu et al., 2022). Given the diversity of inputs that converge 
on the TRN, we  endeavored to delineate the specific input–output 
relationships of the aTRN.

In the current study, we employed a sodium salicylate-induced 
mouse model of tinnitus to probe the role of the TRN. We utilized 
anterograde viral tracing to localize the aTRN, and complementary 
retrograde tracing to elucidate the broader neural networks that feed 

into and emanate from it. Chemogenetic activation of the aTRN was 
utilized to assess the potential ameliorative effects on tinnitus-related 
neural hyperactivity. A comprehensive understanding of the aTRN’s 
neural circuitry may pave the way for novel therapeutic strategies that 
enhance central inhibition and benefit those suffering from tinnitus.

Materials and methods

Animals

Male C57BL/6 J, CaMKII-Cre, and Gad2-Cre mice, aged 
8–10 weeks and sourced from Jackson Laboratory or Charles River, 
were housed in stable environmental conditions with a constant 
ambient temperature of 23–25°C, 50% humidity, and maintained on 
a 12:12 light–dark cycle (lights on 07:00–19:00). They had ad libitum 
access to food and water and were grouped five per cage. All 
procedures were in accordance with ethical standards and approved 
by the Animal Care Committee of Anhui University of Chinese 
Medicine. Mice underwent auditory brainstem response (ABR) 
testing to confirm the absence of hearing deficits before inclusion in 
behavioral experiments.

Auditory brainstem response recording

ABR recordings were conducted to assess the hearing ability of the 
mice included in the study. The Tucker-Davis Technologies System 3 
hardware, including Medusa Pre-Amps, RZ6 Multi I/O Processor, and 
MF1 multifield magnetic speaker, along with BioSigRZ 5.7 software, 
were utilized for sound delivery and ABR recordings. Acoustic stimuli 
were delivered through an open-field magnetic speaker (MF1; Tucker-
Davis Technologies), using click-pips as auditory stimuli. For the 
collection of sound-evoked bioelectrical potentials, three needle 
electrodes were inserted subcutaneously in the contralateral ear 
(reference), the vertex of the head (ground), and the test ear (active) 
of isoflurane-anesthetized mice. Hearing thresholds were determined 
as the minimum sound intensity required to evoke an ABR waveform 
in which wave I was visually identifiable.

Stereotactic surgery and virus injection

As described before (Wang et al., 2019; Zhou et al., 2022), mice 
were anesthetized with an intraperitoneal injection of pentobarbital 
(20 mg/kg) and secured in a stereotactic frame (RWD Life Science) 
with body temperatures maintained at 36°C using a heating pad. 
Surgically, after a craniotomy based on coordinates from the mouse 
brain atlas, virus injections were performed by delivering 100–250 nL 
viral solutions into targeted regions at a rate of 30 nL/min using a glass 
micropipette attached to a Hamilton syringe by a microinjection 
syringe pump (UMP3T-1; World Precision Instruments). Following 
injection, the pipette remained in place for 5 min to prevent backflow, 
and ocular moisture was preserved with ointment. Target coordinates 
based on the mouse brain atlas (Paxinos and Keith, 2001) were: medial 
geniculate body (MGB) (−3.35 mm AP, 2.20 mm ML, 3.26 mm DV) 
and auditory thalamic reticular nucleus (TRN) (−1.27 mm AP, 
2.47 mm ML, 3.30 mm DV). Anterograde trans-synaptic tracing 
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leveraged AAV-hSyn-DIO-mCherry (AAV2/9, 2.12 × 1012 vg ml−1, 
150 nL) and AAV-hSyn-Cre-GFP (AAV2/9, 2.12 × 1012 vg ml−1, 150 nL) 
viruses. For retrograde trans-synaptic tracing, the helper of 
AAV-EF1a-DIO-GFP-T2A-TVA (AAV2/9, 2 × 1012 vg ml − 1, 100 nL) 
and AAV-EF1a-DIO-RVG (AAV2/9, 2 × 1012 vg ml − 1,100 nL) was 
injected to enable RV infection by expressing TVA and restoring RV 
trans-synaptic capability, respectively; 14 days later the virus of 
RV-EnvA-ΔG-dsRed (2 × 108 IFU/mL, 150 nL) was delivered at the 
same site. Chemogenetic activation used rAAV-Ef1α-DIO-
hM3D(Gq)-mCherry-WPRE-pA (AAV-DIO-hM3Dq-mCherry, 
AAV2/9, 5.00 × 1012 vg ml−1, 150 nL) viruses in the Gad2-Cre mice. All 
viruses were sourced from BrainVTA (Wuhan, China).

Behavioral testing for tinnitus

C57 mice were divided into saline and salicylate groups for tinnitus 
behavior analysis via the gap-prepulse inhibition of the acoustic startle 
(GPIAS). The experimental program was designed in RPvdsEX of TDT 
system 3, and run with OpenEX software. Mice were placed in a self-
made tube (32 mm in diameter and 10 cm in length). The startle reflex was 
detected by a pressure sensor (Honeywell, FSG15N1A), amplified by an 
RZ6 processor, and then collected on a computer for off-line analysis 
(TDT, United States). Behavioral tests were performed after the mice were 
fully acclimated to the experimental environment (10 min/day, about 
3 days). The sound pressure level (SPL) was calibrated using a condenser 
microphone (PCB Precision Condenser, PCB Piezotronics, NY). The 
whole experiment can be divided into 4 blocks: Block 1 was the adaptation 
period of playing background white noise (65 dB SPL) (5 min). Block 2 
consisted of 10 trials with a sound intensity of 115 dB SPL and a 20 ms 
wide-band noise pulse occurring randomly between the 4th and 8th 
seconds of each trial. The startled stimulus was delivered by a speaker 
placed 13 cm on the side of the animal (Model CP-75A, Chuangmu 
Sound). Block 3 consisted of a GPIAS test protocol with a silence gap on 
a continuous narrow-band noise as a suppression-producing pre-stimulus, 
and narrow-band background noise with different center frequencies (9, 
12, 16, 24, 28 kHz; Bandwidth 1 kHz) at 65 dB SPL was played through the 
MF1 speaker (TDT). Each frequency background noise was played by 
mixing 10 trials (gaps) with a silent gap (50 ms) and 10 trials (no gaps) 
with no silent gaps in random order. Each trial lasted 10 s, and the silence 
gap appeared 50 ms before the startle stimulus. Block 4, like Block 2, 
detected whether animals have adapted to the startle reflex. The Startle 
Ratio is Startle Amplitude (gap)/Startle Amplitude (no gap). The pre-pulse 
inhibition (PPI) testing apparatus was the same as that of GPIAS testing. 
The difference was that background sound was absent, and narrow-band 
noise centered at frequencies 9, 12, 16, 24, and 28 kHz (Bandwidth 1 kHz) 
was presented 50 ms before the startle noise. The data analysis was 
accomplished using the custom-written script program in Matlab 2015b.

Chemogenetics and chemical 
administration

For chemogenetic manipulations, mice were anesthetized with 
isoflurane and intraperitoneally administered with either clozapine 
N-oxide (CNO), the ligand for hM3Dq receptors, at a dosage of 5 mg/
kg (Sigma) or a comparable volume of saline. CNO injection was done 
30 min before the intraperitoneal injection of sodium salicylate 

(250 mg/kg) to induce tinnitus. An hour post-salicylate administration, 
mice were scarified for subsequent immunohistochemical staining.

Immunohistochemistry and imaging

After deep anesthesia with pentobarbital sodium (20 mg/kg, i.p), 
mice underwent transcardial perfusion with saline followed by 4% 
paraformaldehyde (PFA). Brains were extracted, post-fixed in 4% PFA 
overnight at 4°C, and cryoprotected in 30% sucrose solution. Coronal 
brain sections (40 μm) were sliced on a cryostat (Leica CM1860) and 
stored in a cryopreservant solution of PBS, ethylene glycol, and 
glycerol at −20°C. For immunofluorescence staining, brain sections 
were washed with PBS before incubation in a blocking solution of 10% 
donkey serum mixed with 0.5% Triton X-100. Overnight incubation 
at 4°C with primary antibodies followed this—anti-GABA (1:500, 
Sigma-Aldrich), anti-cFos (1:500, Synaptic Systems) in 3% donkey 
serum with Triton X-100. The sections were then incubated by the 
corresponding Alexa Fluor-conjugated secondary antibodies at room 
temperature for 1.5 h. For nuclear staining, slides were counterstained 
with DAPI (1:1,000, Sigma-Aldrich). After final washings, tissue 
sections were mounted and imaged on LSM880 and LSM980 confocal 
microscopes (ZEISS), with fluorescence signal quantification 
conducted using ImageJ (NIH). Fluorescence-positive cells were 
quantified by applying a threshold to grayscale images within 10% of 
the average intensity. Cells meeting or exceeding this threshold were 
considered positive.

Statistical analysis

Statistical computations and graphics were produced using 
GraphPad Prism (version 8.0.2). The Shapiro–Wilk test was employed 
to evaluate the normality of data distribution. For normally distributed 
data sets, two-tailed unpaired Student’s t-tests were applied to compare 
the mean of two independent groups, or a two-way analysis of 
variance (Two-way ANOVA) followed by the Bonferroni post-hoc test 
to assess the significance of differences in the means of more than two 
independent groups. Data are presented as mean ± SEM, with 
significance thresholds set at *p < 0.05, **p < 0.01, and ***p < 0.001.

Results

Induction of tinnitus in mice by sodium 
salicylate injection

A single administration of sodium salicylate reliably induced 
tinnitus in mice, as evidenced by the altered startle reflex in a sound-
proof chamber (Galazyuk and Hebert, 2015; Wang et al., 2019). The 
restraint apparatus, a custom-made tube with double rubber heads 
and lateral openings (Figure 1A), effectively transmitted sound stimuli 
to the mice. Gap Pre-pulse Inhibition of the Acoustic Startle (GPIAS) 
methodology indicated tinnitus-like behaviors in the experimental 
group. An increased startle inhibition ratio signaled the phantom 
perception of a sound akin to the background noise, indicative of 
tinnitus (Figures  1B,C). Compared to saline control, salicylate 
injection consistently elevated the startle ratio across all test 
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frequencies, with statistically significant differences at frequencies of 
9, 12, 16, and 28 kHz (Figure 1D). Additionally, the sensory gating 
function measured by pre-pulse inhibition (PPI) did not present 
significant differences in both salicylate treated and control groups 
after injection (Figure 1E).

Mapping the auditory TRN pathways

The anatomical specificity of the aTRN was established through 
anterograde viral tracing. AAV-hSyn-GFP virus was introduced into 
the MGB of C57 mice (Figure 2A), resulting in proficient uptake and 
dense GFP-positive cell labeling in the MGB after 3 weeks (Figure 2B). 
GFP fibers were notably present in several brain regions, including the 
auditory cortex and the amygdala. TRN-specific MGB fibers were 
identified in coronal slices extending longitudinally from bregma 
−1.55 to −1.79 (Figure 2C). Consequently, the critical region of the 
TRN involved in conveying ascending auditory information, namely 
aTRN, was morphologically confirmed.

Next, separate output mappings were conducted in a cell- 
type and subdivision-specific manner. In CaMKII-Cre mice, after 

AAV-DIO-mCherry virus injection into the MGB (Figures 2D,E), 
mCherry-positive fibers were visualized in the TRN on coronal slices 
between bregma −1.55 and −1.79 (Figure 2F). A similar experiment 
performed in the medial subdivision of the MGB (MGM) revealed 
similar innervation patterns (Figures  2G-I). These results further 
confirmed the anatomical localization and the connectivity of 
the aTRN.

To delineate the cell types and outputs of the aTRN, C57 mice 
were subjected to AAV-hSyn-GFP injections. This anterograde tracing 
showed a high prevalence of GFP-positive neurons in the aTRN, 
confirming successful viral injections (Figures  2J,K). Further 
immunofluorescence staining established a predominant 
co-localization of aTRN neurons with GABAergic neurons 
(Figures  2M,N), validating that TRN is primarily inhibitory 
GABAergic neurons. GFP-positive fibers projecting to the primary 
somatosensory cortex (S1), the medial geniculate body (MGB), and 
the reticular part of the substantia nigra (SNr) were also observed 
(Figure  2L), indicating these downstream brain regions might 
be modulated by the auditory signals.

Nonetheless, the exclusivity of the aTRN was not guaranteed 
due to the potential non-specific spreading of the viruses. For 

FIGURE 1

Behavioral assessment of salicylate-induced tinnitus in mice. (A) Schematic representation of the gap-prepulse inhibition of the acoustic startle (GPIAS) 
test. (B) The schematic showing the protocol for the GPIAS test. (C) The averaged voltage traces evoked by startle stimulus at different conditions as 
indicated. (D) The GPIAS ratio across various frequencies in mice administered saline or salicylate [treatment × frequency interaction, F(4, 104)  =  14.50, 
p  <  0.0001; main effect of treatment, F(1, 26)  =  91.17, p  <  0.0001, n  =  7 mice/group]. (E) The pre-pulse inhibition (PPI) ratio at different background 
frequencies for saline or salicylate-treated mice [treatment × frequency interaction, F(4, 104)  =  0.1535, p  =  0.9611; main effect of treatment, F(1, 26)  =  1.109, 
p  =  0.3020, n  =  7 mice/group]. Data are expressed as the means  ±  s.e.m. **p  <  0.01; ***p  <  0.001; n.s., not significant. Two-way ANOVA with Bonferroni 
post hoc analysis was used for (D,E).
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FIGURE 2

Morphological identification and output mapping of the auditory TRN. (A) Schematic illustrating viral injection into the medial geniculate body (MGB). 
(B) Microscopic image showing the site of viral injection in the MGB. Scale bar, 500 μm. (C) Projection fiber images in coronal sections containing the 
TRN at various bregma levels. Scale bar, 500 μm. (D) Schematic of viral injections into the MGB. (E) Image of the viral injection site. Scale bar, 500 μm. 
(F) Images displaying projection fibers in coronal sections through the TRN at different bregma locations. Scale bar, 500 μm. (G) Viral injection schematic 
for the MGM. (H) Image of the viral injection site. Scale bar: 500 μm. (I) Images displaying projection fibers in coronal sections through the TRN at 
different bregma locations. Scale bar: 500 μm (left), 200 μm (right). (J) Schematic illustrating viral injection into the auditory TRN. (K) Microscopic image 
showing the site of viral injection in the TRN. Scale bar, 500 μm. (L) Longitudinal images of projection fibers emanating from the TRN, Scale bar: 500 μm 
(left), 200 μm (right). (M,N) Typical images demonstrating co-localization of GABAergic neurons in the auditory TRN (M) and the summarized data (N). 
Viral tracing was repeated in 3 mice. Scale bar: 20 μm. Cpu, caudate putamen; ic, internal capsule; MGB, medial geniculate body; MGM, MGB medial 
subdivisions; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; SNR, substantia nigra; TRN, thalamic reticular nucleus.
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precise targeting, a combined viral tracing strategy was performed 
in C57 mice by delivering a trans-synaptic anterograde 
AAV-hSyn-Cre-GFP virus into MGB and by delivering a 
Cre-dependent AAV-DIO-mCherry virus into the TRN 
(Figure 3A). Tracing results revealed widespread GFP-positive 
neurons in the MGB (Figure  3B) and substantial mCherry-
positive neurons in the TRN (Figure 3C). These results confirmed 
that these mCherry-positive TRN neurons are directly 
downstream of the auditory thalamus. Further 
immunofluorescence established approximately complete 
co-localization of mCherry-positive neurons with GABAergic 
neurons (Figures 3D,E). Moreover, mCherry-positive fibers were 
evident in the MGB, reinforcing that MGB are key inhibitory 
targets for aTRN. This combined viral strategy allowed for the 
precise identification of aTRN neurons, ruling out the 
uncertainties associated with direct viral application in the 
presumptive aTRN region.

Input mapping of auditory TRN

Next, we wanted to elucidate the inputs to the aTRN, and a rabies-
based retrograde tracing method was utilized in Gad2-Cre mice in 
which Cre recombinase is expressed explicitly in GABAergic neurons 
(Figure 4A). Numerous GFP and DsRed co-expressing ‘starter’ cells 
were observed in the aTRN (Figure 4B), pointing to these cells being 
postsynaptic to traced DsRed neurons in other brain regions. DsRed-
positive neurons were apparent in regions like the auditory cortex and 
MGB, confirming the auditory thalamocortical loop. Additionally, the 
presence of DsRed neurons in the amygdala, visual cortex, and 
somatosensory cortex suggested the possible influence of non-auditory 
areas on the aTRN (Figures 4C,D).

A second rabies-based strategy in C57 mice by delivering 
anterograde trans-synaptic AAV-hSyn-Cre virus into the MGB and 
by delivering helper viruses (AAV-EF1α-DIO-TVA-GFP and 
AAV-EF1α-DIO-RVG) into the aTRN was adopted to pinpoint the 
aTRN outputs further (Figures  4E,F). This approach not only 
confirmed the known brain regions projecting to the aTRN, such 
as the basolateral amygdala (BLA), auditory cortex (ACx), anterior 
cingulate cortex (ACC), central nucleus of the amygdala (CeA), 
substantia nigra (SNR), lateral posterior thalamic nucleus (LP), and 
MGB but also revealed numerous DsRed-labeled neurons in the 
ventromedial hypothalamus (VMH) and caudate putamen (Cpu) 
(Figures  4G,H), suggesting their involvement in auditory 
information processing.

Chemogenetic modulation of 
salicylate-induced tinnitus via auditory TRN 
activation

Finally, chemogenetics was applied to investigate the involvement of 
the TRN in salicylate-induced tinnitus. Cre-dependent excitatory hM3Dq 
virus was used to selectively excite the aTRN of Gad2-Cre mice 
(Figures 5A,B), in which systemic administration of sodium salicylate was 
used to induce tinnitus. The control mice with aTRN injection of 
AAV-DIO-mCherry received similar treatments of CNO and salicylate. 
Mice were sacrificed at 1h post-salicylate injection (Figure 5B), and the 
following immunofluorescence showed that chemogenetic activation of 
the aTRN substantially decreased the salicylate-evoked increase in c-Fos 
levels within the auditory cortex compared to control mice (Figures 5C,D). 
These findings suggest that artificial elevation of auditory thalamic 
inhibition could alleviate physiological alterations associated with 
salicylate-induced tinnitus.

FIGURE 3

Combined viral strategy for tracing outputs from the auditory TRN. (A) Schematic depicting trans-synaptic anterograde tracing. (B,C) Fluorescence 
images of coronal brain sections along the MGB and TRN. Scale bar, 500  μm. (D,E) Images showing co-localization of auditory TRN neurons with 
GABA immunoreactivity (D) and the summarized data (E). Viral tracing was repeated in 3 mice. Scale bar, 20  μm. MGB, medial geniculate body; TRN, 
thalamic reticular nucleus.
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FIGURE 4

Viral tracing of inputs to the auditory TRN. (A) Schema of trans-synaptic rabies-based viral tracing. (B) Images of the starter cells at the TRN injection site 
(left, scale bar: 200 μm) and a magnified view (right, scale bar, 50 μm). (C) Visualization of DsRed-labeled signals along the rostral-caudal axis. Scale bar, 
500 μm. (D) Summarized data for the proportion of virally traced neurons in different brain areas (n = 6 slices from 3 mice). (E) Schematic of combined trans-
synaptic anterograde and rabies-based viral tracing. (F) Images of the starter cells at the TRN injection site (left) and a magnified view (right). Scale bar, 
200 μm (left), 50 μm (right). (G) Images indicating DsRed signals traced in other brain regions longitudinally. (H) Summarized data for the proportion of virally 
traced neurons in different brain areas (n = 6 slices from 3 mice). ACC, anterior cingulate cortex; AUD, secondary auditory cortex, dorsal area; Au1, primary 
auditory cortex; BLA, basolateral amygdaloid nucleus CeL, central amydaloid nucleus, lateral part; Cpu, caudate putamen; DA, dorsal hypothalamic area; 
DMPAG, dorsomedial periaqueductal gray; ic, internal capsule; LaVM, lateral amygdaloid nucleus, ventromedial; LP, lateral posterior thalamic nucleus; M1, 
primary motor cortex; M2, secondary motor cortex; MCLH, magnocellular nucleus of the lateral hypothalamus; MGB, medial geniculate body; PTe, 
paraterete nucleus; S1, primary somatosensory cortex; SuG, superficial gray layer of the superior colliculus; SNR, substantia nigra; TRN, thalamic reticular 
nucleus; V1, primary visual cortex; V2, secondary visual cortex; V2L, secondary visual cortex, lateral area; VMH, ventromedial hypothalamus.
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Discussion

This study provides a morphological characterization of the 
auditory thalamic reticular nucleus (TRN) and examines the 
modulation of salicylate-induced tinnitus via TRN-mediated inhibition. 
Employing advanced anterograde and retrograde viral tracing 
techniques, we delineated the anatomic localization of the auditory TRN 
and mapped its synaptic input and output networks. The precise 
boundaries and connections of the auditory TRN were elucidated using 
a strategic trans-synaptic anterograde spread of Cre recombinase from 
the medial geniculate body (MGB) to the TRN and subsequent 
Cre-dependent virus expression. This methodology, complemented 
with rabies-based retrograde tracing, accurately traced the brain regions 
innervating the auditory TRN. Furthermore, chemogenetic excitation 
of the TRN significantly mitigated the enhanced neural activity in the 
auditory cortex caused by salicylate, demonstrating the potential of 
enhancing TRN-mediated inhibition to alleviate tinnitus.

In the current study, we  majorly examined tinnitus in mice 
receiving systemic salicylate injection. Salicylate-induced tinnitus is 
known for its reversibility, subsiding after salicylate withdrawal 
(Stolzberg et  al., 2012). Additionally, salicylate overdose is now 
uncommon. On the other hand, tinnitus related to hearing loss caused 
by noise exposure represents a more realistic situation (Eggermont, 
2008). Although salicylate-induced tinnitus may not fully capture the 
complexity of human tinnitus, it does share common mechanisms with 
tinnitus of other etiologies, such as increased spontaneous firing rates 

in auditory neurons and changes in tinnitus-associated brain regions 
(Stolzberg et al., 2012). Therefore, studying salicylate-induced tinnitus 
provides valuable insights into the neural mechanisms underlying 
tinnitus, contributing to our understanding of the condition across 
different etiologies. Both single (Yang et al., 2007; Lu et al., 2011; Su 
et al., 2012; Sun et al., 2014; Liu and Chen, 2015) and multiple (Yi et al., 
2016) doses of salicylate have been successfully used to induce tinnitus-
like behaviors, which necessitate the use of a reliable, objective measure 
for tinnitus (Jastreboff et al., 1988). The GPIAS has been developed 
based on the acoustic startle response (Galazyuk and Hebert, 2015). It 
has been observed that the acoustic reflex is diminished when it is 
preceded by a silent gap embedded in background noise. Tinnitus, 
similar in quality to the background noise, “fills in” the gap and reduces 
inhibition. However, it is essential to note that GPIAS relies 
considerably on the individual’s hearing level, and caution should 
be exercised when studying subjects with hearing loss (Galazyuk and 
Hebert, 2015; Rogenmoser et al., 2022). Various behavioral training 
methods such as conditioned level or lick suppression (Ruel et al., 2008; 
Wang et al., 2019), place preference (Yang et al., 2011), two-alternative 
choice (Stolzberg et al., 2013), and tactile reflex (Rogenmoser et al., 
2022) have been utilized to screen tinnitus-like behaviors accurately.

The auditory thalamus gates auditory information, reaching the 
cortex (He, 2001). The TRN, composed entirely of inhibitory neurons, 
modulates the thalamocortical and corticothalamic information flow 
(Steriade et al., 1993; Llinas et al., 2005). The interconnected network 
of the TRN, dorsal thalamus, and cortex is pivotal in generating neural 

FIGURE 5

Chemogenetic activation of the auditory TRN mitigated salicylate-induced ACx neuronal hyperactivity. (A) Schematic for viral injection (left) and typical 
image of the viral injection region in the auditory TRN (right). Scale bar, 500  μm. (B) Schematic showing the experimental timeline. (C) Salicylate-
induced c-Fos expression in the ACx in mice with auditory TRN expressing hM3Dq/mCherry (experimental and control mice) subjected to CNO 
injections. Scale bar, 500  μm. (D) Summarized cell counts of c-Fos positive cells in the ACx (p  =  0.0290, n  =  6 mice/group, unpaired Student’s t-test).
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oscillations (Steriade et al., 1993; Guo et al., 2007). Disruption in this 
thalamocortical circuitry is linked to altered neural synchronization, 
evident in pathological conditions such as tinnitus, where aberrant 
gamma oscillations may manifest due to functional changes within 
this network (Llinas et al., 2005; Weisz et al., 2007; Roberts et al., 2010; 
Vianney-Rodrigues et al., 2019; Hayes et al., 2021).

Traditionally, the auditory TRN has been approximately identified 
via conventional tracing techniques or electrophysiological response 
recordings (Yu et al., 2009a; Kimura et al., 2012). However, we can 
now map the auditory TRN and its networks with modern viral 
vectors with greater precision. Our trans-synaptic virus injections at 
the auditory thalamus allowed a precise definition of the auditory 
TRN, and Cre-dependent mapping strategies further specified its 
input and output channels (Xu et  al., 2020; Liu et  al., 2022). This 
combined tracing strategy delineated projections accurately, in 
contrast to the potential confounds of direct TRN viral injections. Our 
findings reveal that the auditory TRN projects inhibitory signals 
predominantly to the MGB while maintaining connections with a 
variety of brain regions, including the central and basolateral 
amygdala, cingulate cortex, dorsal hypothalamic area, visual cortex, 
and somatosensory cortex. The specific roles these connections play 
in auditory function merit further exploration.

Like phantom limb pain (De Ridder et al., 2011), hearing loss-
induced tinnitus is marked by cortical reorganization and altered 
inhibition (Rajan, 1998; Eggermont and Roberts, 2004; Weisz et al., 
2007; Rauschecker et al., 2010; Roberts et al., 2010). Sodium salicylate-
induced tinnitus, particularly, is tied to diminished auditory inhibition 
(Wang et al., 2006, 2008; Sun et al., 2009; Asim et al., 2023). Past 
studies have highlighted how noise exposure and aging can diminish 
auditory system inhibition (Middleton et al., 2011; Llano et al., 2012; 
Asim et  al., 2023), with salicylate directly attenuating inhibitory 
synaptic transmission in the auditory cortex and inferior colliculus—
implicating weakened inhibition as a mechanism in tinnitus (Wang 
et al., 2006, 2008, 2011). Given the pivotal role of TRN inhibition in 
auditory processing and its implications in the imbalance between 
excitation and inhibition in tinnitus, strategic modulation of this 
central inhibition could provide relief (Rauschecker et al., 2010; Yang 
et al., 2011; Minen et al., 2014). This notion is supported by the efficacy 
of treatments like Vigabatrin, which enhances GABA receptor 
function (Brozoski et al., 2007), aligning with our observations that 
chemogenetic excitation of the TRN softens salicylate-induced cellular 
hyperactivity. However, our study does have several limitations that 
should be acknowledged. Firstly, salicylate also induces hearing loss, 
which may compromise the verification of tinnitus-like behavior 
through the GPIAS protocol that relies on auditory perception. 
Therefore, there is a need to develop more reliable behavioral protocols 
for validating salicylate-induced tinnitus behaviors (Galazyuk and 
Hebert, 2015; Rogenmoser et al., 2022). Secondly, we only verified 
salicylate-induced tinnitus-like behavior in wild-type mice and did 
not assess this in Gad2-Cre mice, in which the modulatory effects of 
aTRN on tinnitus were examined in the current study (Masri et al., 
2021). Thirdly, CaMKII-Cre mice were used to transfect the excitatory 
neurons in the MGB, but the more suitable transgenic mice should 
be Vglu2-Cre mice, which are uniquely expressed in glutamatergic 
neurons of the central nervous system. Lastly, while the AAV-hSyn-
Cre-GFP virus is known to be transported anterogradely (Zingg et al., 
2017, 2020), it would also be beneficial to investigate its reported 
retrograde properties in future studies.

Our study maps the auditory TRN’s anatomical localization, 
inputs, and outputs with unprecedented precision. The modulation of 
TRN activity shows promise in counteracting the neural hyperactivity 
associated with salicylate-induced tinnitus, suggesting that the 
auditory TRN pathway could be a potential therapeutic target for this 
condition. A deeper understanding of the aTRN’s neural networks 
may lead to developing a practical innervation approach to enhance 
TRN inhibition, offering hope for individuals affected by tinnitus.
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