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Editorial on the Research Topic

Novel applications of Bayesian and other models in

translational neuroscience

The task of both the brain and the neuroscientist is to reason about large numbers of

variables that are both mutually interdependent and uncertain (i.e., probabilistic). This

partly explains why statistical models - and Bayesian models in particular – have been

increasingly prominent in both theoretical accounts of brain function and methodologies

for analyzing neural data. Bayes’ theorem specifies the optimal way to combine prior

beliefs with data in probabilistic inference,1 offering a powerful tool for reasoning under

uncertainty (van Amersfoort et al., 2020). Within the framework of Bayesian networks,

the values (or rather probability distributions) of multiple variables interrelated through

a network of conditional dependencies can be calculated from observational data by

successive applications of Bayes’ theorem. Bayesian networks can be used as statistical

models for a large and general class of dynamical phenomena, and can be constructed

using expert knowledge or learned from data through the process of structure learning.

Recent theories of brain function suggest that perception, cognition, and action can all be

fruitfully understood as forms of Bayesian inference, in which an internal generative model

of the world is inverted to fit sensory data. This internal generativemodel can be formalized

as a Bayesian network that is dynamic and hierarchically deep – i.e., composed of multiple

levels of (increasingly abstract) explanatory variables evolving in time. Inversion of this

network is believed to be implemented via predictive processing, in which brain activity

principally encodes the difference between model-generated predictions and sensory data,

i.e., prediction errors. In perception, the model is changed to match the sensory data, while

in action, the sensory data is changed tomatch themodel through so-called active inference.

1 Bayes’ theorem states that the conditional probability of some occurrence A given observed data B,

P(A‖B), is proportional to the product of the prior probability of the event, P(A), and the likelihood of the

observation given the event, P(B‖A). We can think of the conditional distribution P(B‖A) as a generative

model of the data, which we invert to calculate the posterior probability P(A‖B).
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In perhaps the farthest-reaching formulation of these hypotheses,

the free-energy principle, the brain accomplishes Bayesian

inference by performing a gradient descent on free energy. This

ensures that the accuracy of the internal model (and its predictions)

increases, while its complexity decreases (Bruineberg et al., 2016).

However, while Bayesian, predictive, and statistical models

have been proposed as qualitative and quantitative models

and tools for basic research, the applications of these models

to translational neuroscience have been understudied and

underreported. Exceptions include variational Bayesian mixed-

effects inference, which has been successfully tested for use in

classification studies (Brodersen et al., 2013), and a recently-

published multi-task Bayesian compressive sensing approach to

simultaneously estimate the full posterior of the CSA-ODF and

diffusion-weighted volumes from multi-shell HARDI acquisitions.

This Research Topic collects further research applying Bayesian

and statistical tools, techniques, and theories to the prediction or

anticipation of brain function in humans and animal models under

physiological and pathological conditions.

Many of the studies in this Topic employ Bayesian networks

(BNs) to analyze and make predictions about neurophysiological

data. In Fan et al., structure learning is applied to create a

predictive model for ischemic stroke (IS) by discovering a BN

linking risk factors to IS in patients with dilated cardiomyopathy

(DCM). As Fan et al. point out, a major advantage of BNs

is their utility in classifying imbalanced datasets, a common

challenge in real-world data. In Carvalho do Nascimento et al.,

techniques from structure learning for BNs are applied to the

discovery of functional connectivity networks in the domain of

interpersonal neural synchronization (INS). The proposed two-step

network estimation method allows inference of the time-varying

probabilistic dependencies between brain regions both within and

between subjects. Carvalho do Nascimento et al. demonstrate the

utility of their method in the analysis of fNIRS hyperscanning data

recorded simultaneously from violinists playing a duet, confirming

that one player was leading the other. In Chen, techniques from

structure learning are applied to create a data fusion method, called

Bayesian Multisource Data Integration, to model the interactions

among data sources (i.e., imaging modalities) and behavioral

variables. The proposed method constructs a Bayesian network

model associating features in each data source with behavioral

outcome variables. The generated Bayesian network is transparent

and easy to understand. It can be used to understand how

behavioral changes depend on features in each data source, and

to identify which features synergistically contribute to behavioral

outcomes, which are redundant, and which are uninformative.

Thome et al. take the use of Bayesian statistical models

for data analysis a step further. They propose a novel use for

interpretable latent variable models. These models probabilistically

link behavioral observations to an underlying latent process,

and have increasingly been used to draw inferences about

cognition from observed behavior. The latent process usually

connects experimental variables to cognitive computation.

While such models provide important insights into the latent

processes generating behavior, one important aspect has often

been overlooked. They may also be used to generate precise

and falsifiable behavioral predictions as a function of the

modeled experimental variables. In doing so, they pinpoint how

experimental conditions must be designed to elicit desired behavior

and generate adaptive experiments. These ideas are exemplified on

the process of delay discounting (DD). After inferring DD models

from behavior on a typical DD task, the models are leveraged

to generate a second adaptive DD task, which elicits 9 graded

behavioral discounting probabilities across participants. Models

are then validated and contrasted to competing models in the field

by assessing the out-of-sample prediction error. They also report

evidence for inter-individual differences with respect to the most

suitable models underlying behavior. Finally, they outline how to

adapt the proposed method to the investigation of other cognitive

processes including reinforcement learning.

Priorelli and Stoianov further the application of Bayesian

networkmodels of the brain, presenting a normative computational

theory of how the brain may support visually-guided goal-directed

actions in dynamically changing environments. This theory extends

active inference, a theory of cortical processing according to

which the brain maintains beliefs over the environmental state,

and motor control signals try to fulfill the corresponding sensory

predictions. The authors propose that the neural circuitry in

the Posterior Parietal Cortex (PPC) compute flexible intentions

(Duarte-Carvajalino et al., 2014)—or motor plans from a belief

over targets—to dynamically generate goal-directed actions, and

develop a computational formalization of this process. A proof-of-

concept agent embodying visual and proprioceptive sensors and an

actuated upper limb was tested on target-reaching tasks. The agent

behaved correctly under various conditions, including static and

dynamic targets, different sensory feedbacks, sensory precisions,

intention gains, and movement policies; limit conditions were

individuated, too. Active inference driven by dynamic and flexible

intentions can thus support goal-directed behavior in constantly

changing environments, and the PPC might putatively host its

core intention mechanism. More broadly, the study provides

a normative computational basis for research on goal-directed

behavior in end-to-end settings and further advances mechanistic

theories of active biological systems.

Mezzetti et al. apply Bayesian models to the analysis of

psychometric data, extending their use of generalized linear mixed

models (GLMM) and two-level methods in a Bayesian framework.

This allows them to apply a priori knowledge from the literature

and from previous experiments to estimation of psychometric

functions, reducing the uncertainty of the parameters through

the combination of prior knowledge and the experimental data.

Evaluating uncertainties between and within participants through

posterior distributions, Mezzetti et al. use a special type of Bayesian

model, the power prior distribution, to modulate the weight of

the prior, constructed from a first set of data, and use it to fit a

second one. Their models estimated the probability distributions of

the parameters of interest conveying information about the effects

of the experimental variables and their uncertainty, as well as the

reliability of individual participants.

The work collected in this Topic also includes translational

applications of more general statistical models and approaches.

Floyrac et al. used auditory evoked potentials recorded non-

invasively during an oddball paradigm in a cohort of 29

post-cardiac arrest anoxic comatose patients to predict return to
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consciousness and good neurological outcomes. By extracting

features from the standard and the deviant auditory stimulations

independently and using machine learning to cluster patients

within the two-dimensional space determined by these features,

they were able to predict patients’ neurological outcomes with a

sensitivity of 0.83 and an accuracy of 0.90, even when using data

only from one electrode. Ren et al. constructed a diagnostic model

for cognitive impairment, a common disorder in patients with

epilepsy, using the clinical and the phase locking value functional

connectivity features of the electroencephalogram (EEG).

Yoshiiwa et al., motivated by electroencephalographic studies of

working memory demonstrating cortical activity and oscillatory

representations without clarifying how the stored information

is retained in the brain, measured scalp electroencephalography

data while participants performed a modified n-back working

memory task. They then calculated the current intensities from

the estimated cortical currents by introducing a statistical map

generated using Neurosynth as prior information. Their results

indicate that the representation of executive control over memory

retention may be mediated through both persistent neural activity

and oscillatory representations in the beta and gamma bands

over multiple cortical regions that contribute to visual working

memory functions. Yazawa et al. created an arterially perfused in

situ brainstem and spinal cord preparation that allowed them to

investigate functional interactions in the CNS from the neonatal to

adult period, bypassing the technical limitations on the spatial and

temporal scope of in vitro neonatal rodent spinal cord preparations

imposed by low oxygen tension in deep tissues. Using their novel

preparation, they explored whether the absence of interferon

regulatory factor 8 (IRF8) – which affects behavior and modulates

Alzheimer’s disease progression in a mouse model – influences

the development of lumbar central pattern generator (CPG)

networks in mice of all ages. Finally, Mount et al. explored how

autism spectrum disorder (ASD) risk genes influence neural circuit

computation during behavior by performing large-scale cellular

calcium imaging from hundreds of individual CA1 neurons

simultaneously in transgenic mice with total knockout of the X-

linked ASD-risk gene NEXMIF (neurite extension and migration

factor). AsNEXMIF knockout inmice led to profound learning and

memory deficits, they examined the CA1 network during voluntary

locomotion, a fundamental component of spatial memory. They

found that in wild-type mice the CA1 network desynchronizes

during locomotion, consistent with increased network information

coding during active behavior. Upon NEXMIF knockout, the

CA1 network is over-synchronized regardless of behavioral state

and fails to desynchronize during locomotion, highlighting how

perturbations in ASD-implicated genes create abnormal network

synchronization that could contribute to ASD-related behaviors.

In conclusion, it is our hope that the work collected in

this Topic will serve as a basis for future studies exploring

the potential application of Bayesian and other models in

Translational Neuroscience.
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