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Introduction: Cognitive impairment (CI) is a common complication of end-stage 
renal disease (ESRD) that is associated with structural and functional changes in 
the brain. However, whether a joint structural and functional alteration pattern 
exists that is related to CI in ESRD is unclear.

Methods: In this study, instead of looking at brain structure and function 
separately, we aim to investigate the covariant characteristics of both functional 
and structural aspects. Specifically, we  took the fusion analysis approach, 
namely, multimodal canonical correlation analysis and joint independent 
component analysis (mCCA+jICA), to jointly study the discriminative features 
in gray matter volume (GMV) measured by T1-weighted (T1w) MRI, fractional 
anisotropy (FA) in white matter measured by diffusion MRI, and the amplitude 
of low-frequency fluctuation (ALFF) measured by blood oxygenation-level-
dependent (BOLD) MRI in 78 ESRD patients versus 64 healthy controls (HCs), 
followed by a mediation effect analysis to explore the relationship between 
neuroimaging findings, cognitive impairments and uremic toxins.

Results: Two joint group-discriminative independent components (ICs) were 
found to show covariant abnormalities across FA, GMV, and ALFF (all p  <  0.05). 
The most dominant joint IC revealed associative patterns of alterations of GMV 
(in the precentral gyrus, occipital lobe, temporal lobe, parahippocampal gyrus, 
and hippocampus), alterations of ALFF (in the precuneus, superior parietal 
gyrus, and superior occipital gyrus), and of white matter FA (in the corticospinal 
tract and inferior frontal occipital fasciculus). Another significant IC revealed 
associative alterations of GMV (in the dorsolateral prefrontal and orbitofrontal 
cortex) and FA (in the forceps minor). Moreover, the brain changes identified 
by FA and GMV in the above-mentioned brain regions were found to mediate 
the negative correlation between serum phosphate and mini-mental state 
examination (MMSE) scores (all p  <  0.05).

Conclusion: The mCCA+jICA method was demonstrated to be  capable of 
revealing covariant abnormalities across neuronal features of different types 
in ESRD patients as contrasted to HCs, and joint brain changes may play an 
important role in mediating the relationship between serum toxins and CIs in 
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ESRD. Our results show the mCCA+jICA fusion analysis approach may provide 
new insights into similar neurobiological studies.
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multimodal CCA-joint ICA, gray matter volume, fractional anisotropy, amplitude of 
low-frequency fluctuation, cognitive impairment, end-stage renal disease

1 Introduction

Cognitive impairments (CIs) are commonly seen in end-stage 
renal disease (ESRD) patients due to neuronal degeneration caused 
by accumulated un-eliminated uremic toxins in the body (Chai et al., 
2019, 2020, 2021; Findlay et al., 2019; Miglinas et al., 2020; Wang 
et  al., 2022, 2023a; Zhang et  al., 2023). MRI can provide rich 
information on brain structure and function and has been 
demonstrated to be a useful tool to reveal brain changes related to 
CIs. For example, previous structural MRI (sMRI) and diffusion MRI 
(dMRI) studies have shown that ESRD patients are characterized by 
overall atrophy of the gray matter (GM) (Zhang et al., 2013; Wang 
et al., 2022) and decreased integrity of the white matter (WM) (Zhang 
et  al., 2015). A number of functional MRI (fMRI) studies have 
reported abnormal activities in the default mode network (DMN) (Ni 
et al., 2014; Ma et al., 2015; Cao et al., 2022). It is known that normal 
cognition relies on the collaborative wellness of both structural and 
functional aspects of the brain, and any deviation from this normality 
may be characterized by a disease-specific pattern of structural and 
functional abnormalities that are intrinsically related. However, 
previous MRI studies in ESRD usually take an approach to analyze 
different types of MRI data (i.e., T1w, DTI, and fMRI) separately, 
providing an isolated view of the structural or functional 
characteristics, lacking an effective strategy to investigate the 
underlying association between them.

Recently, data-driven multimodal analysis methods have been 
proposed to analyze multimodal data concurrently to uncover the 
joint alterations that exist between various aspects of brain 
characteristics (Lottman et al., 2018; Grecucci et al., 2023; Khalilullah 
et al., 2023). In other words, the multimodal joint analysis methods 
can reveal associative group differences between different modalities, 
or covariant abnormalities, allowing for a joint analysis of imaging 
data of different nature or dimensions, which is hard to achieve 
otherwise. Among all these methods, the combination of multimodal 
canonical correlation analysis (mCCA) and joint independent 
component analysis (jICA), namely, mCCA+jICA (Sui et al., 2011), 
has been proved to be useful in gaining a deeper understanding of 
various neurological diseases, such as schizophrenia, mild cognitive 
impairment, bipolar disorder, catatonia, neural correlates of cognitive 
control, and obsessive-compulsive disorder, etc. (Sui et al., 2013a; He 
et al., 2017; Lerman-Sinkoff et al., 2017; Hirjak et al., 2020; Liang et al., 
2021). Specifically, the mCCA+jICA method is composed of two 
major steps. The mCCA step can establish connections between data 
of different modalities by maximizing the correlation between the 
resulting canonical variants from each modality (Correa et al., 2008). 
The jICA step then linearly decomposes the resulting multi-modal 
canonical variants jointly to achieve the maximally independent 
sources, i.e., joint ICs.

Along with the efforts to understand how toxins may induce 
cognitive impairments, previous studies have indicated that the 
accumulation of uremic toxins can interfere with the central nervous 
system in ESRD patients, leading to neurotoxicity (Hamed, 2019), 
and has a significant impact on cognitive function (Liabeuf et al., 
2021). Fusion analysis methods can provide insights into joint brain 
changes using imaging data, but the relationship between these 
cross-modality covariant abnormalities and cognitive impairments 
induced by the accumulated un-eliminated uremic toxins in ESRD 
patients has been unexplored so far. There is evidence that a 
relationship between covariant abnormalities and cognitive decline 
exists in diseases such as subjective cognitive decline and 
schizophrenia (Sui et  al., 2013a; Liang et  al., 2021). Therefore, 
we hypothesized that the covariant abnormalities may play a role in 
mediating the relationship between CI and toxins. A mediation 
effect analysis was performed to investigate the role of brain 
abnormalities across modalities in the pathways that toxins 
contribute to CI, providing a more comprehensive explanation for 
the results of the fusion analysis at the level of the pathophysiological 
mechanisms of cognitive impairment.

In this study, we first employed the mCCA+jICA algorithm to 
jointly analyze sMRI, DTI, and resting-state functional MRI (rs-fMRI) 
data, to explore the potential covariant abnormalities in brain 
structure and function associated with CI in ESRD. Subsequently, 
we performed a mediation effect analysis to investigate the mediating 
role of joint brain changes in the relationship between CI and uremic 
toxins to gain a deeper understanding of the pathogenic mechanisms 
of CI in ESRD. To the best of our knowledge, this is the first attempt 
to focus on the covariant structural and functional changes and their 
associations with CI and potentially with uremic toxins in 
ESRD patients.

2 Materials and methods

2.1 Participants

The study was approved by the ethics committee of Tianjin First 
Central Hospital, and all participants signed informed consent 
before MRI examinations. One hundred ESRD patients were 
recruited from the Department of Hemodialysis of the hospital. All 
ESRD patients had hemodialysis for more than 3 months, and 
dialysis was performed three times a week for 4 h each time. 
Eighty-two healthy controls (HCs) were recruited from the hospital 
or local community. Inclusion criteria for all subjects were: (1) aged 
over 18 years and righted hand; (2) no drug abuse, neurological 
diseases (e.g., epilepsy, head trauma/contusion, cerebral 
hemorrhage), or other diseases or treatments that may affect the 
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central nervous system (e.g., liver or kidney transplantations); (3) 
able to complete the neurocognitive evaluation; and (4) no 
congenital structural abnormalities in the brain. Among all subjects, 
34 were excluded due to inconsistent imaging parameters, and 
another 6 were excluded due to poor imaging data quality, yielding 
a total of 78 ESRD patients (41 males and 37 females, age range from 
18 to 75 years old, mean 45.7 ± 13.8 years old) and 64 HCs (27 males 
and 37 females, age range from 22 to 64 years old, mean 
42.5 ± 11.5 years old) remaining in the study. A mini-mental state 
examination (MMSE) was performed on all enrolled participants to 
evaluate their cognitive status (Table 1).

2.2 Data acquisition

All MRI data were acquired on a 3 T MRI Siemens Tim Trio 
system with an 8-channel head coil. The imaging parameters are as 
follows. fMRI: resting-state fMRI images were collected using an echo-
planar imaging (EPI) sequence, slices were carefully oriented along 
the anterior commissure–posterior commissure line, repetition time 
(TR) = 3 s, echo time (TE) = 30 ms, field of view (FOV) = 175 × 238 mm2, 
flip angle = 90°, slice thickness = 3 mm, number of slices = 38, matrix 
size = 50 × 64, acquisition time =  11 min 30 s, voxel 
size = 3.4 × 3.4 × 3.4 mm3. sMRI: T1-weighted data were acquired using 
a magnetization-prepared rapid gradient-echo (MP-RAGE) sequence 
with the following parameters: TR/TE/inversion time 
(TI) = 1,900/2.52/900 ms, FOV = 258 × 256 mm2, flip angle = 9°, slice 
thickness = 1 mm, number of slices = 176, matrix size = 256 × 256, 
acquisition time = 211 s, and voxel size = 1.0 × 1.0 × 1.0 mm3, 
bandwidth = 170 Hz/pixel. DTI: diffusion data were acquired using an 
axial single-shot spin-echo EPI sequence, TR = 10.5 s, TE = 103 ms, 
FOV = 239 × 240 mm2, slice thickness = 1.8 mm, number of slices = 38, 
matrix size = 128 × 128, acquisition time = 215 s, voxel 
size = 1.8 × 1.8 × 1.8 mm3, b = 0 s/mm2, 1,000 s/mm2 (30 directions), 
2,000 s/mm2 (30 directions).

2.3 Data analysis

The workflow of data processing and analysis is shown in Figure 1, 
which includes the fusion analysis of multimodal data, obtaining 
regional values of GMV, FA, and ALFF, and statistics analysis, etc., as 
described below.

2.3.1 Preprocessing and feature extraction
The preprocessing of sMRI images was performed by Advanced 

Normalization Tools (ANTs) (Avants et  al., 2011) and FreeSurfer 
software (Fischl, 2012). The N4 bias field correction was performed 
(Tustison et al., 2010) on original T1w data to filter out low-frequency 
fluctuation artifacts. Then, the corrected T1w images were nonlinearly 
registered to the Montreal Neurological Institute (MNI) template 
using the “antRegistrationSyNQuick.sh” command in ANTs with the 
deformation field information preserved. To obtain the gray matter 
images, different brain tissues (cortex, subcortex, white matter, and 
cerebrospinal fluid) in T1w images were segmented (Dale et al., 1999) 
and labeled by the “recon-all” command in FreeSurfer and then based 
on the labeling information, the volume fractions maps of GM in the 
native space were calculated by the “mri_compute_volume_fractions” 
command, i.e., the numerical value of each voxel indicated the 
proportion of gray matter. The GM volume fractions maps were 
transformed into the 1 × 1 × 1 mm3 MNI standard space by applying 
the deformation field information and then multiplied by the Jacobian 
determinant images calculated from the deformation field information 
to preserve the gray matter volume (GMV) of native space (Good 
et al., 2001). Finally, the GMV images were smoothed by an 8 mm 
full-width at half-maximum (FWHM) Gaussian kernel. The workflow 
of sMRI data processing is illustrated in Supplementary Figure S1.

The dMRI data images were preprocessed using the FMRIB 
Software Library (FSL) (Jenkinson et al., 2012). For the diffusion-
weighted images, the “eddy_correct” command was used to correct 
the image distortion caused by the eddy current, and the brain mask 
was created by extracting the brain tissues of the volume without 
diffusion-weighted (b0 images) to provide the calculation range of 
tensor reconstruction. Then, the FA maps were calculated by diffusion 
tensor reconstruction with the “dtifit” command. Before the 
registration of FA maps, b0 images were transformed into native T1w 
space, followed by the transformation of T1w images into standard 
space. Subsequently, the FA maps were registered to the 2 × 2 × 2 mm3 
MNI standard space utilizing both the affine transformation matrix 
and deformation field information generated during the above-
mentioned two-step transformations. Finally, the FA images were 
smoothed with an 8 mm FWHM Gaussian kernel. The workflow of 
dMRI data processing is illustrated in Supplementary Figure S2.

The preprocessing of rs-fMRI images aimed to obtain ALFF maps 
using the Analysis of Functional NeuroImages (AFNI) software. 
Specifically, the first five time points of the original fMRI data were 
removed to reduce the influence of unstable signal acquisition at the 
beginning. The remaining 225 time points were included for slice-
timing correction and motion correction. Then, the signals from the 
24 motion-related parameters (six motion correction parameters, 
derivative, and their quadratic terms) and the averages of WM and 
cerebrospinal fluid in time series were considered as nuisance signals 
and removed by multiple linear regression. A bandpass filter ranging 
from 0.008 to 0.08 Hz was applied to reduce the extremely 
low-frequency drift and high-frequency physiological noise, aligning 

TABLE 1 Demographic and clinical information of participants.

ESRD 
(n  =  78)

HCs 
(n  =  64)

p-value

Age (years old) 45.7 ± 13.8 42.5 ± 11.5 0.15*

Gender (M/F) 41/37 27/37 0.22#

Education level (years) 13.1 ± 2.9 13.8 ± 1.9 0.11*

Urea (mmol/L) 25.8 ± 8.7 – –

Creatinine (mmol/L) 888.3 ± 305.7 – –

Uric acid (umol/L) 352.3 ± 91.2 – –

Sodium (mmol/L) 139.3 ± 3.4 – –

Potassium (mmol/L) 5.1 ± 0.7 – –

Phosphate (mmol/L) 2.0 ± 0.6 – –

Alkaline phosphatase (U/L) 87.1 ± 77.6 – –

Parathyroid hormone (U/L) 281.1 ± 359.9 – –

β2-microglobulin (mg/L) 33.1 ± 5.9 – –

MMSE score 26.9 ± 2.9 29.5 ± 0.9 <0.001*

HCs, healthy controls; ESRD, end-stage renal disease; MMSE, mini-mental state 
examination.
*Two independent sample t test; #chi-square test.
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with the frequency of the blood oxygen level-dependent signal. The 
global signal regression was performed to remove non-neuronal 
sources of global variance such as respiration and movement (Yan 
et al., 2013). Before calculating the ALFF maps, data were spatially 
smoothed with an 8 mm FWHM Gaussian kernel. Subsequently, the 
power spectrum of the time series for each voxel was acquired 
through the Fast Fourier Transform (FFT), and the amplitude was 
obtained by taking the square root of the spectral value of each 
discrete frequency point in the power spectrum, and then the discrete 
amplitude sequence with frequencies between 0.008–0.08 Hz was 
averaged to obtain the ALFF value for each voxel. Finally, the ALFF 
maps were registered to the 3 × 3 × 3 mm3 MNI standard space. The 
workflow of rs-fMRI data processing is illustrated in 
Supplementary Figure S3.

2.3.2 Multimodal CCA- joint ICA
The Fusion ICA Toolbox (FIT1) in MATLAB was used to perform 

the fusion analysis on GMV, FA, and ALFF images for 142 subjects 
(Sui et al., 2013a). The goal of mCCA+jICA is to identify an equivalent 
number of independent sources for each modality. These sources 
referred to as ICs, can be linearly combined to reconstruct images for 
each subject in the dataset. This process can be  represented as 
Xk = Ak × Sk, where X represents the dataset, A is the mixing matrix, S 
is the source matrix, and k is the index of the dataset. The flowchart of 
mCCA+jICA is shown in Figure 2.

First, the three-dimensional imaging data within brain masks for 
each subject was reshaped into one-dimensional row vectors. These 
vectors were then stacked to form the two-dimensional feature 
matrices. Each of the three modalities corresponds to its own feature 
matrix Xk (k = 1,2,3, dimension = [number of subjects] × [number of 
voxels]). Then, all the data matrices were normalized to have equal 

1 http://mialab.mrn.org/software/fit

average sum-of-squares (computed across all participants and all 
voxels). Normalization was necessary because ALFF, GMV, and FA 
data have largely different ranges (Sui et  al., 2013a). After 
normalization, a minimum description length (MDL) criterion (Li 
et al., 2007) was used to estimate the number of ICs for each dataset, 
determined to be 12 in this experiment. Principal component analysis 
(PCA) was conducted on the normalized matrices to achieve 
dimensionality reduction, aiming to mitigate the influence of noise 
and cross-correlation of voxel signals on fusion analysis (Sui et al., 
2013a). The dimensionality of the reduced matrices Yk (k = 1,2,3) was 
[number of subjects] × 12, preserving 93, 98, and 99% of the variance 
in the GMV, FA, and ALFF datasets, respectively.

The mCCA algorithm first decomposed Yk into canonical variant 
matrices Dk and their corresponding source matrices Ck. These source 
matrices were associated with each other through the correlation of 
canonical variants located in the same column of Dk. Subsequently, 
jICA was applied to the concatenated source matrix [C1, C2, C3] to 
decompose a shared mixing matrix W and joint-independence 
component matrices Sk. The quality of the jICA decomposition results 
was automatically assessed by the ICASSO software in FIT, and the 
most stable results were selected as final outputs to ensure reliability 
(Himberg et al., 2004). Finally, the mixing matrices Ak were obtained 
by the product of Dk and W, indicating the proportion of ICs in the 
reconstruction of the subject’s images. Therefore, the ICs that can 
reveal group differences can be identified by testing the differences in 
mixing coefficients between the HC and ESRD groups. Vectors within 
the same row across matrices Sk correspond to the same IC, each 
comprising spatial maps of GMV, FA, and ALFF. In ICs with group 
differences, significant brain regions identified in spatial maps may 
indicate potential structural or functional abnormalities in 
ESRD. Additionally, the three spatial maps within the same IC are 
associated through the correlation among their mixing coefficients 
(Sui et al., 2011), suggesting the potential covariant abnormalities of 
structure and function in ESRD.”

FIGURE 1

Workflow of data processing and analysis. A fusion analysis on GMV, FA, and ALFF data was performed to obtain joint group-discriminative independent 
components between the ESRD and HCs groups. The abnormal brain regions were identified accordingly, and averages of GMV, FA, and ALFF were 
calculated. The obtained imaging metrics were then fed into a series of statistical examinations, including correlation, stepwise regression, and 
mediation effect analysis.

https://doi.org/10.3389/fnins.2024.1374948
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://mialab.mrn.org/software/fit


Liu et al. 10.3389/fnins.2024.1374948

Frontiers in Neuroscience 05 frontiersin.org

2.3.3 Identification of significant ICs
Analysis of covariance (ANCOVA) was performed on the mixing 

coefficients with adjustment for age, gender, and education levels to 
identify the ICs that showed differences between HCs and ESRD, 
followed by multiple comparisons using false discovery rate (FDR) 
correction (Benjamini-Hochberg Method, q = 0.05, p < 0.0138). The 
ICs that can distinguish the two groups with statistical significance 
in two or more modalities simultaneously are referred to as joint 
group-discriminative ICs (Sui et al., 2013b). The significant joint ICs 
were transformed into maps of z-scores and a threshold at |Z| ≥ 2 was 
set to only show the brain regions with greater GMV/FA/ALFF values 
in ICs. The Automated Anatomical Labeling (AAL) brain atlas 
(Tzourio-Mazoyer et al., 2002) was used to report the significant 
brain regions in GMV and ALFF of ICs. Fiber tracking seeded from 
clusters of significant ICs on FA maps and terminated by the 
significant clusters of GMV and ALFF in the same IC was performed 
(see Supplementary material for the details of fiber tracking). This 
approach allows for the identification of abnormal fiber tracts with 
structural connections to brain regions exhibiting abnormal GMV or 
function. Not only does this method facilitate a more precise 
assessment of fiber tract information within clusters of FA_IC, but it 
also provides a potential explanation for covariation abnormalities 
between white matter structure and gray matter volume or function. 
The Johns Hopkins white matter (WM) tractography atlas (Hua et al., 
2008) in FSL was used to report the fiber tracking results.

2.3.4 Mediation effect analysis and its 
pre-analysis: imaging metrics, uremic toxins, and 
cognitive scores

Before investigating the mediating relationships among imaging 
metrics, uremic toxins, and cognitive scores, it is essential to identify 
potential nodes in the mediating pathways. These nodes refer to brain 
regions whose imaging metrics are significantly associated with cognitive 
function, as well as the types of toxins contributing to brain changes. This 
identification was accomplished through partial correlation analysis for 
brain regions and stepwise regression analysis for toxin types. All 
analyses were performed on data from the ESRD group.

First, the averages of GMV, FA, and ALFF in ESRD groups were 
calculated for brain regions identified from the maps of significant 
ICs, among which the averages, referred to as imaging metrics, were 
calculated from the complete brain regions in the atlases. Then, a 
partial correlation analysis was performed to examine the relationship 
between the imaging metrics and the MMSE scores with age, gender, 
and education levels as covariates. Furthermore, to reduce the 
influence of hypertension factors on the results, whether patients with 
ESRD had hypertension (hypertension status) was included as the 
fourth covariate in the partial correlation analysis. The correlation 
results were subjected to FDR correction using the Benjamini-
Hochberg method (q  = 0.05, p  < 0.020). Subsequently, a stepwise 
regression analysis was performed to investigate the relationship 
between uremic toxins and brain changes indicated by the imaging 
metrics of brain regions identified in FA, GMV, and ALFF. Some 
uremic toxins that are thought of as indicators of disease progression 
in clinical practice (Viggiano et al., 2020; Liabeuf et al., 2021; Rosner 
et al., 2021) were included in the analysis, such as urea, creatinine, uric 
acid, sodium, potassium, phosphate, alkaline phosphatase, parathyroid 
hormone, and β2-microglobulin.

Based on the results of partial correlation analysis and stepwise 
regression analysis, the mediation effect analysis was performed to 
investigate the relationship among the brain changes, uremic toxins, 
and CI using the PROCESS macro tool v3.5 in SPSS. Bias-corrected 
5,000 bootstrapping samples were performed to measure the 95% 
confidence interval to estimate direct, indirect, and total effects. Age, 
gender, education levels, and hypertension status were used as 
covariates regressed on the mediators and outcome simultaneously.

3 Results

3.1 Demographics and clinical information 
in ESRD and HCs

No significant differences in age, gender, or education levels 
between ESRD and HCs were found (all p > 0.05). The MMSE scores 

FIGURE 2

Flowchart of mCCA  +  jICA for fusion analysis of fMRI, sMRI, and dMRI images. First, preprocessing and feature extraction were conducted on fMRI, 
sMRI, and dMRI images to obtain ALFF, GMV, and FA feature images, which were then reshaped into feature matrices Xk (k  =  1,2,3). Following 
normalization and dimensionality reduction, mCCA decomposed the reduced Xk into canonical variant matrices Dk and their corresponding source 
matrices Ck. Subsequently, jICA was applied to the concatenated source matrix [C1, C2, C3] to decompose a shared mixing matrix W and joint-
independence component matrices Sk. The final mCCA+jICA results can be represented as Xk  =  Ak  ×  Sk, where the mixing matrices Ak were obtained by 
the product of Dk and W.
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between ESRD and HCs showed significant differences (p < 0.001) 
(Table 1).

3.2 Group-discriminative independent 
components

Five ICs with significant differences in brain imaging indicators 
between ESRD and HCs were found by the two-sample t-tests of the 
mixing coefficients. However, among these significant ICs, only two 
were joint group-discriminative ICs, while the remaining ICs 
exhibited group differences only in scattered single modalities, failing 
to provide cross-modal covariant abnormalities information. As a 
result, two representative joint group-discriminative ICs (i.e., IC3 and 
IC2) were chosen for further investigation. Specifically, IC2 was able 
to distinguish between HCs and ESRD in both GMV and FA 
(Figure 2), while IC3 was found to be group-discriminative in all three 
modalities (Figure 3). The remaining significant unimodal ICs were 

GMV_IC7, GMV_IC10 and ALFF_IC11 (see Supplementary material 
for details of other group-discriminative ICs).

In IC3, as shown in Figure 3, significant brain regions in ALFF 
involve the precuneus, superior parietal gyrus, cuneus, and superior 
occipital gyrus. Significant GMV regions were found in the precentral 
gyrus, superior occipital gyrus, middle occipital gyrus, superior 
temporal gyrus, middle temporal gyrus, inferior temporal gyrus, 
middle frontal gyrus, lingual gyrus, hippocampus, parahippocampal 
gyrus, and medial frontal gyrus. Pertinent fiber tracts as identified by 
associated significant FA ICs in the fiber tracking analysis included 
corticospinal tract (CST), inferior frontal occipital fasciculus (IFOF), 
and forceps major (Figure 4).

In IC2, significant GMV regions include the dorsolateral 
prefrontal cortex, caudate nucleus, medial superior frontal gyrus, 
orbitofrontal cortex, middle occipital gyrus, and thalamus (Figure 3). 
Associated fiber tracts may include the forceps minor, which showed 
structural connections with the medial superior frontal gyrus, bilateral 
dorsolateral prefrontal cortex and the orbitofrontal cortex (Figure 4).

FIGURE 3

Spatial distributions of the significant joint group-discriminative ICs and their corresponding mixing coefficients. IC3 exhibits covariant abnormalities 
across all three modalities of GMV (A), FA (B), and ALFF (C), while IC2 exhibits covariant abnormalities across only GMV (D) and FA (E). The IC maps 
were presented in Z scores, with a threshold of |z|  ≥  2, and all p-values were FDR-corrected.
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3.3 Correlations between imaging metrics 
and cognitive scores

We found significant positive correlations between the volumes of 
middle occipital gyrus, superior temporal gyrus, superior occipital 
gyrus, precentral gyrus in IC3 and MMSE scores and between the 
volumes of middle occipital gyrus in IC2 and MMSE scores (Figure 5).

We also found significant positive correlations between FA values 
of IFOF and forceps major in IC3 and MMSE scores (Figure 5).

3.4 Uremic toxins associated with brain 
changes in ESRD

In IC3, phosphate and β2-microglobulin were the independent 
contributing factors to the FA value of forceps major 
(βPhosphate = −0.264, p = 0.013; ββ2-microglobulin = −0.334; 
p = 0.002). β2-microglobulin was the independent contributing factor 
to the FA value of CST (ββ2-microglobulin = −0.304; p = 0.007). 
β2-microglobulin and urea were the contributing factors to the FA 
value of IFOF (ββ2-microglobulin = −0.271, p = 0.014; βurea = −0.234, 
p = 0.033). Sodium was the contributing factor to the ALFF value of 
precuneus (βsodium = 0.244; p = 0.031), cuneus (βsodium = 0.226; 
p = 0.047), superior occipital gyrus (βsodium = 0.226; p = 0.047) 
(Table 2).

In IC2, no predictive factors were found for FA or GMV in any 
abnormal brain regions.

3.5 Mediation analysis among uremic 
toxins, imaging metrics, and cognitive 
scores

In IC3, the FA value of forceps major and GMV of the precentral 
gyrus, FA value of IFOF and GMV of superior temporal gyrus 
mediated the relationship between serum phosphate and MMSE 
scores (Figure 6).

In IC2, no significant mediation analysis results were found 
among the uremic toxins, brain changes, and CI.

4 Discussion

This study aimed to explore brain covariant abnormalities 
associated with ESRD through the fusion analysis of multimodal MRI 
and investigate the relationship between neuroimaging findings and 
cognitive impairments and uremic toxins. Two joint group-
discriminative ICs that can reflect cross-modality covariant 
abnormalities were found, i.e., IC3 and IC2, where IC3 exhibited 
significant group differences among three modalities (ALFF, GMV, 
and FA), and IC2 showed group-discriminative patterns in GMV and 
FA. Our study revealed a serial mediation runs from “phosphate → 
FA changes → GMV changes → cognitive impairment,” indicating 
that the covariant abnormalities played a mediating role in the 
pathways of serum phosphate correlated to the severity of CI in 
ESRD patients.

FIGURE 4

White matter tracts connected with the significant brain regions. The white matter that may be connected with the regions identified as abnormal in 
the mCCA+jICA method was shown, as indicated by diffusion tractography. The first row displayed the fiber tracking results of the abnormal white 
matter areas in the IC3, while the second row showed the fiber tracking results in the IC2.
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FIGURE 5

Correlations between imaging metrics and MMSE scores. Significant positive correlations between MMSE scores and FA and GMV values were found in 
some abnormal brain regions of the IC3 and IC2 findings (A–G), with age and gender controlled as covariates. All p-values were FDR-corrected for 
multiple comparisons.
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4.1 Covariation of brain structure and 
function

In IC3, three modalities showed significant changes in ESRD 
compared to HCs. Among them, the joint alterations of the 
temporal lobe, parahippocampal gyrus, and hippocampus in GMV 
and precuneus in ALFF indicated the abnormalities of DMN in 
ESRD (Raichle and Snyder, 2007; Esposito et al., 2009; Whitfield-
Gabrieli and Ford, 2012; Raichle, 2015). The medial temporal lobe 
is involved in both emotion and memory processes (Gluth et al., 
2015), and the memory network formed by the medial temporal 
lobe, hippocampus, and parahippocampal gyrus in DMN plays a 
vital role in the coordination of episodic memory and scene-related 
cognitive functions (Valenstein et  al., 1987; Song et  al., 2011). 
Several studies have shown atrophy in these brain regions in ESRD, 
leading to alterations in both the structure and function of the 
DMN (Qiu et al., 2014; Zheng et al., 2022; Jiang et al., 2023). The 
parahippocampal gyrus is considered to establish the connection 
between the medial temporal lobe memory system and the DMN 
(Ward et al., 2014), involved in transmitting information such as 
spatial details and memory encoding to the hippocampus. The 
hippocampus is responsible for integrating information and the 
formation and storage of memories. Studies have shown that renal 
disease can induce neuronal death in the hippocampus (Kim et al., 
2014), resulting in the loss of memory that was originally stored in 
the organized synaptic connections between neurons (Viggiano 
et al., 2020). Therefore, the observed covariant abnormalities in 
these brain regions may be associated with the decline in memory 
abilities in ESRD. Furthermore, as the core node of the DMN, the 
precuneus is involved in self-referential processing, episodic 
memory, and executive functions (Fletcher et al., 1995). The long-
term accumulation of neurotoxins significantly impacts the 
structure and spontaneous brain activity of the precuneus in ESRD 
patients, leading to a decline in psychomotor speed and 
memory abilities.

The superior parietal gyrus and superior occipital gyrus in ALFF, 
temporal lobe in GMV, and IFOF in FA are a group of joint brain 
regions associated with visual processing. ESRD patients have been 
reported to exhibit impairments in object recognition and 
localization (Viggiano et  al., 2020) and visual–spatial working 
memory (Elias et al., 2013; Huang et al., 2021). The superior parietal 

gyrus and superior occipital gyrus are crucial nodes in the dorsal 
visual stream (Migliaccio et  al., 2016), which is responsible for 
perceiving object location and spatial motion. Disruptions in this 
pathway are associated with visuospatial performance impairments 
observed in ESRD (Bugnicourt et al., 2013). The IFOF connects 
posterior occipitotemporal regions to frontal lobe regions (Thomas 
et  al., 2008), and its reduced WM integrity is implicated in the 
disruption of the structural network associated with object 
recognition between the occipital and temporal lobes (Song et al., 
2015). Moreover, visual–spatial working memory has been shown to 
rely on the collaborative interaction between parietal and 
occipitotemporal brain regions, particularly with the parietal cortex 
exhibiting sensitivity to task load and featural complexity (Song 
et al., 2015). In patients with ESRD, the lower activation levels in the 
parietal cortex during visual–spatial working memory tasks are 
associated with CIs (Huang et al., 2021). Therefore, based on the 
above discussion, our fusion analysis results have revealed the 
covariant abnormalities related to visuospatial performance 
impairments in ESRD.

The precentral gyrus in GMV is structurally connected to the CST 
in FA, where the precentral gyrus is located in the primary motor 
cortex and is recognized as the essential structure for the execution of 
voluntary movements (Goodman et al., 2022). However, the precentral 
gyrus is found to show atrophy or weakened functional connections 
in patients with MCI in ESRD (Zhang et al., 2013; Mu et al., 2020; 
Chen et al., 2021). A functional MRI study has also identified the 
activation of the precentral gyrus in false retrieval of memory and 
topographic memory (Kurkela and Dennis, 2016). It remains unclear 
why cognitive performance requires the involvement of the motor 
cortex (Chen et al., 2020). The CST is a primary WM tract involved in 
sensory-motor functions (Seo and Jang, 2013) and has been observed 
to exhibit decreased FA values in ESRD (Hsieh et  al., 2009). The 
covariation of the CST and the precentral gyrus is consistent with the 
finding of an animal model study that damage to the CST could 
induce notable alterations in the excitability of the connected motor 
cortex (Zaaimi et al., 2012). Although the mechanisms linking motor-
related brain structures to cognition remain unclear, studies have 
demonstrated that low motor function is associated with an 
accelerated decline in cognitive function (Wang et al., 2023b). For 
example, there is a significant correlation between motor performance 
in ESRD patients and CIs (Otobe et al., 2019). Therefore, our results 

TABLE 2 Factors contributing to brain changes (i.e., FA, GMV, and ALFF) revealed by the stepwise regression analysis.

Imaging 
metrics

Clinical risk 
factors

Standardized 
coefficients

95% confidence 
interval

Partial 
correlation

VIF p-value

FA of forceps major in 

IC3

Serum phosphate −0.264 (−0.026, −0.003) −0.282 1.029 0.013

β2-microglobulin −0.334 (−0.003, −0.001) −0.348 1.029 0.002

FA of CST in IC3 β2-microglobulin −0.304 (−0.002, −0.000) −0.304 1.000 0.007

FA of IFOF in IC3 β2-microglobulin −0.271 (−0.002, −0.000) −0.279 1.002 0.014

Urea −0.234 (−0.001, −0.000) −0.244 1.002 0.033

ALFF of precuneus Sodium 0.244 (0.621, 12.777) 0.244 1.000 0.031

ALFF of cuneus Sodium 0.226 (0.122, 17.319) 0.226 1.000 0.047

ALFF of superior 

occipital gyrus

Sodium 0.226 (0.122, 17.319) 0.226 1.000 0.047

VIF, variance inflation factor; FA, fractional anisotropy; GMV, gray matter volume; ALFF, amplitude of low-frequency fluctuation; CST, corticospinal tract; IFOF, inferior frontal occipital 
fasciculus.
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may provide potential neuroimaging biomarkers for investigating the 
relationship between abnormal motor-related brain structures and 
cognition in ESRD.

In IC2, abnormal white matter integrity was found in the forceps 
minor, which connects the bilateral medial superior frontal gyrus and 
is part of the structurally connected network associated with the 
functional DMN (Luo et al., 2012). Franco et al. considered that the 
functional connectivity within the DMN highly depends on the 
integrity of the WM connecting the two hemispheres, particularly the 
forceps minor (Franco et al., 2008). Impairment of the structurally 
connected network in the DMN due to abnormalities in the forceps 

minor may be implicated in cognitive dysfunction (Mamiya et al., 
2018). The dorsolateral prefrontal cortex is the highest cortical area 
responsible for executive functions (Greene et al., 2001), and the 
orbitofrontal cortex is the primary neural mechanism for human 
emotional generation (Kringelbach, 2005). Abnormalities in these 
two brain regions are consistent with Qiu et al.’s VBM results (Qiu 
et  al., 2014). Damage to these regions may lead to dysexecutive 
syndrome (John, 2009), which is one of the symptoms of MCI in 
ESRD patients, resulting in reduced function in aspects such as 
effective control of thinking and behavior, task planning, problem-
solving, and strategy selection.

FIGURE 6

Mediation effect analysis among imaging metrics, uremic toxins, and cognitive scores. The FA and GMV values of selected brain regions were found to 
play a role in mediating the relationship between serum phosphate and MMSE scores. The red solid line showed the mediation effect direction: “serum 
phosphate → FA value → GMV value → MMSE scores,” indicating that the increased level of serum phosphate induced the decreased FA values, which 
further induced the decreased GMV values, yielding the ultimate results of low MMSE scores. The green and blue dot lines represent trends of 
mediation effects that are not statistically significant.
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4.2 The role of joint neuronal changes in 
mediating the relationship between CIs 
and uremic toxins

Results of the mediating effect analysis revealed that the serum 
phosphate caused the deceased FA value of WM, then the decreased 
FA value further caused the decreased GMV and finally forced the CI 
in ESRD. High phosphate levels have been reported to correlate with 
Alzheimer’s disease (Li et al., 2017). However, the relationship of CI 
with serum phosphate has not been reported in chronic kidney 
disease. Our study addresses the possible mechanism (Etgen, 2015). 
High serum phosphate levels can produce phosphate toxicity, causing 
increased neuroinflammation, brain cell shrinkage, and apoptosis 
(Brown, 2020). Increased neuroinflammation can reduce myelin 
essential protein, change neurofilament expression, reduce structural 
coherence, and significantly decrease fractional anisotropy on DTI 
(Jantzie et al., 2020). In addition, high phosphate levels can cause 
endothelial dysfunction, atherosclerosis, cerebral small vessel disease, 
etc. (Rroji et al., 2022). The cerebral microvascular dysfunction further 
causes the decreased FA values of WM (Bagi et al., 2022). WM and 
GM are two major complementary functional compartments of the 
brain tissue, where GM is for neuronal cell bodies, and WM belongs 
to myelinated axonal tracts (Pareek et  al., 2018). WM axonal 
connection and afference are highly correlated with GMV, implying 
the constructive interrelationship between the WM and GM 
compartments. Furthermore, the interrelationship was causational 
and generative, WM augmented axonal afferent functioning enhances 
the GMV. Therefore, the decreased FA showed a significant positive 
correlation with decreased GMV, supporting our mediation analysis 
findings. Finally, the decreased GMV caused the CI in the ESRD (Chai 
et al., 2015; Wang et al., 2022). This discovery provided new insights 
into how joint brain changes contribute to cognitive impairment in 
ESRD, aiding our further understanding of the pathological 
mechanisms underlying cognitive impairment in ESRD.

5 Limitations

The current study has several limitations. First, the multimodal 
information in our study was limited to local quantitative measures of 
GMV, FA, and ALFF, the most classic voxel-based mapping of brain 
structure and function. Additional dimensions such as microstructural 
quantifications that can specifically characterize neurodegeneration 
such as fiber demyelination and fiber density mapping, may add extra 
knowledge to the current study. The fused analysis algorithm could also 
be further extended to be able to incorporate more abstract types of 
quantitative measures, such as structural and functional connectivity, 
graph-based information, etc. Second, the current study design did not 
include protein-bound uremic toxins such as indoxyl sulfate, p-cresyl 
sulfate, indole acetic acid, hippuric acid, and kynurenine, among 
others, which cannot be obtained from conventional clinical blood 
biochemical tests. Future investigation may benefit from a more 
comprehensive analysis with a more complicated study design. Third, 
due to time constraints and the physical condition of patients, this 
study only collected complete and usable MMSE scores. In subsequent 
data collection, we aim to use multiple cognitive assessment tools, such 
as the Montreal Cognitive Assessment (MoCA) and the Clinical 
Dementia Rating (CDR), to improve the reliability of the study results. 
Last but not least, the statistical power of both fusion analysis and 

mediation analysis critically relies upon the sample size. As the project 
is still ongoing, a larger sample size would greatly strengthen the 
statistical analyses and conclusions drawn.

6 Conclusion

In this study, we used the fusion algorithm mCCA+jICA to reveal 
the associative altered patterns of GMV, FA, and ALFF of CI in ESRD, 
providing new insights into the covariant abnormalities in brain 
structure and function associated with CI. Brain white and gray matter 
changes mediate the relationship between serum phosphate and CI in 
ESRD, which provides the possible role of joint brain changes in the 
relationship between toxins and cognitive impairments.
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