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Introduction: The integration of self-attention mechanisms into Spiking Neural

Networks (SNNs) has garnered considerable interest in the realm of advanced

deep learning, primarily due to their biological properties. Recent advancements

in SNN architecture, such as Spikformer, have demonstrated promising

outcomes. However, we observe that Spikformer may exhibit excessive energy

consumption, potentially attributable to redundant channels and blocks.

Methods: To mitigate this issue, we propose a one-shot Spiking Transformer

Architecture Search method, namely Auto-Spikformer. Auto-Spikformer extends

the search space to include both transformer architecture and SNN inner

parameters. We train and search the supernet based on weight entanglement,

evolutionary search, and the proposed Discrete Spiking Parameters Search

(DSPS) methods. Benefiting from these methods, the performance of subnets

with weights inherited from the supernet without even retraining is comparable

to the original Spikformer.Moreover, we propose a newfitness function aiming to

find a Pareto optimal combination balancing energy consumption and accuracy.

Results and discussion: Our experimental results demonstrate the e�ectiveness

of Auto-Spikformer, which outperforms the original Spikformer and most CNN

or ViT models with even fewer parameters and lower energy consumption.

KEYWORDS

spiking neural network (SNN), transformer, transformer architecture search, network

architecture search (NAS), evolutionary algorithm (EA)

1 Introduction

Spiking neural networks (SNNs) show promise for the next generation of artificial

intelligence, owing to their biological inspiration and appealing features such as sparse

activation and temporal dynamics. The performance of SNNs has improved by employing

advanced architectures from ANNs, such as ResNet-like SNNs (Fang et al., 2021a; Hu

et al., 2021a,b; Zheng et al., 2021), or Spiking Recurrent Neural Networks (Lotfi Rezaabad

and Vishwanath, 2020). Transformer, originally developed for natural language processing

(Vaswani et al., 2017), has proven successful in various computer vision applications,

including image classification (Dosovitskiy et al., 2020; Yuan et al., 2021a), object detection

(Carion et al., 2020; Zhu et al., 2020; Liu et al., 2021), and semantic segmentation (Wang

et al., 2021; Yuan et al., 2021b). The self-attention mechanism, a crucial component

of the Transformer model, selectively attends to relevant information and is analogous

to an important feature of the human biological system (Caucheteux and King, 2022;

Whittington et al., 2022). The integration of self-attention into SNNs for advanced

deep learning has gained attention due to the biological properties of both mechanisms.

Spikformer (Zhou et al., 2022), a recent SNN architecture, has demonstrated promising
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results on both static and neuromorphic datasets using its Spiking

Self-Attention (SSA) and Spiking Patch Splitting (SPS) modules.

While SNNs are known for their low energy consumption

compared to ANNs, our observations revealed that the energy

consumption of Spikformer can be significantly reduced as it

contains potentially redundant channels and blocks. In Figure 1,

we observed suboptimal architecture parameters in the original

Spikformer, with redundancy channels, particularly in higher-order

channels (See Section 3 for more details). These phenomenons

motivates us to search to design a better Spikformer architectures.

Nevertheless, designing and training such hybrid models remains a

challenging task (Dosovitskiy et al., 2020; Touvron et al., 2021).

We address the Spikformer search problem by dividing it

into two main parts: the Transformer part and the SNN neuron

part. Transformer Architecture Search (TAS) (Chen B. et al., 2021;

Chen M. et al., 2021; Su et al., 2022) has gained attention as an

automated way to search for multiple configurations of Vision

Transformer (ViT) architectures. The one-shot NAS scheme (Dong

and Yang, 2019; Chen M. et al., 2021), leveraged in TAS, obtains

reliable performance estimations on various ViT architectures. We

choice weight entanglement supernet training strategy (Chen M.

et al., 2021) as base search method to optimize the Transformer

architecture. However, directly applying TAS may not be the

most optimal solution for Spiking Transformers. The original TAS

method does not consider the SNN search space and the energy

consumption, which is vital in the field of SNN.

To optimize the internal parameters of SNN neurons, we

propose a method that leverages the concept of natural selection

and evolutionary algorithms. While previous studies have focused

on improving SNN performance through network structure

exploration, the significance of individual neuron parameters has

also been identified (Che et al., 2022; Kim et al., 2022; Na et al.,

2022). We draw inspiration from Darwin’s theory of evolution,

which suggests that organisms adapt to their environment through

natural selection over time (Slowik and Kwasnicka, 2020; Jordan

et al., 2021). Similarly, SNN neurons can evolve and optimize their

internal parameters to enhance network performance. By treating

traits such as the threshold, decay, and time-step parameters of

a neuron as candidate solutions and the input stimuli as the

environment, we can apply simulated evolution to find optimal

parameter sets that improve accuracy and efficiency. This novel

approach, referred to as Discrete Spiking Parameters Search

(DSPS), utilizes an evolutionary algorithm to search for the internal

parameters of SNN neurons. Our study is the first to apply the

evolutionary algorithm to search for the internal parameters of

SNN neurons.

Our method for optimizing Spikformer explores the optimal

combination of key factors but doesn’t ensure lower energy

consumption. To address this, we introduce a joint fitness function,

FAEB, balancing energy consumption and accuracy. This allows us

to achieve a Pareto optimal combination, striking a balance between

these two objectives.

We summarize our contributions are as follows:

• We provide the first systematic and in-depth analysis of the

channel redundancy in SNNs by analysing the performance

curve and Structural Similarity (SSIM), which are crucial to

the high energy efficiency.

• To the best of our knowledge, this study is the first to

use NAS for spiking-based ViT, namely Auto-Spikformer. By

employing Discrete Spiking Parameters Search (DSPS) and

the weight entanglement supernet training method, Auto-

Spikformer enhances the efficiency and accuracy of spiking-

based ViT architectures.

• Auto-Spikformer integrates an accuracy and energy balanced

fitness function FAEB to optimize the Spikformer search

space by considering both energy consumption and accuracy

simultaneously.

2 Related work

2.1 Spiking neural networks

Unlike traditional deep learning models that perform

computations using floating-point values, SNNs leverage discrete

spike sequences for information processing and transmission.

Spiking neurons endow SNNs with temporal dynamics and

biological properties. Common types include the leaky integrate-

and-fire (LIF) neuron (Wu et al., 2018), PLIF (Fang et al., 2021b),

etc. Two main approaches for obtaining deep SNNs are ANN-to-

SNN conversion and direct training. In ANN-to-SNN conversion,

a pre-trained ANN with high performance is transformed into

an SNN by substituting the ReLU activation layers with spiking

neurons (Cao et al., 2015; Hunsberger and Eliasmith, 2015;

Rueckauer et al., 2017; Bu et al., 2021; Meng et al., 2022; Wang

et al., 2022). However, this method requires large time-steps

to approximate ReLU activation accurately, leading to high

latency (Han et al., 2020). In direct training, SNNs are trained

by backpropagation through time (BPTT) (Werbos, 1990). A

challenge for direct training is the non-differentiability of the

event-triggered mechanism in spiking neurons. To address this

challenge, surrogate gradients are employed for backpropagation

(Neftci et al., 2019; Lee et al., 2020; Xiao M. et al., 2021) adopts

implicit differentiation on the equilibrium state to train SNNs.

2.2 Vision transformer

The Vision Transformer (ViT) facilitates the transformation

from NLP to CV by partitioning visual information into

patches and processing it accordingly. For image classification, a

Transformer encoder comprises a patch splitting module, multiple

Transformer encoder blocks, and a linear prediction head. Each

Transformer encoder block includes a self-attention layer and a

multi-perception layer. Self-attention is a fundamental component

contributing to ViT’s success. It captures global dependence and

interest representation by weighing feature values of image patches

via the dot product of the query and key, followed by the

application of the softmax function (Katharopoulos et al., 2020; Qin

et al., 2022). Researchers have made improvements to the visual

transformer, including the Transformer architecture (Hassani

et al., 2021; Xiao T. et al., 2021), more advanced self-attention

mechanisms (Choromanski et al., 2020; Rao et al., 2021; Song,

2021; Yang et al., 2021), and pre-training techniques (He et al.,
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A B

FIGURE 1

Analysis of redundancy of Spikformer (A) Relationship among energy consumption, number of parameters, and accuracy for various Spikformer

candidates. Original Spikformer candidates are obtained from Zhou et al. (2022). We select 100 candidates from the Spikformer large search space

STs using our proposed Auto-Spikformer method and random selection method, then plot their Pareto frontier onto the figure. Note that larger

circles represent a higher number of parameters. Detailed results can be found in Section 5.3. (B) The Structural Similarity (SSIM) matrix between

channels after embedding (also called SPS) in Spikformer. Both the X and Y axes represent channels. The color indicates the SSIM value: yellow

denotes higher similarity, while green denotes lower similarity. The matrix reveals significant redundancy in channels, particularly in higher-order

channels, after embedding.

2022), among others. Spikformer (Zhou et al., 2022), a recent SNN-

based Transformer, has demonstrated promising results on both

static and neuromorphic datasets. Observations reveal potential

redundancy in channels and blocks, motivating us to explore a

more efficient SNN-based Transformer automatically.

2.3 One-shot NAS

Designing high-performance network architectures for

specific tasks often requires expert experience and trial-and-

error experiments. Neural architecture search (NAS) (Elsken

et al., 2019) aims to automate this manual process and has

recently achieved highly competitive performance in tasks

such as image classification (Zoph and Le, 2016; Liu C. et al.,

2018; Pham et al., 2018; Zoph et al., 2018; Real et al., 2019),

object detection (Zoph et al., 2018; Chen Y. et al., 2019; Guo

et al., 2020; Wang et al., 2020), and semantic segmentation (Liu

et al., 2019; Nekrasov et al., 2019; Zhang et al., 2019; Lin et al.,

2020), etc. However, searching over a discrete set of candidate

architectures often results in a massive number of potential

combinations, leading to explosive computational cost. The

recently proposed differentiable architecture search (DARTS)

method (Liu H. et al., 2018) and its variations (Chen X. et al.,

2019; Xu et al., 2019; Chu et al., 2020) address this problem using

a continuous relaxation of the search space, enabling learning

a set of architecture coefficients by gradient descent. They have

achieved competitive performances with the state-of-the-art

using orders of magnitude fewer computation resources (Liu H.

et al., 2018; Liu et al., 2019; Cheng et al., 2020). Recently, Na

et al. (2022) studied pooling operations for downsampling in

SNNs and applied NAS to reduce the overall number of spikes.

Kim et al. (2022) applied NAS to improve SNN initialization

and explore backward connections. However, both works only

searched for different SNN cells or combinations of them

within traditional CNNs. There is a lack of work on searching

for SNN internal parameters and SNN-based transformer

architectures.

3 Problem analysis

We conducted several experiments and metrics to analyze the

redundancy in Spikformer. Our observations revealed three key

phenomena: (1) the original Spikformer architecture parameters

are not optimal; (2) there is redundancy in the channels after

embedding; and (3) most of the redundant channels are found at

higher-order channels.

Exploration of the optimal combination of key factors in

Spikformer. As depicted in Figure 1A, we trained a supernet

and randomly selected candidates to evaluate their performance,

plotting their Pareto frontier. Surprisingly, some randomly selected

candidates performed optimally in both energy and accuracy. Upon

analyzing these high-performing candidates, we discovered that

their blocks and channels were both fewer than those in the original

Spikformer, indicating that the original architecture parameters are

suboptimal.

Analysis of redundancy in Spikformer. Previous work has

identified high sparsity and redundancy in spike features in

spiking convolutional neural networks (Yao et al., 2023). Spiking

Transformer also exhibits redundancy in both channels and the

number of blocks. We further analyzed the Structural Similarity

(SSIM) to measure the similarity between features at different

scales. As shown in Figure 1B, we inferred the trained 8–384

Spikformer model and calculated SSIM between each channel’s

feature map after embedding. The feature map consists of 384

channels. We selected the top 20 channels with the highest and

lowest SSIM scores, preserving their original order to construct

a matrix. Our analysis revealed redundancy in the channels after

embedding, with most of the redundant channels found at higher-

order channels.

To address these issues, we propose a hybrid architecture

search, using the Transformer Architecture Search (TAS)
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FIGURE 2

Auto-Spikformer including two stages: supernet training stage and evolutionary search stage. We first design a search space that includes both SNN

inner parameters and transformer architecture. Within this search space, we train the supernet based on weight entanglement for the transformer

space and an alternate choice method for the SNN space. After supernet training, we use evolutionary search to choose the best transformer

architecture and optimal SNN inner parameters with weights inherited from the supernet. Note that we denote the process of designing the SNN

search space, using the alternate choice method to train the SNN space supernet, and searching the SNN space with evolutionary search as Discrete

Spiking Parameters Search (DSPS). We then evaluate the performance of the searched subnet with our proposed energy-accuracy balanced fitness

function FAEB. Spiking Self-Attention (SSA) is the attention block in Spikformer. And Spiking Patch Splitting (SPS) is the embedding module in

Spikformer.

A B

FIGURE 3

Discrete Spiking Parameters Search (DSPS) process. (A, B) show two candidate parameter sets before and after applying the mutation and crossover

operators. The spike from the previous neuron is transmitted to the current neuron during the charging process. If the membrane potential is above

the threshold (yellow area, where the darker color indicates a higher value), a spike is delivered; if the membrane potential is below the threshold, it

decays exponentially with a time constant τ (blue curve). During the supernet training stage, these parameters are searched using the alternate

choice method.

method to explore optimal combinations in Spikformer. In

the TAS field, the weight entanglement method is used to

train and select channels in order, as shown in Figure 4.

Therefore, in this work, we use the weight entanglement

method to optimize the transformer factors. However,

this method cannot optimize discrete parameters like tau,

threshold, and time-step, which are important in SNNs.

Therefore, we propose a discrete method to optimize these

spiking parameters, addressing the limitations in current

optimization approaches.

4 Auto-Spikformer

We propose Auto-Spikformer, a one-shot Spiking Transformer

Architecture Search method combining the search of Transformer
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A B

FIGURE 4

(A) Alternate choice method for training SNN search space. SN p1 denotes spiking neuron parameter setting 1, like [uth = 1.2, τ = 1.25, t = 4]. Note

that they are all discrete values and without trainable parameters. (B) Weight entanglement method for training transformer search space (Chen M.

et al., 2021).

and SNN neurons simultaneously. Auto-Spikformer consists of

two stages: the supernet training stage and the evolutionary search

stage. We first briefly introduce the spiking neuron, followed by

an overview of Auto-Spikformer, the DSPS method, and the fitness

function.

As shown in Figure 2, during the supernet training stage,

we use Spikformer (Zhou et al., 2022) as our base model to

construct the supernet. We then train the supernet using the

weight entanglement method for the Transformer space and the

alternate choice method for the SNN space. After supernet training,

we employ evolutionary search to select the optimal transformer

architecture and SNN inner parameters with weights inherited

from the supernet (as discussed in Section 4.2). Note that the fitness

function aims to find a Pareto optimal combination balancing

energy consumption and accuracy, as shown in Section 4.4.

4.1 LIF

We adopt the iterative LIF neuron model (Wu et al., 2019)

described by (Equation 1)

ut,n = (1−
1

τ
)ut−1,n(1− yt−1,n)+ It,n (1)

where superscripts n and t denote the layer index and time-step,

respectively. The decay τ is the membrane time constant, u is the

membrane potential, y denotes the spike output, and I denotes the

synaptic input with It,n =
∑

j wjy
t,n−1
j , where w is the weight. The

neuron fires a spike yt,n = 1 when ut,n exceeds a threshold Vth;

otherwise, yt,n = 0. In this work, we set τ = 2 and uth = 0.5.

4.2 Discrete spiking parameters search

Motivation. The performance of SNN neurons is influenced

by both their interconnections and internal parameters. While

previous research has primarily focused on enhancing SNN

performance through modifications to the network’s structure, the

importance of optimizing the internal parameters within individual

neurons cannot be overlooked. Darwin’s theory of evolution

posits that organisms adapt to their surroundings through natural

TABLE 1 Auto-Spikformer search space.

STs STl

(A) Transformer search space

Embed dim (336,384,12) (336,480,48)

MLP ratio (3,4,0.2) (3,5,0.2)

Head num (6,12,6) (6,12,6)

Depth (2,4,1) (2,6,1)

(B) SNN search space

SS

Threshold uth (0.6,2,0.2)

Decay τ (1.25,10,0.25)

Time-step t (2,4,1)

STs denotes the transformer smaller search space, STl denotes the transformer larger search

space, and SS denotes the SNN search space. Each element in the table represents the lower

limit, upper limit, and step size, such as depth (2,4,1) represents the depth range from 2 to 4,

step size is 1.

selection, favoring traits that enhance survival and reproduction.

This concept can be applied to the context of SNN, where individual

neurons can undergo an evolutionary process. In this context, the

internal parameters of a neuron, such as the threshold (uth), decay

(τ ), and time-step (t), can be seen as analogous to traits, while

the input stimuli received by the neuron can be likened to the

environment in which it operates. Previous work (Fontaine et al.,

2014) suggests that the threshold can be viewed as an adaptation to

membrane potentials at short timescales, influencing how signals

received by a neuron are encoded into a spike. Decay τ has a

similar effect to the threshold, but it only affects the decay of unfired

neurons, influencing the firing of the next timestep. In contrast, the

threshold affects the firing of all neurons at the current moment.

Discrete spiking parameters search process. As shown in

Figure 3, the spike from the previous neuron is transmitted to

the current neuron during the charging process. If the membrane

potential is above the threshold, a spike is delivered; if the

membrane potential is below the threshold, it decays at the rate

of τ . The DSPS begins with a population of randomly generated

parameter sets (candidates) like [uth = 1.2, τ = 1.25, t =

4]. In each generation, the algorithm evaluates the fitness of
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FIGURE 5

The energy and accuracy of all candidates in SS in CIFAR100. We use FAEB as the fitness function to select the top 300 candidates. The purple points

represent the candidates with the lowest 80% accuracy, while the orange points represent the candidates with the highest 20% accuracy. The purple

line represents the Pareto frontier, indicating the optimal trade-o� between accuracy and energy consumption.

TABLE 2 Subsets of the candidates in SS .

Candidates

(threshold ×4, tau ×4, time-step)
Fr

Energy

(µJ)

Acc

(%)

(A) Candidates on the Pareto frontier

(1.6, 0.6, 0.8, 2.0, 10, 10, 10, 2, 2) 0.20 0.52 72.12

(1.8, 0.8, 1.4, 1.2, 10, 10, 10, 2, 2) 0.20 0.52 72.18

(1.6, 0.6, 2.0, 1.8, 5, 10, 10, 1.5, 4) 0.24 0.63 75.58

(1.0, 1.0, 1.4, 1.0, 10, 10, 2, 3, 4) 0.25 0.66 76.44

(1.8, 1.6, 0.6, 0.8, 5, 10, 2, 3, 4) 0.26 0.68 76.77

(0.8, 1.2, 1.6, 2.0, 5, 10, 2, 1.5, 4) 0.27 0.72 77.20

(1.0, 2.0, 1.6, 2.0, 5, 2, 2, 3, 4) 0.30 0.79 77.87

(1.0, 2.0, 1.4, 1.6, 2, 2, 1.25, 5, 4) 0.37 0.99 77.95

(1.0, 1.0, 1.0, 1.0, 2, 2, 2, 2, 4)∗ 0.35 0.95 77.86

(B) Candidates with the top 20% accuracy

(1.0, 2.0, 1.6, 2.0, 5, 2, 2, 3, 4) 0.30 0.79 77.87

(1.2, 1.8, 1.8, 1.6, 2, 10, 1.5, 5, 4) 0.33 0.87 77.90

(1.6, 1.2, 1.8, 2.0, 1.5, 5, 10, 2, 4) 0.33 0.88 77.86

(1.6, 0.8, 1.2, 1.8, 2, 10, 1.25, 3, 4) 0.34 0.91 77.74

(0.6, 1.4, 1.2, 0.6, 2, 3, 1.25, 5, 4) 0.35 0.94 77.78

(0.8, 0.8, 1.8, 1.8, 2, 2, 1.5, 2, 3) 0.36 0.95 77.92

(1.0, 1.4, 1.8, 0.6, 2, 2, 1.5, 3, 4) 0.36 0.96 77.77

(1.0, 2.0, 1.4, 1.6, 2, 2, 1.25, 5, 4) 0.37 0.99 77.95

(1.0, 1.0, 1.0, 1.0, 2, 2, 2, 2, 4)∗ 0.35 0.95 77.86

Each selected candidate includes 9 features: (threshold×4, tau×4, time-step). Using the first

candidate as an example, (1.6, 0.6, 0.8, 2.0) means the thresholds of SNN for four blocks are

(1.6, 0.6, 0.8, 2.0) separately. Fr denotes the firing rate. The last row corresponds to Spikformer

4-384, denoted as ∗, obtained by running the open-source code of Spikformer. The bold font

represents that the energy consumption and accuracy are superior to Spikformer 4-384.

candidates and selects the best ones as the parents for the next

generation. The parents produce offspring by applying mutation

and crossover operators with some probabilities. The mutation

operator randomly modifies one parameter of a parameter set,

while the crossover operator combines two parameters from

different parents. As illustrated in Figure 3, for example, the decay

τ of a candidate changes from 1.25 to 2.5 after mutation. The

thresholds uth of two candidates are swapped after crossover,

affecting the firing rate of each candidate. The algorithm repeats

this process for a fixed number of generations and returns

the best architecture found. Through a process of simulated

evolution, the threshold, decay, and time-step parameters of

individual neurons can be adjusted to improve the performance

of the network as a whole. According to our experiments, this

approach can lead to the network becoming better adapted to

the input stimuli it receives, resulting in increased accuracy

and efficiency.

Alternate choice andweight entanglement. Figure 4 illustrates

the differences between the weight entanglement method and

the alternate choice method. The weight entanglement method

allows different transformer blocks within a supernet to share

weights for common parts in each layer. This strategy leads to

faster convergence, lower memory cost, and better performance

of subnets compared to classical weight-sharing methods. We

apply this strategy to train the transformer block in Spikformer.

However, the SNN search space is discrete and lacks trainable

parameters, limiting the application of the weight entanglement

method. It requires the search space to undergo continuous

changes, or in other words, the search space should share

some common parts; it cannot be entirely discrete. When we

use weight entanglement, channels change from 380 to 384,

with the previous 380 channels sharing the same weights,

leaving only the last 4 channels different. However, for SNN

inner parameters such as threshold, changing from 0.3 to

0.5, there are no common parts to share. Therefore, we

employ the alternate choice method for training instead of

weight entanglement.

4.3 Search space

We design a search space including both SNN inner parameters

and transformer architecture as shown in Table 1.

SNN search space, denoted SS, includes three variable factors:

the threshold uth, decay τ , and time-step t. The structured
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FIGURE 6

The energy and accuracy of all searched candidates in STs (A) and STl
(B) in CIFAR100. We use FAEB as the fitness function (purple points) and

randomly (orange points) select the 100 candidates, respectively. The other color points represent the di�erent architectures of Spikformer, derived

from the original paper (Zhou et al., 2022).

TABLE 3 Subsets of the candidates in ST .

Candidates
(depth (d), MLP ratio × d, head num × d,

threshold × d, tau × d, time-step, embed dim)

Energy
(µJ)

Acc
(%)

(A) Candidates in STs . We denote 1,2 as Auto-Spikformer STs1,2.

Pareto

frontier

(2, 3.2, 3.0, 12, 6, 1.2, 1.0, 5, 5, 4, 348) 0.448 76.89

(2, 3.4, 3.2, 12, 6, 1.0, 1.0, 5, 5, 4, 348) 0.453 77.04

(2, 3.8, 3.2, 12, 6, 0.6, 1.8, 5, 5, 4, 348) 0.458 77.15

(2, 3.8, 3.8, 12, 6, 1.0, 1.8, 5, 5, 4, 348) 0.464 77.29

(2, 3.6, 3.6, 6, 12, 1.8, 2.0, 5, 2, 4, 348) 0.509 77.91

Top

accuracy

(2, 3.8, 3.6, 12, 12, 1.4, 2.0, 5, 2, 4, 348)1 0.505 77.71

(2, 3.6, 3.6, 6, 12, 1.8, 2.0, 5, 2, 4, 348)2 0.509 77.91

(2, 3.6, 3.6, 6, 12,0.6, 2.0, 5, 2, 4, 348) 0.510 77.91

(2, 3.4, 3.8, 6, 6, 1.0, 1.8, 5, 2, 4, 360) 0.535 77.89

(2, 3.6, 3.6, 6, 6, 0.6, 2.0, 5, 2, 4, 360) 0.536 77.90

Spikformer

4-384

(4, 4, 4, 4, 4, 12, 12, 12, 12,

1.0, 1.0, 1.0, 1.0, 2, 2, 2, 2, 4, 384)
0.95 77.86

(B) Candidates in STl
. We denote 1,2,3 as Auto-Spikformer STl1,2,3.

(2, 4.8, 3.2, 6, 6, 1.4, 1.6, 5, 5, 4, 384) 0.619 77.15

(2, 3.8, 3.2, 6, 12, 0.8, 1.2, 5, 5, 4, 432) 0.647 77.59

(2, 3.8, 4.2, 12, 6, 1.4, 1.4, 3, 5, 4, 432) 0.737 77.88

(2, 3.8, 4.2, 12, 12, 0.8, 1.2, 3, 1.5, 4, 432) 0.829 78.08

(3, 3.2, 3.6, 3.2, 6, 12, 6, 1.4, 1.8, 0.8, 3, 5, 5, 4, 480) 0.925 78.22

(2, 3.8, 3.2, 6, 12, 0.8, 1.2, 3, 1.5, 4, 432)1 0.826 78.01

(2, 3.8, 4.2, 12, 12, 0.6, 0.8, 3, 1.5, 4, 432) 0.829 78.08

(2, 4.2, 4.2, 12, 12, 0.8, 1.2, 3, 1.5, 4, 480)2 0.889 78.05

(3, 3.2, 3.6, 3.2, 6, 12, 6, 1.4, 1.8, 0.8, 3, 5, 5, 4, 480)3 0.925 78.22

(3, 3.2, 3.6, 3.0, 6, 12, 12, 1.4, 2.0, 2.0, 3, 5, 3, 4, 480) 0.934 78.17

(4, 4, 4, 4, 4, 12, 12, 12, 12,

1.0, 1.0, 1.0, 1.0, 2, 2, 2, 2, 4, 384)
0.95 77.86

Each selected candidate includes d×4+3 features: (depth (d), MLP ratio× d, head num× d, threshold× d, tau× d, time-step, embed dim). Using the first candidate as an example, (2) denotes

there are two only blocks. (3.2, 3.0) means MLP ratio for two blocks is (1.6, 0.6, 0.8, 2.0) separately. Blue color represents the SNN search space while orange color represents the transformer

search space. Bold value means the result is more optimal.
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TABLE 4 Performance comparison of Auto-Spikformer with existing methods on CIFAR10/100.

Methods Architecture
Param (M)

/ Energy (µJ)

Time

step

CIFAR10

Acc

CIFAR100

Acc

Model

type

Design

type

Hybrid training (Rathi et al., 2020) VGG-11 9.27 / - 125 92.22 67.87 CNN Manual

Diet-SNN (Rathi and Roy, 2020) ResNet-20 0.27/ - 10/5 92.54 64.07 CNN Manual

STBP (Wu et al., 2018) CIFARNet 17.54 / - 12 89.83 - CNN Manual

STBP NeuNorm (Wu et al., 2019) CIFARNet 17.54 / - 12 90.53 - CNN Manual

TSSL-BP (Zhang and Li, 2020) CIFARNet 17.54 / - 5 91.41 - CNN Manual

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 / - 4 92.92 70.86 CNN Manual

TET (Deng et al., 2022) ResNet-19 12.63 / - 4 94.44 74.47 CNN Manual

AutoSNN (Na et al., 2022) AutoSNN (C=128) 21 / - 8 93.15 69.16 CNN Auto

SNASNet (Kim et al., 2022) SNASNet-Bw - / - 8 94.12 73.04 CNN Auto

SpikeDHSD (Che et al., 2022) SpikeDHS-CLA (n3s1) 14 / - 6 95.36 76.25 CNN Auto

ANN
ResNet-19* 12.63 1 94.97 75.35 CNN Manual

Transformer-4-384 9.32 / 3.97 1 96.73 81.02 Transformer Manual

Spikformer

Spikformer-4-256 4.15 / 0.553 4 93.94 75.96 Transformer Manual

Spikformer-2-384 5.76 / 0.582 4 94.80 76.95 Transformer Manual

Spikformer-4-384 9.32 / 0.952 4 95.19 77.86 Transformer Manual

AutoST
AutoST Tiny 4.20 / - 4 95.14 76.29 Transformer Auto

AutoST base 29.64 / - 4 96.21 79.69 Transformer Auto

Auto-Spikformer

Auto-Spikformer STs1 4.69 / 0.505 4 95.29 77.71 Transformer Auto

Auto-Spikformer STs2 4.64 / 0.509 4 95.23 77.91 Transformer Auto

Auto-Spikformer STl1 7.09 / 0.826 4 96.19 78.01 Transformer Auto

Auto-Spikformer STl2 9.20 / 0.889 4 96.38 77.05 Transformer Auto

Auto-Spikformer STl3 8.46 / 0.925 4 96.39 78.22 Transformer Auto

Auto-Spikformer architectures STs1,2 and STl1,2,3 are selected from the candidate architectures listed in Table 3. Auto-Spikformer is the first transformer model designed through automated

methods, demonstrating enhanced performance in both tasks. The symbol “*” denotes results obtained from self-implemented experiments by Deng et al. (2022). Bold value means the result is

more optimal.

definition of this search space is outlined in Table 1, and its visual

interpretation is depicted in Figure 3.

Transformer search space, denoted ST , is similar to the design

of Autoformer (Chen M. et al., 2021), which includes four variable

factors: embedding dimension, MLP ratio, head number, and

depth. The structured definition of this search space is outlined in

Table 1.

4.4 Accuracy and energy balanced fitness
function (FAEB)

The original fitness function only considers accuracy. We

propose a new fitness function FAEB that balances accuracy and

energy consumption. To estimate energy use, we first need to

compute synaptic operations (SOPs). For a specific layer l, SOPs

can be calculated as follows (Equation 2):

SOPs(l) = fr × t × FLOPs(l) (2)

Here, fr denotes the firing rate of the input spike train, and t

represents the time-step. Floating Point Operations (FLOPs) refer

to the number of multiply-and-accumulate (MAC) operations,

while SOPs contain spike-based accumulate (AC) operations only.

The theoretical energy consumption of Auto-Spikformer, assuming

implementation on the 45nm CMOS technology (Rathi and Roy,

2021) with EMAC = 4.6pJ and EAC = 0.9pJ, is calculated as

(Equation 3):

E = EMAC × FL1SNN Conv + EAC ×

(

N
∑

n=2

SOPnSNN Conv

+

M
∑

m=1

SOPmSNN FC +

L
∑

l=1

SOPlSSA

)

(3)

Here, E denotes themodel energy, FL1SNN Conv is the first layer to

encode static RGB images into spike-form, and the SOPs of n SNN

Conv layers, m SNN Fully Connected Layer (FC), and l SSA are

added together and multiplied by EAC. For ANNs, the theoretical

energy consumption of block b is calculated (Equation 4):
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TABLE 5 Comparison of the performance with state-of-the-art (SOTA)

methods on two neuromorphic datasets.

Method Spikes

CIFAR10-DVS DVS128

T Step Acc T Step Acc

LIAF-Net (Wu

et al., 2021)

✗ 10 70.4 60 97.6

TA-SNN (Yao

et al., 2021)

✗ 10 72.0 60 98.6

Rollout (Kugele

et al., 2020)

✓ 48 66.8 240 97.2

DECOLLE (Kaiser

et al., 2020)

✓ - - 500 95.5

tdBN (Zheng

et al., 2021)

✓ 10 67.8 40 96.9

PLIF (Fang et al.,

2021b)

✓ 20 74.8 20 97.6

SEW-

ResNet (Fang

et al., 2021a)

✓ 16 74.4 16 97.9

Dspike (Li et al.,

2021)

✓ 10 75.4∗ - -

SALT (Kim and

Panda, 2021)

✓ 20 67.1 - -

DSR (Meng et al.,

2022)

✓ 10 77.3∗ - -

Spikformer

(Zhou et al., 2022)

✓ 10 78.9∗ 10 96.9

✓ 16 80.9∗ 16 98.3

Auto-Spikformer ✓ 16 81.2∗ 16 98.6

Bold font indicates the best; ∗ denotes with Data Augmentation.

Power(b) = 4.6pJ × FLOPs(b) (4)

For SNNs, Power(b) is (Equation 5):

Power(b) = 0.9pJ × SOPs(b) (5)

The energy consumption of Spikformer is influenced by factors

such as input image size, embedding dimension, number of blocks,

firing rate fr, and time-step t. These factors can be adjusted by

changing the transformer architecture and selecting suitable spike

neuron parameters. For comparison, we normalized these factors

using a minmax scaler and assigned different weights to both

metrics. The accuracy and energy balanced fitness function FAEB

is described as follows (Equation 6):

FAEB = α × E+ (1− α)×A (6)

Here,A denotes the top-1 accuracy, both metrics are scaled by

a minmax scaler with the range (0,1), and α denotes the weight (set

to 0.5 in our case).

5 Experiments

We provide comprehensive implementation details for the

supernet training stage and the evolutionary search stage. Firstly,

we evaluate the effectiveness of the proposed DSPS method by

comparing it with random search and handcrafted design within

the SNN search space. Then, we assess the effectiveness of the

proposed FAEB fitness function within the Transformer and SNN

mixed search space. Finally, we evaluate the performance of the

searched model on the CIFAR dataset and neuromorphic datasets,

comparing it with the original Spikformer and various CNN or ViT

models.

5.1 Implementation details

Supernet training stage. We followed a similar training

manner as Spikformer, with an extended epoch duration of 1000

to ensure improved convergence of the supernet.

Evolutionary search stage. For the transformer search space,

we adopt a similar approach to Autoformer. In the SNN search

space, our proposed DSPS begins with 50 randomly generated sets,

each specifying the decay rate (τ ), threshold (uth), and time-step

(t). The fitness (FAEB) is evaluated on test data, with the top 20

selected as parents. Offspring are generated through mutation and

crossover, utilizing probabilities Pd (0.3) and Pm (0.4). This process

iterates for 20 generations, culminating in the identification of the

optimal architecture.

Dataset.We conducted our experiments on the CIFAR dataset

and neuromorphic datasets. CIFAR consists of 50,000 training and

10,000 test images with a resolution of 32 × 32 pixels. CIFAR10-

DVS is a neuromorphic dataset derived from the CIFAR10 static

image dataset, comprising 9,000 training and 1,000 test images with

a resolution of 128 × 128 pixels. DVS128 Gesture is a gesture

recognition dataset consisting of 11 hand gesture categories with

a resolution of 128× 128 pixels.

5.2 E�ectiveness of DSPS

We train Auto-Spikformer within the SNN search space (SS),

where only the SNN parameter sets are modified while maintaining

the original Spikformer structure depicted in Table 1. We select 300

candidates through the proposed DSPS and theFAEB. We then plot

energy and accuracy for each candidate and draw a Pareto frontier,

as shown in Figure 5. Notably, by solely modifying the SNN inner

parameter sets, a superior trade-off between energy consumption

and accuracy can be achieved.

There is a moderate Kendall’s tau rank correlation of

0.4 between the accuracy and the energy consumption. Some

candidates exhibit lower energy consumption but higher accuracy,

indicating that they are more optimal than others. The energy

consumption within SS is mainly determined by the firing rate, as

the architecture is fixed. We select the candidates located on the

Pareto frontier, as well as a subset of candidates with the top 20%

accuracy, and present them in Table 2.
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We observe that our fitness function and search algorithm favor

a time-step of 4, which is the maximum value in SS. Furthermore,

we aim to understand why different levels of energy consumption

can result in similar accuracy. We notice that the network weights

of these candidates are identical. Among them, the minimum

energy consumption recorded is 0.79, while the maximum energy

consumption is 0.99, resulting in a 25% difference. Remarkably,

despite this significant divergence in energy consumption, the

corresponding accuracies achieved are nearly equivalent.

As shown in Table 2, for a similar threshold value, the firing

rate decreases as the decay parameter increases. The evolutionary

search tends to adjust the tau parameter rather than the threshold

to control the firing rate. The decay parameter in SNN has a

profound effect on the firing rate by facilitating a memory effect

for the previous membrane potential. Additionally, the decay and

threshold parameters also affect the distribution of feature maps

across the layers. Thus, by adjusting the tau and threshold values of

each neuron, we can alter the firing rate and accuracy substantially.

This shows that the proposed DSPS is a promising approach. By

designing an appropriate search space and selecting a suitable

fitness function, we are able to effectively decrease the overall firing

rate while preserving the network’s performance.

5.3 E�ectiveness of FAEB

To demonstrate the superiority of FAEB, we conduct extensive

experiments and illustrate the trade-off between energy and

accuracy. We apply evolutionary search with FAEB as the fitness

function to generate 1000 samples in both STs and STl . We then

select the top 100 candidates based on their scores. For comparison,

we also randomly sample 100 candidates from the search space.

Additionally, we include the Spikformer architecture in the energy-

accuracy plot.

As shown in Figure 6, the Pareto front of FAEB dominates

the random sample approach. The Kendall’s tau rank correlation

coefficients of evolutionary search and random sample are 0.63 and

0.08 in STs and 0.60 and 0.24 in STl , respectively. The candidates

on the Pareto front are listed in Table 3.

We observe numerous candidates that achieve a favorable

balance between accuracy and energy consumption. In STs ,

some candidates on the frontier even surpass the original 4–384

Spikformer architecture in accuracy with only 2 blocks and 348

channels, meaning half of the energy consumption. STl is used to

further explore higher accuracy architecture, as shown in Table 3.

The highest accuracy is 78.22 with lower energy consumption of

0.925 µJ. Furthermore, several candidates exhibited 10% to 25%

less energy while achieving higher accuracy compared to the 4–384

Spikformer architecture.

5.4 Results on CIFAR

We select the Auto-Spikformer architecture searched in STs

and STl in Section 5.3 and compare it with the original

Spikformer and other methods. The performances are reported in

Table 4. Auto-Spikformer is the first transformer model designed

through automated methods. AutoST is another research work

conducted during the same period, also focuses on spiking

transformers but uses a training-free method to obtain suitable

architecture candidates, which are then retrained from scratch.

In contrast, our approach involves training a supernet and

extracting candidates without the need for retraining. In terms of

performance, AutoST’s optimal architecture increases the number

of parameters by nearly 3.5 times compared to our optimal

model, achieving only a 1.5% accuracy improvement. Additionally,

their minimum model’s performance is lower than ours, with a

1.42% accuracy difference while using nearly the same number

of parameters. Auto-Spikformer STs2 and STl1,2,3 outperform the

state-of-the-art methods, including CNN or Transformer models

that are manually or automatically designed, in both accuracy

and energy consumption. The ANN-Transformer model is only

0.34% and 2.8% better than STl1,2,3 in CIFAR10/100, respectively,

demonstrating that the Auto-Spikformer method is comparable to

the ANN version.

5.5 Results on neuromorphic datasets

As the dimensions and depth of neuromorphic datasets differ

from the CIFAR dataset, we design a new search space for

neuromorphic datasets. Following the same supernet training

approach and evolutionary search manner as the CIFAR dataset,

we report the results in Table 5.

It can be observed that our model achieves impressive

performance on both datasets while utilizing a smaller model

size (Spikformer is 2.59M, our optimal choice 2.48M) and

less energy. Specifically, on the DVS128 Gesture dataset, we

achieve an accuracy of 98.6% using 16 time steps. Furthermore,

our results are competitive with the TA-SNN model (98.6%,

60 time steps) (Yao et al., 2021), which employs floating-

point spikes in the forward propagation process. Also, on the

CIFAR10-DVS dataset, our Auto-Spikformer model outperforms

the state-of-the-art methods in terms of accuracy. Compared

to the original Spikformer, the Auto-Spikformer achieves a

significant improvement in accuracy with even less energy

consumption.

6 Conclusion

In this work, we are the first to propose a one-shot

spiking transformer architecture search method for spiking-based

vision transformers, named Auto-Spikformer. Auto-Spikformer

optimizes both energy consumption and accuracy by incorporating

critical parameters of SNN and transformers into the search

space. We introduce two novel methods: Discrete Spiking

Parameters Search (DSPS), which optimizes SNN parameters,

and the Accuracy and Energy Balanced Fitness Function FAEB,

designed to balance energy consumption and accuracy objectives.

Extensive experiments demonstrate that the proposed algorithm

significantly enhances the performance of Spikformer and uncovers

numerous promising architectures. As part of our future work,

we plan to extend our experiments to larger benchmark

datasets.
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