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The locus coeruleus (LC) is a key brain structure implicated in cognitive function 
and neurodegenerative disease. Automatic segmentation of the LC is a crucial 
step in quantitative non-invasive analysis of the LC in large MRI cohorts. Most 
publicly available imaging databases for training automatic LC segmentation 
models take advantage of specialized contrast-enhancing (e.g., neuromelanin-
sensitive) MRI. Segmentation models developed with such image contrasts, 
however, are not readily applicable to existing datasets with conventional 
MRI sequences. In this work, we evaluate the feasibility of using non-contrast 
neuroanatomical information to geometrically approximate the LC region 
from standard 3-Tesla T1-weighted images of 20 subjects from the Human 
Connectome Project (HCP). We  employ this dataset to train and internally/
externally evaluate two automatic localization methods, the Expected Label 
Value and the U-Net. For out-of-sample segmentation, we compare the results 
with atlas-based segmentation, as well as test the hypothesis that using the 
phase image as input can improve the robustness. We then apply our trained 
models to a larger subset of HCP, while exploratorily correlating LC imaging 
variables and structural connectivity with demographic and clinical data. This 
report provides an evaluation of computational methods estimating neural 
structure.
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1 Introduction

The locus coeruleus (LC) is a small elongated hyperpigmented nucleus in the rostral 
pontine brainstem (Fernandes et al., 2012). It synthesizes most of the brain’s norepinephrine 
(Aston-Jones and Cohen, 2005) and is involved in various cognitive functions (Sara, 2009). 
The LC undergoes neuron loss in the early stages of many neurodegenerative diseases (Liu 
et al., 2017; Betts et al., 2019; Galgani et al., 2020), such as Alzheimer’s disease (Grudzien et al., 
2007; Giorgi et al., 2017; Kelly et al., 2017) and Parkinson’s disease (Gesi et al., 2000; Vermeiren 
and De Deyn, 2017) through the accumulation of tau pathology (Braak et al., 2011; Jacobs 
et al., 2023) and α-synuclein (Braak et al., 2003), respectively. Non-invasive assessment of the 
LC integrity in vivo, namely via magnetic resonance imaging (MRI), helps to elucidate how 
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LC degeneration relates to the progression and symptoms of 
neurodegenerative diseases (Liu et al., 2017; Betts et al., 2019; Galgani 
et al., 2020). Patterns of structural connectivity of the LC to other 
brain regions—quantified via diffusion MRI (dMRI) (Sun et al., 2020; 
Levinson et al., 2023)—may further inform us about the pathology 
distribution in the brain, particularly in the context of Alzheimer’s 
disease, where some hypothesize that tau protein may transmit neuron 
to neuron from the LC to other areas (Braak and Del Tredici, 2011).

Quantitative analysis of the LC from MRI requires knowledge of 
the LC location. Manual annotation of the LC in a large dataset not 
only necessitates significant expert effort, but also yields a precision 
limited by moderate inter- and intra-rater variability (Tona et  al., 
2017). Automatic LC localization (Ariz et al., 2019; Morris et al., 2020; 
Dünnwald et al., 2021; Sibahi et al., 2023), which is not yet widely 
available in conventional neuroimaging toolboxes, is therefore highly 
desirable, as it can facilitate large-scale imaging studies that would 
have the power to detect subtle changes in the LC in health and disease.

To enhance the contrast of the LC in the MR image, the high 
concentration of neuromelanin in the LC (Zucca et al., 2006) has been 
exploited. To that end, several neuromelanin-sensitive MRI sequences 
(Sasaki et al., 2008) have been successfully employed, including the 
T₁-weighted (T₁W) Turbo Spin Echo (TSE) (Sasaki et al., 2006; Keren 
et al., 2009; Tona et al., 2017; Ariz et al., 2019; Dahl et al., 2019) and 
the magnetization transfer (Nakane et al., 2008; Priovoulos et al., 2018; 
Liu et al., 2019; Morris et al., 2020; Ye et al., 2021; Jacobs et al., 2023) 
sequences. The enhanced LC contrast on images acquired with such 
sequences allows for manual delineation of the LC and the creation of 
datasets that include gold-standard LC labels. Using a dataset like this 
for training, a supervised automatic segmentation algorithm can 
segment the LC on a new similar-contrast image.

Neuromelanin-sensitive MRI, however, typically has a high 
specific absorption rate (Chen et al., 2014; Liu et al., 2017; Tona et al., 
2019), and may also be suboptimal for younger adults due to their 
lower neuromelanin levels (Zecca et al., 2004; Betts et al., 2019; Liu 
et al., 2019). Consequently, such a sequence is often not included in 
large open-access MRI databases of healthy or diseased populations. 
As for standard MR images (e.g., T₁W images included in almost all 
MRI databases), the boundaries of the LC cannot be delineated on 
these images due to the lack of contrast; therefore, the location of the 
LC can only be  approximated at best relative to its surrounding 
structures using prior neuroanatomical information. Such geometrical 
localization of the LC might still be  useful for some subsequent 
analyses. For instance, deep neural networks trained on silver-
standard labels have shown to be capable of producing more reliable 
segmentation results than the labels they were trained on (Henschel 
et al., 2020). Estimating a region that contains the LC may also benefit 
downstream manual and automatic LC segmentation by providing a 
region to focus on (the attention mechanism; Xie et al., 2023) and an 
initial label to refine.

Several LC atlases are publicly available (Keren et al., 2009; Betts 
et al., 2017; Brooks et al., 2017; Tona et al., 2017; Dahl et al., 2019; Liu 
et  al., 2019; Ye et  al., 2021; Levinson et  al., 2023), which can 
be  employed to automatize the localization of the LC via atlas 
alignment and label propagation. The original datasets used to create 
these public atlases, however, are not generally available. As a result, 
users cannot apply other supervised segmentation methods to localize 
the LC, such as those based on modern deep neural networks 
(Ronneberger et  al., 2015). A public database of approximate LC 

region masks accompanied with corresponding MR images with 
standard (e.g., T₁W, rather than neuromelanin-sensitive) contrasts is 
thus desirable. Such a database could help the research community to 
use existing or new methods to develop automatic LC localization 
tools that are applicable to many available databases, thereby 
facilitating large-scale retrospective and prospective analyses 
involving the LC.

Our contributions in this work are as follows:

 • We first manually approximate the LC region on the 3 T T₁W 
images of 20 subjects of the open-access Human Connectome 
Project (HCP) (Van Essen et al., 2013), sharing the geometrically 
annotated masks with the research community (see Section 2.4). 
To our knowledge, other publicly available datasets with manual 
LC labels instead contain 3T-TSE/7T T₁W images (Tona et al., 
2019) or functional MR images (Krebs et  al., 2018). Our 
geometrical estimation is based on dimensional (instead of 
contrast) information and emphasizes the sensitivity of the 
detection, thereby resulting in LC masks slightly larger than the 
LC (i.e., encompassing the LC and some surrounding area).

 • We then train two automatic segmentation methods of Expected 
Label Value (ELV) (Aganj and Fischl, 2021) and U-Net 
(Ronneberger et  al., 2015) on the abovementioned dataset, 
evaluating the LC localization ability internally as well as on an 
external dataset (Tona et al., 2019), while also comparing with 
atlas-based segmentation on the external dataset.

 • Inspired by a previous observation (Aganj and Fischl, 2021), 
we test the hypothesis that using the phase image (i.e., discarding 
the magnitude Fourier data) would improve the segmentation 
performance on external datasets (data from different sources).

 • We finally apply a trained model to 100 HCP subjects and analyze 
the volume, image intensity, dMRI measures, and dMRI 
structural connectivity of the LC masks, correlating them with 
non-MRI variables.

In the following, we  will describe our methods (Section 2), 
provide our results (Section 3), and discuss them (Section 4).

2 Methods

2.1 Manual LC region estimation

The human LC is a thin and long column of neurons that extends 
through multiple levels of the brainstem (Fernandes et al., 2012; Liu 
et al., 2017). Located in the rostral pons, the LC is on average 14.5 mm 
long and 2–2.5 mm wide (Fernandes et al., 2012). Due to the lack of 
LC contrast on T₁W images, we  instead used these dimensional 
landmarks collectively to approximate the LC location: 3 mm lateral 
from the midline, 1 mm rostral to the fourth ventricle, and 16–20 mm 
above the pontomedullary junction.

We used Freeview of FreeSurfer (Fischl, 2012) to manually create 
masks of the areas containing each of the left and right LCs on 
minimally preprocessed 3T T₁W MPRAGE images (T1w_acpc_dc_
restore_brain.nii.gz) of the first 20 subjects of the “100 Unrelated 
Subjects” group of the HCP (Van Essen et al., 2013) without spatial 
normalization, which had the volume size of 260 × 311 × 260 with the 
isotropic voxel size of (0.7 mm)3. Our localization approach prioritizes 
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sensitivity to specificity (i.e., includes more voxels than the LC alone), 
producing masks that are somewhat inflated compared to the actual 
LC boundaries.

2.2 Automatic LC region estimation

2.2.1 Approaches
We trained two supervised image segmentation methods, both 

implemented in MATLAB, on our 20-subject dataset to automatically 
approximate the presumptive left or right LC areas (separately), as 
described below. We binarized the output soft mask and retained the 
largest connected component.

We used the ELV supervised segmentation (Aganj and Fischl, 
2021) (see Section 2.4 for the toolbox) as our first method, which 
creates a fuzzy map from a combination of labels suggested by all atlas-
to-image transformations, weighted by a measure of transformation 
validity (without explicit deformable registration). The ELV method 
inherently uses phase images as input (obtained by computing the 
Fourier transform of the image, discarding the magnitude data, and 
computing the inverse Fourier transform), which we call “ELV (phase).” 
The map can also be modulated by an image intensity prior (Aganj and 
Fischl, 2021), i.e., “ELV (phase + image),” to benefit from the image 
intensity information initially excluded from the phase data.

The second method we  used was the U-Net architecture 
(Ronneberger et al., 2015), which is a convolutional neural network 
consisting of a contracting path to capture context, a symmetric 
expanding path for precise localization, and cross connections. 
We employed a U-Net with two down-sampling layers and 16 initial 
filters (at the first convolutional layer), with the Dice coefficient as the 
objective function. We used the Adam optimizer to train the network 
for 20 epochs on 3D sample patches of size 132 × 132 × 132 with a 
mini-batch size of 8. We initialized the learning rate as 0.002 and 
dropped it by 95% every five epochs. The test subject’s LC region was 
then predicted by averaging the label scores of overlapping patches 
(stride 10).

2.2.2 Validation
For performance evaluation, we  first internally assessed the 

automatic localization via leave-one-out cross-validation (i.e., trained 
on 19 images and tested on the remaining image, repeating it for 20 
test images). We compared the automatically generated mask with the 
manual one using the Dice similarity coefficient as the 
evaluation metric.

For external (out-of-sample) validation, we  then applied our 
models (that had been pretrained on the 20 HCP subjects) to 12 7T 
T₁W images from the previously unseen dataset by Tona et al. (2019), 
which had LC labels manually delineated from 3T T₁W TSE images. 
The images from the latter dataset had the voxel size of 
0.70 × 0.64 × 0.64 mm3, thereby requiring resampling to match the 
HCP resolution of (0.7 mm)3. Since we trained our models on brain-
masked HCP data, we extracted the brain in the new dataset using the 
SPM12 software package (Ashburner et al., 2014) (it failed for one 
subject, which we excluded).

Next, we used our external validation setup to test the performance 
of the commonly used atlas-based segmentation approach. We used 
the image-to-MNI deformation fields provided in the HCP dataset to 
propagate the images and our LC masks of the 20 HCP subjects to the 

MNI space, which we then averaged to create an MNI atlas with fuzzy 
masks. We  then ran our implementation (Aganj et  al., 2017) of 
diffeomorphic-demons atlas-to-image (asymmetric) deformable 
registration (Vercauteren et al., 2009) to align the intensity-normalized 
MNI atlas to each of the external-validation (Tona et  al., 2019) 
intensity-normalized images and transformed the LC masks from the 
atlas to the test image space and binarized them (see Section 2.4 for the 
toolbox). We did so after heuristically fine-tuning the regularization 
and step-size parameters of registration on a few subjects.

Note that our geometrical LC approximation produces a generous 
area containing the LC, and, as such, comparing it to the specific label 
of the actual LC in external validation results in a suboptimal Dice 
score. For instance, if our localized area has a volume α  times larger 
than that of the LC label, then the Dice will be  no higher than 
2 1/ +( )α . Nonetheless, this comparison can still help to assess how 
much our automatic inflated LC neighborhood overlaps with the LC.

2.2.3 Phase image as input
We have previously observed that ELV (phase + image) 

outperformed ELV (phase) in internal cross-validation, but not in 
external out-of-sample validation (Aganj and Fischl, 2021). The phase 
image—constructed by taking the Fourier transform, dividing by the 
magnitude Fourier, and taking the inverse Fourier transform—
remains real-valued with voxels that are to some extent still spatially 
correlated. Instead of the original image intensity values, however, the 
phase image contains enhanced edges and region borders. 
We hypothesized that, being less sensitive to inter-dataset variation in 
image intensity, the phase image might be more robust to domain 
shift, resulting in better model performance than the image itself 
would in external validation. We tested this by comparing the two 
abovementioned ELV variations, as well as comparing the original 
U-Net [“U-Net (image)”] to a variation of it that received the phase 
image as input [“U-Net (phase)”] and a two-channel-input variation 
that received both the image and the phase as input [“U-Net (image + 
phase)”]. For robustness of the phase image, we divided the Fourier 
transform by its magnitude plus a constant (0.001 times the norm of 
the Fourier transform).

Prompted by the different image intensity distributions of our two 
datasets, we also experimented with normalizing the input image by 
its intensity standard deviation during both training and testing 
(denoting the normalized image with “nmz”), which led to additional 
model variations such as “ELV (phase + nmz),” “U-Net (nmz),” and 
“U-Net (nmz + phase).” For the latter two U-Net variations, the input 
layer also performs patch-wise zero-meaning and normalization.

2.3 Analysis of HCP data

We trained the default implementation of the U-Net on our 20 
HCP subjects and then applied it to the “100 Unrelated Subjects” 
group of the HCP. We used the resulting left and right LC masks to 
compute their volumes as well as the mean T₁W and T₂W image 
intensities inside them. We also propagated the soft masks to the 
(1.25 mm)3 isotropic-voxel dMRI space (using HCP’s T1w_acpc_dc_
restore_1.25.nii.gz image as target), before binarizing them in the 
dMRI space. We  then similarly computed the mean fractional 
anisotropy (FA) and the mean apparent diffusion coefficient (ADC), 
resulting in a total of 10 LC (regional) imaging variables per subject.
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Next, we  performed an exploratory analysis to correlate the 
imaging variables with 504 non-MRI variables (demographics, 
medical history, family history, dementia/cognitive exam scores, 
personality/emotion tests, motor/sensory tests, task performance, 
etc.). We Bonferroni-corrected the Pearson’s correlation p-values for 
multiple comparisons through multiplication by the numbers of 
imaging and non-MRI variables, i.e., pB = p × 10 × 504. We visually 
inspected relationships with pB < 0.05 to exclude any spurious 
correlations due to outliers (e.g., avoiding situations with most data 
points clustered together with no obvious relationship), reporting the 
surviving significant correlations.

Finally, we quantified dMRI-derived structural connectivity of 
the LC area to the rest of the brain, and examined the associations 
between the connectivity pattern of LC and non-MRI variables. 
We used our open-source toolbox (see Section 2.4) to reconstruct 
the diffusion orientation distribution function in constant solid 
angle (Aganj et  al., 2010), perform Hough-transform global 
probabilistic tractography (Aganj et  al., 2011), compute a 
symmetric structural connectivity matrix between a set of brain 
regions including the two computed LC areas and other regions 
segmented by FreeSurfer (Fischl, 2012), and augment the raw 
matrices with indirect connections (Aganj et al., 2014). For each 
subject, we generated a 2 × 86 matrix representing the connectivity 
strength between each LC area and 86 other brain regions 
(contralateral LC + 85 FreeSurfer-generated regions). We  then 
correlated each element of this matrix with non-MRI variables 
across the population, while Bonferroni-correcting the p-values for 
both the number of connections and the number of variables. 
We  have previously described this pipeline in detail (Aganj 
et al., 2023).

2.4 Data and toolboxes

Our manually annotated (enlarged) LC masks are publicly 
available at: https://www.nitrc.org/projects/lc20.

Magnetic resonance images were provided by:

 • The Human Connectome Project (HCP, RRID:SCR_006942) 
(Van Essen et  al., 2013), WU-Minn Consortium (Principal 
Investigators: David Van Essen and Kamil Ugurbil): https://
www.humanconnectome.org/study/hcp-young-adult.

 • Klodiana-Daphne Tona et  al. (2019): https://doi.
org/10.34894/PMQHZD.

The following toolboxes were used for data processing 
and analysis:

 • Our MATLAB (RRID:SCR_001622) toolboxes for:
  The expected label value (ELV) supervised image segmentation 

(Aganj and Fischl, 2021): https://www.nitrc.org/projects/elv.
  The reconstruction of the orientation distribution function in 

constant solid angle (Aganj et al., 2010), Hough-transform 
tractography (Aganj et  al., 2011), and connectivity matrix 
computation and augmentation (Aganj et al., 2014): http://
www.nitrc.org/projects/csaodf-hough.

  Mid-space-independent deformable image registration (Aganj 
et al., 2017): https://www.nitrc.org/projects/msi-register.

 • FreeSurfer (RRID:SCR_001847) (Fischl, 2012): https://
freesurfer.net.

 • SPM12 (RRID:SCR_007037) (Ashburner et al., 2014): https://
www.fil.ion.ucl.ac.uk/spm/software/spm12.

3 Results

3.1 Manual LC region estimation

We have provided our geometrically annotated (enlarged) LC 
masks for the 20 HCP subjects to the public (Section 2.4). As expected, 
we did not observe any LC contrast on T₁W images to guide the 
manual delineation of the LC region. Figure 1 shows the approximated 
LC masks (in green + yellow) for a representative subject.

The volume of the left and right LC regions had a cross-subject 
mean ± standard error of the mean (SEM) of 19.5 ± 0.8 and 
19.8 ± 0.8 mm3, respectively. We also measured this for the manual 

FIGURE 1

Manually annotated presumptive LC areas (green), automatic 
localization of LC using the ELV (top) and U-Net (bottom) methods 
(red), and their overlap (yellow), are shown on the coronal slice with 
the largest intersection with the manual LC areas for the 
representative HCP subject (with the median ELV Dice score).
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labels in the external (Tona et al., 2019) dataset; the cross-subject 
average volumes of the left and right LC labels were 6.9 ± 0.7 and 
7.4 ± 0.8 mm3, respectively. Two-sided paired t-tests between the left 
and right volumes did not reveal a statistically significant difference 
between them in either dataset.

3.2 Automatic LC region estimation

We assessed our variations of the ELV and the U-Net methods 
(Section 2.2) via leave-one-out cross-validation on the 20-subject 
subset of the HCP as well as on the external dataset by Tona et al. 
(2019). Table  1 summarizes the median, mean, and SEM of the 
Dice scores.

By combining the left and right LC results together, the highest 
cross-validation Dice scores were achieved by ELV (phase) in terms of 
the mean (0.62 ± 0.01) and by U-Net (nmz) in terms of the median 
(0.65). Figure 1 shows the labels generated by both methods for the 
representative subject with median ELV Dice score. We then combined 
the best performing ELV (phase) and U-Net (nmz) results by 
multiplying their soft masks and binarizing them, leading to median 
(mean) Dice scores of 0.667 (0.66 ± 0.02) and 0.66 (0.64 ± 0.02) for the 
left and right LC, respectively, showing a slight improvement 
compared to individual ELV and U-Net results.

The external validation Dice scores were considerably lower, with 
the best left + right mean (0.22 ± 0.02) and median (0.22) scores 
obtained by U-Net (nmz + phase). The median and mean sensitivity 

for this method were 0.63 and 0.63 ± 0.03, respectively. Image 
normalization (nmz) improved the external validation Dice in 
all cases.

The results of the atlas-based approach, compared to the U-Net, 
showed overall improvement for the left LC, and increased median but 
decreased mean Dice score for the right LC (Table 1). The latter was 
mainly due to the subpar performance of deformable registration for 
4 out of 11 subjects (whereas such registration was not required for 
the U-Net and ELV methods). The median and mean sensitivity of the 
atlas-based approach, 0.43 and 0.36 ± 0.06, were, however, lower than 
those of the U-Net.

Left and right LC Dice scores were significantly correlated with 
each other in most cross-validation results by both methods [ELV 
(phase): r = 0.58, p = 0.007; U-Net (image): r = 0.61, p = 0.004] and in 
the external validation results by the ELV [(phase + nmz): r = 0.89, 
p = 0.0003] and the atlas-based (r = 0.85, p = 0.001) approaches.

3.3 Findings from HCP

Next, we trained a U-Net (with the default implementation, 
which receives the image and normalizes the patches at its first 
layer) on the 20 subjects and applied it to 100 HCP subjects. After 
correlating non-MRI variables with imaging variables (Section 2.3), 
the only correlations surviving the Bonferroni correction were 
some with the mean FA, all of which passed the visual inspection. 
Table 2 lists these significant relationships, mainly with the body 

TABLE 1 Median, mean, and standard error of the mean (SEM) of the Dice score, measuring the overlap of the automatic and manual LC regions.

Method Input Cross-validation Dice score External validation Dice score

(median) (median)

(mean  ±  SEM) (mean  ±  SEM)

Left LC Right LC Left LC Right LC

ELV

Phase
0.62 0.644 0.04 0.11

0.61 ± 0.01 0.64 ± 0.02 0.09 ± 0.04 0.11 ± 0.03

Phase + image
0.63 0.643 0.04 0.11

0.62 ± 0.02 0.63 ± 0.02 0.09 ± 0.04 0.11 ± 0.03

Phase + nmz
0.61 0.636 0.04 0.11

0.61 ± 0.02 0.63 ± 0.02 0.10 ± 0.04 0.12 ± 0.03

U-Net

Image
0.65 0.61 0.00 0.00

0.61 ± 0.03 0.60 ± 0.02 0.00 ± 0.00 0.02 ± 0.02

nmz
0.670 0.63 0.22 0.20

0.63 ± 0.02 0.60 ± 0.02 0.20 ± 0.02 0.20 ± 0.02

Phase
0.64 0.636 0.00 0.22

0.62 ± 0.03 0.61 ± 0.02 0.07 ± 0.05 0.26 ± 0.03

Image + phase
0.63 0.60 0.00 0.00

0.64 ± 0.02 0.58 ± 0.03 0.00 ± 0.00 0.00 ± 0.00

nmz + phase
0.62 0.63 0.13 0.29

0.59 ± 0.03 0.62 ± 0.02 0.16 ± 0.02 0.29 ± 0.02

Atlas-based nmz -
0.27 0.35

0.21 ± 0.06 0.25 ± 0.06

The highest value in each column is shown in bold.
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weight and memory, and Figure 2 shows two examples. Adjusting 
for the intracranial volume (ICV) improved the correlation 
significance with the memory task accuracy, but reduced that with 
the body weight.

We lastly computed the strength of connectivity between each LC 
area and 86 other brain regions (85 + contralateral LC). After 
Bonferroni correction for all possible structural connections to the LC 
and for all non-MRI variables, none of the few significant correlations 
between the two passed the visual inspection (see Section 2.3).

4 Discussion

We have presented a new dataset of high-resolution (isotropic 
0.7 mm voxel) LC areas manually approximated for 20 subjects of the 
HCP. This dataset is publicly available to the research community 
(Section 2.4), allowing the development of supervised tools applicable 
to standard 3T T₁W MPRAGE (rather than neuromelanin-sensitive) 
MRI for quantitative analysis using large existing or future MRI 
databases. Given the lack of LC contrast on standard T₁W images, 
we used dimensional information instead to estimate the region that 

approximately included the LC. We emphasized sensitivity for this task 
and created masks that were slightly larger than and contained the LC 
(which, if desired, could be shrunk in post-processing via the erosion 
operation). The masks had a bilateral mean volume of 19.7 ± 0.6 mm3, 
expectedly larger than the LC volume reported in the literature, such 
as 6.6 mm3 (Ariz et al., 2019), 7.2 mm3 (that we computed from the 
dataset) (Tona et  al., 2019), 9.5 mm3 (Tona et  al., 2017), 12.8 mm3 
(Theofilas et al., 2017), and 16.7 mm3 (Schwarz et al., 2017).

Our internal evaluation of (the optimal variations of) the ELV and 
U-Net automatic segmentation approaches on our data resulted in 
cross-validation Dice scores with the mean of 0.62 (by ELV) and 
median of 0.65 (by U-Net). In comparison, the LC label Dice scores 
reported in the literature for inter-rater reliability are 0.50 (Ariz et al., 
2019), 0.54–0.64 (Tona et al., 2017), 0.64 (Tona et al., 2019), and 0.68 
(Dünnwald et  al., 2021), for scan-rescan reliability are 0.24–0.48 
(Sibahi et al., 2023) and 0.63 (Langley et al., 2017), and for automatic 
segmentation are 0.40 (Ariz et  al., 2019), 0.54–0.64 (Sibahi et  al., 
2023), and 0.60–0.71 (Dünnwald et al., 2021).

Our external validation resulted in lower mean bilateral Dice scores 
(ELV: 0.11, U-Net: 0.22, atlas-based: 0.23). Several reasons could account 
for this. Given that the average volume of our presumptive LC areas was 

FIGURE 2

Significant relationships between the mean fractional anisotropy (FA) inside the automatically estimated LC region and non-MRI variables 
(corresponding to Table 2, unadjusted for ICV).

TABLE 2 Pearson’s correlation coefficients (r) and Bonferroni-corrected p-values (pB) of the significant correlations of the mean fractional anisotropy 
(FA) inside the computed LC area with non-MRI variables, without and with intracranial volume (ICV) adjustment.

Non-MRI variable No ICV adjustment Adjusted for ICV

Left LC Right LC Left LC Right LC

Body weight
r = −0.52 r = −0.52 r = −0.44 r = −0.44

pB = 0.0002 pB = 0.0002 pB = 0.03 pB = 0.02

Body mass index (BMI) -
r = −0.44

-
r = −0.43

pB = 0.02 pB = 0.04

Body mass index (BMI) at heaviest 

time
-

r = −0.43
-

r = −0.43

pB = 0.04 pB = 0.046

Working memory task accuracy: 

two-back place
-

r = 0.44
-

r = 0.46

pB = 0.02 pB = 0.009
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α  = 2.7 times larger than that of the LC labels in the test (Tona et al., 2019) 
dataset, the Dice score between the two was capped at 0.54 (see Section 
2.2.2). The cap was possibly even lower due to inter-rater variability 
between the two datasets, especially since our LC areas were based on 
dimensional information whereas the labels in the external dataset were 
delineated based on the LC contrast seen on neuromelanin-sensitive (3T 
T₁W TSE) images. Another factor contributing to the lower Dice value 
may have been the domain shift, particularly caused by the different MRI 
field strengths of the input training (3 T) and test (7 T) images, which are 
known to reveal different MRI tissue properties (van der Zwaag 
et al., 2016).

Our comparative experiment with the popular atlas-based approach 
produced higher accuracy conditioned to the success of atlas-to-image 
deformable registration, which was not always the case. While we made 
a reasonable effort to fine-tune the registration parameters, the optimal 
parameter values might depend on the image (as opposed to being fixed 
for the dataset), possibly making the application of this approach more 
cumbersome than other approaches (e.g., ELV and U-Net) that do not 
require deformable registration.

We tested the hypothesis that using phase images could enhance 
out-of-sample segmentation. The U-Net indeed achieved the highest 
bilateral external-validation accuracy when the input included the phase 
image. The different field strengths and acquisition protocols of the 
training (HCP) and test (Tona et al., 2019) datasets may have caused 
inconsistencies in their image intensities. The phase image improved our 
external validation results by ignoring the Fourier-domain magnitude 
information, which possibly alleviated such inter-database inconsistencies 
to some extent.

The Dice scores corresponding to the approximated left and right LC 
regions were often significantly correlated with each other, perhaps due 
to their correlation with the image quality and variance of the test subject.

Following image segmentation of 100 unrelated HCP subjects and an 
exploratory analysis, we found significant correlations with the mean FA 
inside the LC region, mainly negative correlations with the body weight 
and a positive correlation with working memory. These correlations 
might also be partially driven by other neighboring small nuclei and white 
matter, given that our estimated region is larger than the LC itself and 
there may also be residual misalignment between the T₁W and dMRI 
images. In a similar analysis, LC connectivity was found not to 
be significantly correlated with non-MRI variables, possibly due to the 
homogeneity and narrow age range (22–36 years old) of the healthy HCP 
cohort (Aganj et al., 2023). Our stringent Bonferroni correction for all 
compared variables and LC connections may additionally have led to type 
II errors (false negatives). In most related HCP studies, the LC connectivity 
has been measured to predefined ipsilateral target regions pertinent to 
disease, such as the transentorhinal cortex (Sun et al., 2020) and limbic 
regions (Levinson et  al., 2023). In contrast, we  ran whole-brain 
tractography to explore all regions’ potential connectivity to the LC, which 
is especially important considering the LC’s extensive axonal branching 
innervating diverse remote areas throughout the brain (Sara, 2009).

This report has the following limitations, because of which we do not 
imply our LC masks to be anatomically accurate LC labels and caution 
their use where specific and accurate labels are required.

 • The LC masks were not based on anatomical contrast and the 
location is approximate. We were not able to directly compare our 
masks with those derived from neuromelanin-sensitive images, 
given that the HCP database did not include such contrasts. The aim 
of this study was to assess the applicability of the T₁W contrast, 

which is available to most researchers, for LC localization. Future 
research will need to evaluate the compatibility of such LC masks 
with those drawn on neuromelanin-sensitive (e.g., TSE) images of 
the same subjects.

 • Given its small size, the LC is difficult to model and partial 
voluming effects can introduce noticeable error in the imaging 
quantity derived from it. Should a non-MRI variable and the 
error in an imaging variable happen to be related to each other 
(e.g., by both being correlated to a third factor such as the ICV), 
a spurious relationship might appear in the correlation analysis. 
Thorough investigation of the automatically misclassified voxels 
to identify any potential bias is a subject of our ongoing research.

 • Supervised learning methods often perform better with more 
training data. Although we created a modest-sized training set of 20 
subjects (40 bilateral masks), image segmentation (especially with 
deep neural networks) has shown promise in learning from even 
small datasets (Lee et al., 2019), possibly due to each voxel in the 
image serving as a data point.

Quantitative MRI studies of the LC—requiring automatic LC 
region estimation—have the potential to generate imaging biomarkers 
for early diagnosis of neurodegenerative diseases and patient 
stratification (Betts et  al., 2019). Making our LC neighborhood 
localization algorithm more specific and integrating it into FreeSurfer 
(Fischl, 2012) are subjects of our future work.
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