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A growing number of studies apply deep neural networks (DNNs) to recordings

of human electroencephalography (EEG) to identify a range of disorders. In

many studies, EEG recordings are split into segments, and each segment is

randomly assigned to the training or test set. As a consequence, data from

individual subjects appears in both the training and the test set. Could high

test-set accuracy reflect data leakage from subject-specific patterns in the data,

rather than patterns that identify a disease? We address this question by testing

the performance of DNN classifiers using segment-based holdout (in which

segments from one subject can appear in both the training and test set), and

comparing this to their performance using subject-based holdout (where all

segments from one subject appear exclusively in either the training set or the test

set). In two datasets (one classifying Alzheimer’s disease, and the other classifying

epileptic seizures), we find that performance on previously-unseen subjects is

strongly overestimated when models are trained using segment-based holdout.

Finally, we survey the literature and find that the majority of translational DNN-

EEG studies use segment-based holdout. Most published DNN-EEG studies may

dramatically overestimate their classification performance on new subjects.

KEYWORDS

electroencephalography, deep neural networks, data leakage, cross-validation,

Alzheimer’s disease, epilepsy

1 Introduction

Translational neuroscience studies increasingly turn to deep neural network (DNN)

models to find structure in neural data. The power of DNN models comes from their

ability to discover patterns in the data that researchers would not have been able to specify.

DNN classifiers have the potential to revolutionize medical care by increasing the speed,

accuracy, and availability of diagnosis (Mall et al., 2023). DNNs have been trained on a

variety of imaging techniques to identify a wide range of clinical conditions. Many of these

studies use DNNs to diagnose diseases based on anatomical neuroimaging. For example,

DNN models can identify Alzheimer’s disease (AD) using structural magnetic resonance

imaging (MRI) (Wen et al., 2020), and a variety of cancers and brain injuries using CT

scans (Hosny et al., 2018; Kaka et al., 2021). In addition to anatomical data, a large number

of studies have used DNNs to identify diseases from functional neuroimaging data. For

example, DNNs with functional MRI show promise for identifying AD, Autism spectrum

disorders, attention-deficit/hyperactivity disorder (ADHD), and schizophrenia (Wen et al.,

2018). Furthermore, DNNs have been used with electroencephalography (EEG) to study a

variety of different neural and cognitive disorders (de Bardeci et al., 2021).

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1373515
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1373515&domain=pdf&date_stamp=2024-05-03
mailto:geoff.brookshire@sparkneuro.com
https://doi.org/10.3389/fnins.2024.1373515
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1373515/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Brookshire et al. 10.3389/fnins.2024.1373515

Deep learning helps to reveal previously-unknown patterns in

neuroimaging data, but it also presents researchers with subtle

pitfalls. One set of challenges concerns how the data are split into

separate training and test sets. The training set is used to fit the

model’s parameters, and the test set is used to estimate the model’s

performance on new data (a third subset of the data is often held

aside as a validation set, used to tune the model’s hyperparameters

and to determine when to stop training the model). In some cases,

researchers train their model on one subset of the available data,

and then evaluate the model’s performance on a separate test set.

In other cases, researchers use cross-validation (CV) to train and

test models on multiple subsets of the data. Under both of these

approaches, researchers must be careful to avoid “data leakage”

when splitting the data into training and test sets. Data leakage,

which arises when information about the test set is present in the

training set, results in a positively-biased estimate of the model’s

performance (Kaufman et al., 2012). For example, in a data-mining

competition focused on identifying patients with breast cancer,

one team of researchers found that the patient ID number carried

predictive information about cancer risk (Rosset et al., 2010). These

ID numbers may have appeared after compiling data from different

medical institutions. Because the ID number was assigned based on

patients’ diagnosis, it constitutes a source of data leakage (Rosset

et al., 2010). In general, data leakage occurs when an experimenter

handles the data in a way that artificially introduces correlations

between the training and test sets.

DNN models typically require a large amount of training

data to perform well, but neural datasets are usually expensive

and difficult to obtain. To increase the number of observations

available to train the model, these studies often split a single neural

recording into multiple samples, and use each sample as a separate

observation during training or testing. For example, a 3D structural

MR volume could be split into multiple 2D slices, and an fMRI

time-series could be split into multiple segments of time (Wen

et al., 2020). When multiple observations from a single subject

are included in both the training and test sets, it constitutes data

leakage: Instead of learning a generalizable pattern, these models

could learn characteristics of the individual subjects in the training

set, and then simply recognize those familiar subjects in the test

set. As a result, these models perform well in the study’s test set,

leading the researchers to believe they have a robust classifier. In

new subjects, however, the model may fail to generalize.

Prior research has shown that leakage of subject-specific

information—sometimes referred to as “identity confounding”

(Chaibub Neto et al., 2019)—occurs in a number of different

research areas. For example, this type of data-leakage occurs in

published MRI studies (Wen et al., 2020). Furthermore, leakage of

subject-specific information is widespread in translational studies

using optical coherence tomography (OCT), and leads to strongly

inflated estimates of test accuracy (Tampu et al., 2022). Identity

confounding has also been demonstrated in studies that make

clinical predictions on the basis of smartphone data, wearable

sensor data, and audio voice recordings (Saeb et al., 2017; Tougui

et al., 2021).

Studies using DNNs with EEG are particularly susceptible

to data leakage. In these studies, each subject’s full EEG time-

series (lasting several minutes) is commonly divided up into brief

segments (lasting several seconds) (de Bardeci et al., 2021). Each

segment is then used as a separate observation during training or

testing. This segmentation procedure is meant to ensure that DNN

models have enough training data to learn robust representations of

the patterns that characterize a disease, and to prepare the data for

commonly-used model architectures. However, EEG segmentation

leads to data leakage if the same subjects appear in both the training

and test sets. Segments of EEG from one subject are more similar to

each other than to segments from different subjects (Demuru and

Fraschini, 2020). Instead of learning an abstract representation that

would generalize to new subjects, a DNN model could therefore

achieve high classification accuracy by associating a label with each

subject’s idiosyncratic pattern of brain activity. As a consequence,

randomly splitting EEG segments into training and test sets results

in data leakage, and a biased estimate of test performance: accuracy

is high on the researchers’ test set, but the classifier will generalize

poorly to new subjects. In a clinical setting, this leads to an

apparently-promising diagnostic tool that fails when applied to new

patients. To avoid this kind of data leakage, all segments from a

given subject must be assigned to only a single partition of the data

(i.e., train or validation or test).

How does leakage of subject-specific information bias the

results of translational DNN-EEG studies? Here we address this

question by examining the effects of data leakage in two case

studies, and then reviewing the published literature to gauge the

prevalence of this leakage. In the case studies, we reproduce

two convolutional neural network (CNN) architectures used by

published studies—both of which used a train-test split that

introduced data leakage. In order to focus on the ways in which

leakage results from the train-test split, and to facilitate comparison

with prior literature, we reuse these published model architectures

without any modification. First, we use a CNN to classify subjects

as either healthy or as having dementia due to Alzheimer’s

disease. Second, we use a CNN to classify whether segments of

time contain an epileptic seizure. In both datasets, we find that

real-world performance is dramatically overestimated when data

from individual subjects is included in both the training and

test sets. In the literature review, we find that the majority of

translational DNN-EEG studies suffer from data leakage due to

data from individual subjects appearing in both the training and

test sets.

2 Method

2.1 Deep neural network analysis overview

To investigate how segment-based holdout leads to data

leakage, we reproduced the model architectures from two

published studies (Oh et al., 2020; Rashed-Al-Mahfuz et al.,

2021). The goal of these analyses was not to develop an optimal

architecture, but rather to evaluate the impact of different

cross-validation choices on the estimated model performance.

We therefore re-used the published architectures and data

processing pipelines without modification, and without any

model selection or hyperparameter tuning. The code necessary

to reproduce both of these DNN models is provided in

the Supplementary material.
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2.2 Experiment 1: Alzheimer’s disease
diagnosis

2.2.1 EEG data
We analyzed EEG data that was collected for a previously

published study (Ganapathi et al., 2022). These EEG recordings

were provided to us by the Pacific Neuroscience Institute. All

procedures were approved by the St. John’s Cancer Institute

Institutional Review Board (Protocol JWCI-19-1101) in accordance

with the Helsinki Declaration of 1975. Patients were evaluated by a

dementia specialist as part of their visit to a specialty memory clinic

(Pacific Brain Health Center in Santa Monica, CA) for memory

complaints. This evaluations included behavioral testing as well as

EEG recordings. After these evaluations, subjects were selected by

retrospectively reviewing charts for patients aged 55 and older seen

between July 2018 and February 2021.

Patients received a consensus diagnosis from a panel of

board-certified dementia specialists. Diagnoses were performed

using standard clinical methods on the basis of neurological

examinations, cognitive testing (MMSE Folstein et al., 1975 or

MoCA Nasreddine et al., 2005), clinical history (e.g., hypertension,

diabetes, head injury, depression), and laboratory results (e.g.,

vitamin B-12 levels, thyroid stimulating hormone levels, and

rapid plasma regain testing). These tests were used to rule out

reversible causes of memory loss and to diagnose subjective

cognitive impairment (SCI), mild cognitive impairment (MCI), and

dementia. EEG data was not included in the diagnostic process.

Cognitive impairment was diagnosed on the basis of MMSE

[or MoCA scores converted to MMSE (Bergeron et al., 2017)],

with MCI diagnosed according to established criteria (Langa and

Levine, 2014). MCI was distinguished from dementia on the basis

of preserved independence in functional abilities, and a lack of

significant impairment in social or occupational functioning. SCI

was diagnosed in patients with subjective complaints but without

evidence of MCI. Diagnostic categorization was based on the

clinical syndromes (Langa and Levine, 2014), and did not consider

disease etiology or subtypes within each stage.

EEG data were recorded at 250 Hz using the eVox System

(Evoke Neuroscience), with a cap that included 19 electrodes

following the International 10-20 system (FP1, FP2, F7, F3, Fz, F4,

F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2). The full

EEG session included a 5-min block of eyes-open rest, a 5-minute

block of eyes-closed rest, and a 15-min go/no-go task. In this study,

we analyzed only the eyes-open resting-state data. Recordings were

low-pass filtered below 125 Hz, and split into non-overlapping

segments of 2 s (500 samples) for model training. Channels were

stacked to produce matrices of shape (500, 19) as model inputs.

We selected all 49 subjects in the dataset who were diagnosed

with dementia due to Alzheimer’s disease (18 male, 31 female; age

73.9 ± 6.8 years). As a comparison, we selected an equal number

of subjects with subjective cognitive impairment (SCI; n = 49, 18

male, 31 female; age 63.9± 11.4 years).

2.2.2 Architecture
Because our goal was to evaluate the effects of different

cross-validation strategies on generalizability, we re-used a

previously-published model architecture without modification. We

reproduced themodel architecture fromOh et al. (2020); thismodel

is a 1D convolutional neural network trained to classify segments of

time-series EEG data as SCI or AD.

This model learns temporal filters that are applied equivalently

across each EEG channel. Progressing through the network,

subsequent layers build more complex features that take into

account a larger temporal receptive field, and some invariance is

achieved through pooling over time. The model consisted of four

convolutional layers, each followed by rectification, max pooling,

and batch normalization; convolutional layers were followed by two

dense fully-connected layers of 20 and 10 hidden units, respectively,

each rectified, and finally a dense connectivity to the output layer

with 2 units representing AD yes/no probability logits. All deep

learning models were trained with Keras and Tensorflow. The exact

Keras code used to specify the architecture can be found in the

Supplementary material.

2.2.3 Training
Models were trained for 70 epochs without any early stopping

or hyperparameter tuning. A batch size of 32, initial learning rate

of 0.0001, and the Adam optimizer were used to optimize models.

Training accuracy was computed and stored online during each

epoch, and averaged across batches to report the training accuracy

for each epoch. To visualize how quickly the models reached

their final performance, test set accuracy was also computed after

each epoch, averaged across batches. Since we reused the model

architecture from prior published work, no model selection was

performed; performing ongoing validation on the test is therefore

not a source of data leakage. For segment-based holdout, data

were split using 10-fold cross-validation (see “Cross-validation” for

details).

2.3 Experiment 2: seizure detection

2.3.1 EEG data
We analyzed data from the Siena Scalp EEG Database (Detti,

2020; Detti et al., 2020) hosted on PhysioNet (Goldberger et al.,

2000). These recordings were collected in accordance with the

Declaration of Helsinki, and approved by the Ethical Committee

of the University of Siena. Participants provided written informed

consent before beginning data collection. This dataset includes

recordings from 14 epilepsy patients (age 20–71 years, nine

male) digitized at 512 Hz with electrodes arranged following the

International 10-20 system. Seizures in the data were labeled by

an expert clinician. This dataset contains 47 seizures in ∼128 h

of recorded EEG. To ensure that the data were balanced between

seizure and non-seizure epochs, we selected non-seizure data from

the beginning of each subject’s recordings to match the duration of

their seizure-labeled data. This led to 47 min 21 s of data in each

condition (1 h 34 min 42 s in total).

In contrast to the previous section where raw time series

were used, EEG data were prepared for the classifier analysis in

the frequency domain, following the approach used by Rashed-

Al-Mahfouz and colleagues (Rashed-Al-Mahfuz et al., 2021).
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Spectrograms were computed with a window length of 256 samples

(0.5 s) overlapping by 128 samples (0.25 s), using a Hann taper.

Spectrograms were then divided into segments of 1.5 s. As in the

original study, we used the RGB representation of the spectrogram

(viridis color-map), and exported as 224 × 224 × 3 images for

training and testing with the CNNmodels.

2.3.2 Architecture
The aim of this study was to evaluate the impact of different

cross-validation choices, not to identify a highly-performing model

architecture. We therefore reused the model architecture presented

by Rashed-Al-Mahfuz et al. (2021) without modification. No

model selection or hyperparameter tuning was performed. To

handle 3D spectrogram data (vs. 2D time-series used in the

previous section), a 2D convolutional neural network was used.

This model learns 2D spectrotemporal features that are applied

equivalently across the spectrogram. The model contains four

convolutional layers, each followed by rectification, pooling, and

batch normalization, followed by two hidden fully-connected layers

of 256 and 512 units each, dropout, and a final classification

layer of 2 units corresponding to seizure yes/no. The exact

Keras code used to specify the architecture can be found in the

Supplementary material.

2.3.3 Training
Models were trained for 70 epochs with no early stopping.

We used the RMSProp optimimzer with a batch size of 32 and

a learning rate of 0.00001. Training accuracy was computed and

stored online during each epoch, and averaged across batches

to report the training accuracy for each epoch. To visualize

how quickly the models reached their final performance, test set

accuracy was also computed after each epoch, averaged across

batches. Since we reused the model architecture from prior

published work, no model selection was performed; performing

ongoing validation on the test is therefore not a source of data

leakage.

2.4 Cross-validation

This study is primarily concerned with the consequences of

different approaches to splitting the data between training and

test sets. We assess two types of train-test split: (1) holding out

individual segments of EEG data without regard for subject ID

(“segment-based holdout”), and (2) holding out entire subjects,

ensuring that all segments for a given subject appear in only the

training or the test set (“subject-based holdout”; Figure 1).

2.4.1 Segment-based holdout
Segment-based cross-validation considers all EEG segments

to be equivalent, and divides them into training and validation

partitions without considering subject ID. This segment-holdout

approach will lead to data leakage if there is statistical non-

independence due to multiple EEG segments coming from each

subject. Given n segments and m time-points per segments, we

construct a matrix X of EEG segments of size (n,m), and a vector

y of diagnostic label of length n. The cross-validation is a simple

partition of the index vector α = {1, 2, ..., n} into disjoint subsets

αtrain and αtest. Where Xi gives the ith segments of X, we then have

Xtrain = {Xi}∀i ∈ αtrain, Xtest = {Xi}∀i ∈ αtest, and ytrain =

{yi}∀i ∈ αtrain, ytest = {yi}∀i ∈ αtest.

2.4.2 Subject-based holdout
Subject-based cross-validation takes into account which subject

each EEG segment comes from. This approach enforces that

each subject appears in only one partition of the cross-validation,

ensuring there is no leakage of subject-level information across

training and test sets. To create this split, we consider an additional

subject vector s, which is used to constrain the partition of

X and y. Concretely, rather than partitioning the index vector

α, we partition the unique subject vector su, which gives the

unique entries of s, and collect all corresponding segments

from each subject contained in train and validation partitions

into αtrain and αtest. This enforces the constraint that si 6=

sj∀i ∈ αtrain, j ∈ αtest. To perform k-fold cross-validation,

we first divide su into k non-overlapping chunks, and each

chunk to serve as the validation data in each fold of cross-

validation, where the remaining k − 1 chunks are reserved

for training.

2.5 Literature review

We searched the literature for studies that used deep learning

with segments of EEG to classify a variety of diseases. We

searched Google Scholar for papers investigating Alzheimer’s

disease, Parkinson’s disease, attention-deficit/hyperactivity

disorder (ADHD), depression, schizophrenia, and seizures.

We then searched the references of these papers to identify

additional publications for inclusion. Following this search, we

included every study that used a DNN to identify psychiatric

or neurological conditions using EEG. This non-exhaustive

search included 63 papers, all of which were published since

2018 and used deep learning to study one of the conditions

named above.

Next, we examined how the training and test sets were

determined in these studies. If a paper specified that the EEG

recordings were split into segments, but did not specify that they

used subjects as an organizing factor of the train-test split, we

labeled that study as using “segment-based” holdout. Some papers

specifically stated that segments from individual subjects were

included in both the training and test sets (for example, studies

that trained separate models for each subject); these studies were

also labeled as segment-based holdout. If a paper specified that

all the segments from a single subject were assigned to only the

training or the test set, we labeled that study as using “subject-

based” holdout. If a study used both segment-based and subject-

based holdout in different analyses, we labeled the study as “both".

We labeled studies as “unclear” if we could not determine whether

the models were trained on segments of EEG recordings, and it

was not explicitly stated that subjects were used as a factor in the

holdout procedure.
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FIGURE 1

Illustration of segment-based and subject-based holdout. This example shows cross-validation with three participants, each of whom have three

segments of data, and 3-fold cross-validation (CV). Each row shows a separate CV fold. Each square illustrates a single EEG segment, with blue

squares indicating observations in the training set and red squares indicating observations in the test set. Gray rectangles are drawn around

observations from the same subject.

3 Results

3.1 Data leakage leads to biased test-set
accuracy

We analyze two datasets to test how the estimated accuracy of a

DNN classifier depends on the train-test split. First, we examine the

effects of data leakage in a patient-level classifier by training amodel

to diagnose Alzheimer’s disease. Second, we examine the effects of

data leakage in a segment-level classifier by training a model to

identify periods of time that include an epileptic seizure. In each of

these analyses, we reuse a published DNN architecture to analyze

an existing dataset.

3.1.1 Identifying patients with Alzheimer’s disease
To determine whether segment-based holdout leads to

a biased estimate of accuracy, we first trained a CNN to

diagnose Alzheimer’s disease using segments of EEG. When the

EEG segments were split into training and test sets without

considering subject ID, the model showed nearly perfect test-

set accuracy of 99.8% (99.1–100.0%) (Figure 2A). Performance

quickly approached ceiling within the first 15 training epochs

(Figure 3A). This high accuracy is consistent with prior studies that

use segment-based holdout and report high accuracy for CNNs at

identifying neurological disorders (Acharya et al., 2018b; Lee et al.,

2019; Oh et al., 2020). Could this pattern of high accuracy reflect

data leakage, instead of a robust and generalizable classifier?

When we used subject-based holdout, ensuring that individual

subjects’ data did not appear in both the training and test

sets, test accuracy dropped to 53.0% (43.1–64.8%), with 95%

confidence intervals that included chance performance of 50%.

Performance remained low throughout the training epochs

(Figure 3B). Compared with subject-based holdout, segment-based

holdout significantly overestimates the model performance on

previously-unseen subjects (Wilcoxon T = 0.0, p = 0.002).

FIGURE 2

Test-set accuracy of CNN models predicting held-out data, plotted

separately for segment-based holdout and subject-based holdout.

(A) Accuracy for models trained to classify Alzheimer’s disease in

individual subjects. Boxes show the inter-quartile range, dark lines

show the median, and whiskers extend to the minimum and

maximum points. (B) Accuracy for models trained to identify

seizures in segments of EEG data. Details as in (A).

3.1.2 Identifying segments containing epileptic
seizures

In some cases, artificial neural network models have been used

to identify time-limited events within ongoing brain activity, such

as epileptic seizures. Does segment-based holdout also lead to data

leakage when labeling periods of time within subjects? To answer

this question, we trained a CNN to classify segments of EEG data as

containing an epileptic seizure or not.

When the EEG segments were split into training and test sets

without considering subject ID, the model reached a high test-set

accuracy of 79.1% (78.8–79.4%) (Figure 2B). Accuracy leveled out

within 10 training epochs (Figure 3C). When individual subjects’

data segments were restricted to appear in only the training or

test set, however, accuracy fell to 65.1% (61.3–69.1%). Accuracy
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FIGURE 3

Test-set accuracy of CNN models plotted as a function of the training epoch. Gray lines show accuracy in individual cross-validation folds, and red

lines show the average across folds. (A) Accuracy for models trained to classify Alzheimer’s disease using segment-based holdout. (B) Accuracy for

models trained to classify Alzheimer’s disease using subject-based holdout. (C) Accuracy for models trained to identify seizures using

segment-based holdout. (D) Accuracy for models trained to identify seizures using subject-based holdout.

FIGURE 4

Number of studies using each type of test-split. “Segments”:

Segments of EEG data were assigned to the training and test sets

without regard to subject; this approach leads to data leakage.

“Subjects”: Each subject’s data appeared in only the training set or

the test set. “Both”: Both the Subjects and Segments approaches

were used in di�erent analyses. “Unclear”: We could not determine

which approach was used for train-test splits.

remained low throughout training epochs (Figure 3D). Even when

the model is tasked with labeling periods of activity within subjects,

segment-based holdout significantly overestimates performance on

previously-unseen subjects (Wilcoxon T = 0.0, p = 0.0001).

3.2 Data leakage in published EEG studies

Do published translational EEG studies suffer from subject-

specific data leakage, or do they avoid it by computing their test-set

accuracy on held-out subjects? We examined the train-test split

strategies in published studies that attempted to identify a clinical

disorder using DNNs with EEG recordings. Out of the 63 relevant

papers we found, only 17 (27.0%) unambiguously avoided this

type of data leakage (Figure 4; Table 1). Leakage of subject-specific

information is pervasive in the translational EEG literature.

4 Discussion

In EEG studies using deep learning, data leakage can occur

when segments of data from the same subjects are included in both

the training and test sets. Here we demonstrate that leakage of

subject-specific information can dramatically overestimate the real-

world clinical performance of a DNN classifier. Our Alzheimer’s

CNN classifier appeared to have an accuracy of above 99%

when using segment-based holdout, but its true performance on

previously-unseen subjects was indistinguishable from chance. We

found this bias in test-set performance both in a between-subjects

task (identifying patients with Alzheimer’s disease in Experiment

1) and in a within-subjects task (identifying segments that contain

a seizure in Experiment 2). Next, we show that this type of data

leakage appears in the majority of published translational DNN-

EEG studies we examined. Together, these results illustrate how

an improperly-designed training-test split can bias the results of
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TABLE 1 Prior translational studies using deep learning with EEG.

Article Target Test split

Ahmadi et al. (2021) ADHD Segments

Bakhtyari and Mirzaei (2022) ADHD Segments

Chang et al. (2022) ADHD Subjects

Chen et al. (2019a) ADHD Segments

Chen et al. (2019b) ADHD Segments

Dubreuil-Vall et al. (2020) ADHD Subjects

Mafi and Radfar (2022) ADHD Segments

Moghaddari et al. (2020) ADHD Segments

TaghiBeyglou et al. (2022) ADHD Subjects

Tosun (2021) ADHD Segments

Vahid et al. (2019) ADHD Subjects

Zhou et al. (2022) ADHD Unclear

Kim et al. (2018) Alcoholism Segments

Bi and Wang (2019) Alzheimer’s Segments

Gkenios et al. (2022) Alzheimer’s Both

Huggins et al. (2021) Alzheimer’s Segments

Ieracitano et al. (2019) Alzheimer’s Both

Kim and Kim (2018) Alzheimer’s Subjects

Morabito et al. (2016) Alzheimer’s Subjects

You et al. (2020) Alzheimer’s Segments

Zhao and He (2015) Alzheimer’s Segments

Acharya et al. (2018b) Depression Segments

Ay et al. (2019) Depression Segments

Kwon et al. (2019) Depression Subjects

Li et al. (2019) Depression Subjects

Li X. et al. (2020) Depression Subjects

Mumtaz and Qayyum (2019) Depression Segments

Uyulan et al. (2021) Depression Unclear

Xie et al. (2020) Depression Unclear

Zhang et al. (2020) Depression Segments

Khare et al. (2021) Parkinson’s Segments

Lee et al. (2019) Parkinson’s Segments

Loh et al. (2021) Parkinson’s Segments

Oh et al. (2020) Parkinson’s Segments

Shaban (2021) Parkinson’s Segments

Shaban and Amara (2022) Parkinson’s Subjects

Shi et al. (2019) Parkinson’s Subjects

Ahmedt-Aristizabal et al. (2020) Schizophrenia Subjects

Chu et al. (2017) Schizophrenia Segments

Oh et al. (2019) Schizophrenia Both

Shalbaf et al. (2020) Schizophrenia Segments

(Continued)

TABLE 1 (Continued)

Article Target Test split

Acharya et al. (2018a) Seizure Segments

Avcu et al. (2019) Seizure Subjects

Choi et al. (2019) Seizure Subjects

Daoud and Bayoumi (2019) Seizure Segments

Emami et al. (2019) Seizure Subjects

Fürbass et al. (2020) Seizure Subjects

Gao et al. (2020) Seizure Segments

Hussein et al. (2019) Seizure Segments

Iešmantas and Alzbutas (2020) Seizure Subjects

Jana et al. (2020) Seizure Segments

Khan et al. (2017) Seizure Segments

Li Y. et al. (2020) Seizure Segments

Liang et al. (2020) Seizure Segments

Raghu et al. (2020) Seizure Unclear

Rashed-Al-Mahfuz et al. (2021) Seizure Segments

Truong et al. (2018) Seizure Segments

Ullah et al. (2018) Seizure Segments

Wei et al. (2018) Seizure Segments

Wei et al. (2019) Seizure Segments

Zhao et al. (2020) Seizure Segments

Zhou et al. (2018) Seizure Segments

Bouallegue et al. (2020) Seizure and autism Segments

Each line in the table describes one published translational study using a DNNwith EEG data.

The “Target” column holds the clinical condition being classified. The “Test split” column

shows the approach used to determine how the data were divided into training and test sets.

“Segments”: Segments of EEG data were assigned to the training and test sets without regard

to subject; this approach leads to data leakage. “Subjects”: Each subject’s data appeared in only

the training set or the test set. “Both”: Both the Subjects and Segments approaches were used in

different analyses. “Unclear”: We could not determine which approach was used for train-test

splits.

DNN studies, and show that biased results are widespread in the

published literature.

To be useful in a clinical setting, a diagnostic classifier must

be able to identify a disease in new patients. Models trained

using segment-based holdout, however, strongly overestimate their

ability to perform this task. Instead, these models may learn

patterns associated with individual subjects, and then associate

those idiosyncratic patterns with a diagnosis. As a consequence,

performance of these models drops precipitously when they are

tested in new subjects, and performance is unlikely to generalize

to a new dataset. When training a translational DNN classifier, the

model must be tested with subjects who were not included in the

training set.

Our results show that segment-based cross-validation inflates

estimates of out-of-sample model performance when training on

segments from resting-state EEG. However, the same principles of

data leakage will apply to task-based EEG; providing a classifier
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with person-specific information enables it to artificially inflate

performance.

Although this study focused on Alzheimer’s Disease and

epileptic seizures, our findings are not particular those diseases.

Classification studies will overestimate model generalization

whenever data from individual participants is present in both the

training and test sets. Prior review articles have summarized the

details and idiosyncrasies of DNN models in the context of AD

(Cassani et al., 2018; Wen et al., 2020) and seizures (Rasheed et al.,

2020; Shoeibi et al., 2021).

4.1 Data leakage in between- and
within-subjects designs

We find that segment-based cross-validation overestimates

performance for both between-subjects (Alzheimer’s disease,

Experiment 1) and within-subjects comparisons (seizures,

Experiment 2). However, the magnitude of this overestimate was

smaller in a within-subjects comparison (Figure 2). What leads

to this difference in the size of the effect between the two tasks?

In a between-subjects task, the classifier can simply associate a

label with each individual participant. In a within-subjects task,

however, this shortcut is not available to the model. Instead, it must

learn a representation of the labels—albeit a representation that

may be contaminated by multiple segments coming from the same

event, or one that may be specific to a given participant.

4.2 Data leakage when identifying events
within subjects

Instead of identifying a disease in each subject, some studies

attempt to identify a diseased process in each segment of time (see

Table 1). DNNmodels of epilepsy, for example, often aim to classify

the segments of data that contain a seizure. We demonstrated in

Experiment 2 that those studies are not immune to data leakage

in training-test splits: the accuracy in novel subjects is strongly

overestimated when the test set includes subjects who were also in

the training set. This result could arise if the model uses different

patterns to identify seizures in each subject.

Subject-specific studies indicate that a bespoke classifier could

be trained to identify seizures in each new patient (Jana et al., 2020;

Liang et al., 2020; Li Y. et al., 2020). However, this would require

every patient to have a large dataset of recordings that have already

been labeled, which limits the clinical utility of this approach. A

more realistic approach is to train DNN models to identify events

in unseen patients.

4.3 Data leakage in other methods

In studies which have only one observation per subject, cross-

validation is trivial – single observations are simply assigned to

the training or test set. However, in EEG and many other medical

imagining methods, the data from each subject is routinely split

into multiple segments. In this paper, we showed how data leakage

can arise when a long recording is split into multiple shorter

segments. However, the same principles apply to any other method

that introduces statistical non-independence between the training

and test sets. For example, some EEG-based DNNs treat every

channel independently, and use information from each channel as

a separate observation (Loh et al., 2021). Those studies are likely

to suffer from substantial data leakage, since physiological sources

of electrical activity appear redundantly across multiple EEG scalp

electrodes (Michel and He, 2019).

These principles also apply to other medical imaging methods

and classifiers. Similar patterns of “identity confounding” data

leakage have been documented in studies using functional (Wen

et al., 2018) and anatomical (Wen et al., 2020) MRI, optical

coherence tomography (OCT) (Tampu et al., 2022), accelerometer

and gyroscope recordings from smartphones (Saeb et al., 2017),

audio voice recordings (Chaibub Neto et al., 2019; Tougui et al.,

2021), and performance on motor tasks (Chaibub Neto et al.,

2019). Furthermore, data leakage due to identity confounding is

not limited to deep neural networks, and has been uncovered using

random forests (Saeb et al., 2017; Chaibub Neto et al., 2019; Tougui

et al., 2021) and support vector machines (Tougui et al., 2021).

4.4 Caveats

We find that segment-based cross-validation leads to data

leakage, and this type of cross-validation is common in translational

EEG studies. This conclusion mirrors results from studies

examining a variety of other types of data and classifier models

(Saeb et al., 2017; Wen et al., 2018, 2020; Chaibub Neto et al., 2019;

Tougui et al., 2021; Tampu et al., 2022). The precise amount of data

leakage and the bias that it introduces, however, are likely to differ

based on the details of the experiment. For example, if a study trains

a classifier to identify individual subjects with a disease, then there

may be stronger bias when the study involves fewer participants

(Saeb et al., 2017). The model architecture may also influence the

amount of data leakage: a model that can more effectively learn

subject-specific representations could show stronger bias than a

model that cannot learn subject-specific patterns.

5 Conclusion

Data leakage occurs when EEG segments from one subject

appear in the both the training and test sets. As a result, the test

set accuracy dramatically overestimates the classifier’s performance

in new subjects. This type of data leakage is common in published

studies using DNNs and translational EEG. To accurately estimate

a model’s performance, researchers must ensure that each subject’s

data is included in only the training or the test set, but not both.
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