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Background: Previous studies have demonstrated widespread brain 
neurodegeneration in Alzheimer’s disease (AD). However, the neurobiological 
and pathogenic substrates underlying this structural atrophy across the AD 
spectrum remain largely understood.

Methods: In this study, we obtained structural MRI data from ADNI datasets, 
including 83 participants with early-stage cognitive impairments (EMCI), 83 with 
late-stage mild cognitive impairments (LMCI), 83 with AD, and 83 with normal 
controls (NC). Our goal was to explore structural atrophy across the full clinical 
AD spectrum and investigate the genetic mechanism using gene expression 
data from the Allen Human Brain Atlas.

Results: As a result, we identified significant volume atrophy in the left thalamus, 
left cerebellum, and bilateral middle frontal gyrus across the AD spectrum. These 
structural changes were positively associated with the expression levels of genes 
such as ABCA7, SORCS1, SORL1, PILRA, PFDN1, PLXNA4, TRIP4, and CD2AP, 
while they were negatively associated with the expression levels of genes such as 
CD33, PLCG2, APOE, and ECHDC3 across the clinical AD spectrum. Further gene 
enrichment analyses revealed that the positively associated genes were mainly 
involved in the positive regulation of cellular protein localization and the negative 
regulation of cellular component organization, whereas the negatively associated 
genes were mainly involved in the positive regulation of iron transport.

Conclusion: Overall, these results provide a deeper understanding of the biological 
mechanisms underlying structural changes in prodromal and clinical AD.
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1 Introduction

Mild cognitive impairment (MCI), a transitional and intermediate state between normal 
aging and Alzheimer’s disease (AD), however, may have a significantly higher risk of 
converting to probable AD than the normal population. The conversion rate of MCI patients 
to AD was at an average of 10–17% per year (Petersen et  al., 2009; Landau et  al., 2010; 
Davatzikos et al., 2011) and approximately 60% within 10 years (Mitchell and Shiri-Feshki, 
2009). A recent follow-up study even reported that the majority (45.5%) of those MCI 
individuals subsequently developed AD for an average of 26.6 months (Espinosa et al., 2013). 
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The high risks make it highly important to involve the early prodromal 
stage, especially MCI, in exploring neurobiological and pathogenic 
substrates of AD.

Gray matter volume (GMV) atrophy is one of the main cardinal 
signs of neurodegeneration in AD and is irreversible. There is a long 
preclinical stage of AD, in which no obvious symptoms but subtle 
structural changes in specific brain regions can be detected (Tondelli 
et al., 2012). In the early stage (MCI), marked localized atrophy could 
occur in many cortical regions and certain sub-cortical regions. 
During the progression from MCI to AD, global and local GMV 
atrophy was reported mainly in the temporal neocortex, 
parahippocampal cortex, and cingulate gyrus (Spulber et al., 2012). 
Subsequently, this atrophy spreads aggressively to affect most of the 
brain in clinical AD (Pini et al., 2016). Although the neurobiological 
and pathogenic substrates underlying particular structural changes 
across AD spectrum have been investigated using MRI-based genetic 
study, such as the associations between genetic variations within 
PARP1 and CARD10 and a more rapid rate of hippocampal volume 
loss (Nho et al., 2013a,b), between the TREM2 variant and fronto-
basal gray matter loss (Luis et  al., 2014), between APOE and 
longitudinal change in the hippocampus (Apostolova et al., 2014; 
Andrawis et al., 2012), between expression level of ABCA7 and GMV 
changes in post-central gyrus, between superior frontal gyrus and 
ZCWPW1, and between right post-central gyrus and APOE 
(Roshchupkin et  al., 2016) were identified, much more AD risk 
variants have been reported (Guo et al., 2017; Lacour et al., 2017; 
Shen and Jia, 2016). For example, a large meta-analysis on GWAS 
involved 74,046 people and identified 20 risk genes and 11 new 
susceptibility loci associated with AD (Lambert et al., 2013). Since a 
fraction of MCI patients are in the pre-AD stages, AD risk alleles, as 
well as additional genetic factors specifically influencing MCI 
progression, have received extensive attention (Moreno-Grau and 
Ruiz, 2016). Indeed, some major pathogenic genes were identified in 
MCI using open gene expression data sets (Tao et al., 2020). Recently, 
a meta-analysis also revealed several abnormally regulated genes, 
shared pathways, and transcription factors in MCI and AD (Bottero 
and Potashkin, 2019). However, one previous study identified that 
gene expression patterns in MCI are neither an extension of aging nor 
an intermediate between aged controls and AD (Berchtold et al., 
2014). In the Chinese population, the SORL1 genetic variants, 
especially polymorphism rs985421, were identified to reduce the risk 
of converting from MCI to AD (Gao et al., 2014; Jin et al., 2014). 
Considering this evidence, it is really important to investigate 
whether structural changes in the AD spectrum were driven by 
similar gene variants.

Recently, the Allen Human Brain Atlas (AHBA1) microarray 
dataset provided an indirect way for relating brain-wide transcriptomic 
data to neuroimaging data (Arnatkeviciute et al., 2019). The practical 
pipeline has been verified in various brain disorders, such as major 
depressive disorders (Anderson et al., 2020; Tan et al., 2021; Ji et al., 
2021), schizophrenia (Liu et al., 2019), and migraine (Eising et al., 
2016). Moreover, the expression level of genes involved in 
mitochondrial respiration and metabolism of proteins was found to 
be  associated with regional GMV patterns across AD-memory, 

1  http://human.brain-map.org

AD-executive, AD language, and AD-visuospatial subgroups (Groot 
et  al., 2021). Therefore, it is ideal to investigate the relationship 
between transcriptional data and GMV changes in prodromal and 
clinical AD using this method, which will open up a new view to 
advance our understanding of the biological mechanisms underlying 
structural changes in AD.

In the current study, major steps were performed according to 
the schematic summary of the processing pipeline (Figure 1): (1) 
GMV changes were analyzed using two-sample t-tests for each 
patient’s group compared to NC; (2) gene expression levels were 
obtained from the AHBA data and processed using the new pipeline; 
(3) regional GMV changes and regional gene expression level for 
interesting genes were calculated for each sample locations; (4) 
cross-sample spatial correlations between gene expression levels and 
GMV alterations were performed using partial least square 
regression (PLS) for each group; (5) obtain consistent genes among 
three group; (6) Spearman correlations between gene expression 
levels of consistent genes and GMV changes were performed for 
each group; and (7) functional enrichment analysis was conducted 
using Metascape analysis2 to explore ontological pathways of the 
consistent genes.

2 Materials and methods

2.1 Participates

To ensure consistency, the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database3 was searched for normal controls (NC), 
early mild cognitive impairment (EMCI), late mild cognitive 
impairment (LMCI), and AD who were imaged at baseline using a 3 
Tesla MRI scanner. Subjects were excluded if they did not have a Mini-
Mental State Examination (MMSE) score or failed image registration 
or segmentation. As a result, a total of 514 subjects (83 NC, 217 EMCI, 
120 LMCI, and 94 AD) were remained. Since the number of subjects 
varies very much across four groups, sub-groups of 83 EMCI, 83 LMCI, 
and 83 AD were randomly chosen to match the age and gender of 83 
NC and were further used in the current study (Table 1). Specifically, 
EMCI and LMCI patients were all amnestic and were diagnosed based 
on the following criteria: (1) a subjective memory concern reported by 
themselves, their partner, or a clinician; (2) MMSE score between 24 
and 30; (3) Clinical Dementia Rating (CDR) of 0.5 in the memory box; 
(4) cognitive and functional performance was not sufficient to diagnose 
as AD on the screening visit; and (5) scored 9–11 with 16 or more years 
of education, 5–9 for 8–15 years of education, or 3–6 for 0–7 years of 
education on the logical memory II subscale of the Wechsler Memory 
Scale-Revised for EMCI, whereas scored less than or equal to 8 for 16 
or more years of education, less than or equal to 4 for 8–15 years of 
education, or less than or equal to 2 for 0–7 years of education for 
LMCI. All AD patients had to meet the criteria for probable AD 
according to the NINCDS-ADRDA criteria, and detailed information 
can be referred to the ADNI manual.4

2  https://metascape.org/gp/index.html#/main/step1

3  http://adni.loni.usc.edu/

4  http://adni.loni.usc.edu/wpcontent/uploads/2010/09/ADNI_

GeneralProceduresManual.pdf

https://doi.org/10.3389/fnins.2024.1376288
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://human.brain-map.org
https://metascape.org/gp/index.html#/main/step1
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wpcontent/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wpcontent/uploads/2010/09/ADNI_GeneralProceduresManual.pdf


Lu et al.� 10.3389/fnins.2024.1376288

Frontiers in Neuroscience 03 frontiersin.org

2.2 MRI data acquisition

Raw, unprocessed 3.0 T T1-weighted MRI images were 
downloaded from the ADNI database and scanned using different 
MRI scanners at multiple sites. Details about the data acquisition 
protocol can be seen on ADNI’s official webpage.5

2.3 Data preprocessing

The T1 images were preprocessed using the standard pipeline in 
the DPABI toolbox6 with unified segmentation and diffeomorphic 
anatomical registration through the exponentiated lie algebra 

5  http://adni.loni.usc.edu/methods/documents/

6  http://rfmri.org/dpabi

(DARTEL). The major steps were: (1) segmenting each image into 
gray matter, white matter, and cerebrospinal fluid; (2) normalization 
using the DARTEL; (3) resampling to a voxel size of 
1.5 mm × 1.5 mm × 1.5 mm; (4) modulating by multiplying the voxel 
values with the Jacobian determinant derived from the spatial 
normalization; and (5) smoothing with a Gaussian kernel of 
8 mm × 8 mm × 8 mm full width at half maximum.

2.4 Gene expression data processing

We processed gene expression data of six postmortem adult brains 
using a new pipeline7 (Arnatkeviciute et al., 2019), which contains gene 
expression measurements from six adult donor brains. These brains 

7  https://github.com/BMHLab/AHBAprocessing

FIGURE 1

Pipeline of data processing. (A) Example T1 image for normal controls (NC), early mild cognitive impairment (EMCI), late mild cognitive impairment 
(LMCI), and Alzheimer’s disease (AD). (B) Gray matter volume (GMV) for each example. (C) Two sample t-tests were used to obtain voxel-wise GMV 
differences between EMCI, LMCI, AD, and NC. (D) Regional T value for each tissue sample in the left hemisphere. (E) Gene expression values of AD risk 
genes in tissue samples were obtained in six donated brains from the Allen Human Brain Atlas. (F) Gene-wise cross-sample partial least squares (PLS) 
regressions were performed between gene expression and GMV differences, respectively. The intersected genes were defined as genes associated 
with GMV alterations for all three groups. (G) Spearman correlations between gene expression levels of overlap genes and regional GMV difference. 
(H) Functional enrichment analysis using Metascape.

TABLE 1  Data characteristics.

Clinical characteristics AD LMCI EMCI NC p valuea

Subjects 83 83 83 83 –

Age (mean ± SD) 75.39 ± 7.16 75.20 ± 6.3 76.06 ± 5.91 75.92 ± 5.73 0.787

Gender (male/female) 39/44 38/45 38/45 38/45 0.998

MMSE scores 21.49 ± 3.52 26.81 ± 2.56 27.79 ± 1.57 29.24 ± 0.89 <0.001

AD, Alzheimer’s disease; LMCI, late mild cognitive impairment; EMCI, early mild cognitive impairment; NC, normal controls; SD, standard deviation; MMSE, mini-mental state examination. 
PLS1 scores and Spearman correlations between gene expression levels of overlap genes and regional GMV difference of cEMCI, sEMCI, cLMCI, and sLMCI patients compared to NC.
aRepresents a one-way analysis of variance (ANOVA).
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were meticulously dissected using either manual or laser methods, 
resulting in a total of 3,702 sample sites in various regions, including 
the cerebral cortex, subcortical areas, cerebellum, and brainstem. Here, 
two of the donor brains provided samples from both hemispheres, 
while the remaining four brains were sampled from the left hemisphere 
only. To control for variability in gene expression between hemispheres, 
our analysis focused only on left-hemisphere samples from all donor 
brains. The major steps were: (1) reassigning probes to genes to the 
latest version using the Re-annotator toolkit8; (2) based on the binary 
indicators provided by AHBA, we selected probes that showed signal 
above background noise in at least 50% of sample sites; (3) since 
different probes measuring same gene may yield different expression 
levels due to different probe sensitivities, we ensured the robustness of 
gene expression measurements by selecting probes corresponding to 
genes present in both microarray and RNA-seq datasets, and chose the 
probe measurements that were most highly correlated with the 
RNA-seq values to represent gene expression; and (4) normalize within 
and between brains to minimize non-biological bias while preserving 
biologically relevant differences. Ultimately, our analysis encompassed 
1,285 samples, with each tissue sample covering up to 10,027 genes.

2.5 Regional GMV differences

To explore the overall difference among Alzheimer’s spectrum, the 
voxel-wise GMV differences among EMCI, LMCI, AD, and NC were 
performed using multivariate analysis of variance (MANOVA) and 
post-hoc analyses between any other two groups. As we aimed to 
investigate voxel-wise GMV differences map for patients at different 
stages (EMCI, LMCI, and AD) as compared to matched NC, we also 
performed three two-sample t-tests (EMCI-NC, LMCI-NC, and 
AD-NC), respectively. At the same time, two-sample t-tests were 
performed to compare differences between different stages (EMCI vs. 
LMCI, EMCI vs. AD, LMCI and AD). All these results were corrected 
using a Gaussian random field (GRF, a cluster level of p < 0.05, and a 
voxel level of p < 0.001). Negative and positive overlap among the three 
groups was obtained using the intersection.

Moreover, spheres with a radius of 4.5 mm (i.e., three times the 
voxel size) centered in the MNI coordinate of each tissue sample 
(n = 1,285) were drawn, and the regional mean T-value within this 
sphere was defined as the t-statistic value of GMV difference for three 
groups, respectively.

2.6 AD risk genes associated with GMV 
differences

Fifty-two reproducible and established AD risk genes based on 
recently published literature (Lancour et al., 2020) were intersected 
with 10,027 background genes, resulting in 41 interesting genes. 
Then, we calculated a matrix of 1,285 regions × 41 gene expressions. 
To further explore their relationship with the GMV difference, partial 
least squares (PLS) regression was performed with gene expression 
data as predictor variables (Abdi and Williams, 2013). The first 

8  https://sourceforge.net/projects/reannotator/

component of the PLS (PLS1) was further used in the current study, 
which was the linear combination of gene expression values that was 
most strongly correlated with regional changes in GMV difference. 
Then, cross-sample non-parametric Spearman rank was performed 
to determine the relationship between regional PLS1 weighted gene 
expression and regional GMV alterations. To estimate the variability 
of the PLS1 score for each gene, bootstrapping 1,000 times was 
performed. Z scores were defined as the ratio of the weight of each 
gene to its bootstrap standard error, and the genes were ranked 
according to their contributions to PLS1 using univariate one-sample 
Z tests (Morgan et al., 2019). The set of genes with Z > 5 or Z < −5 
were considered as positive or negative associated gene lists. All these 
above steps were performed to correct multiple comparisons. This 
procedure was performed separately for each dataset. The final gene 
sets were defined as the overlap between the two datasets 
(interaction).

2.7 Analyses for consistent genes

Cross-sample non-parametric Spearman correlations were 
performed to explore the relationship between gene expression level 
and GMV changes (T values) for 1,285 regions in each group. 
Moreover, the number of comparisons (n = 12) was further corrected 
with a significance threshold of p < 4.16 × 10–3 = 0.05/12 
(Bonferroni correction).

2.8 Re-analyses for sub-groups

Since EMCI and LMCI consist of patients who were ultimately 
converted to AD, remitted to NC, and stable in MCI, we subdivided 
them into convert (cEMCI and cLMCI), stable (sEMCI and 
sLMCI), and remitted sub-groups. The remitted sub-groups were 
relatively small and were not included in the further analyses. The 
four other sub-groups (15 cEMCI, 59 sEMCI, 43 cLMCI, and 35 
sLMCI) were analyzed using the same method. The weighted PLS1 
scores and r values of Spearman correlation were calculated for 
each group.

2.9 Functional enrichment analyses

To understand pathways of gene ontology (GO) biological 
processes, molecular functions, cellular components, and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways, 
we performed Metascape analysis (Zhou et al., 2019) using the positive 
and negative associated gene lists, respectively. The obtained 
enrichment pathways were thresholded for significance at 5% with at 
least three genes.

3 Results

3.1 GMV differences

Compared to NC, the EMCI patients showed significantly 
decreased GMV in the right cerebellum, left rectal gyrus, and 
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bilateral middle frontal gyrus, as well as significantly increased GMV 
in bilateral calcarine and pre-central gyrus (Figure 2A). Compared 
to NC, the LMCI patients showed significantly decreased GMV in 
the right cerebellum and a wide range of regions in frontal, temporal, 
and subcortical areas, as well as significantly increased GMV in 
bilateral calcarine and pre-central gyrus (Figure 2B). Compared to 
NC, the AD patients showed significantly decreased GMV in a wide 
range of regions in frontal, temporal, parietal, and subcortical areas, 
as well as significantly increased GMV in bilateral calcarine and 
pre-central gyrus (Figure  2C). After the intersection, patients 
showed consistently decreased GMV in the left thalamus, left 
cerebellum, and bilateral middle frontal gyrus and increased GMV 
in bilateral calcarine and pre-central gyrus in all three groups 
(Figure 2D). In addition, a wide range of brain regions showed group 
differences in GMV among these four groups, which are mainly 
located in the frontal, temporal, and parietal gyrus 
(Supplementary Figure S1). Also, the difference in GMV between 
EMCI, LMCI, and AD was mainly located in the temporal and 
parietal gyrus (Supplementary Figure S2). Additionally, we found 
similar changes that showed higher GMV in the right cerebrum and 

occipital lobe in the men than in the women in each group 
(Supplementary Figure S3). Therefore, to limit the potential effects 
of gender on our main results, we used gender as a covariate in our 
statistical analyses.

3.2 AD risk genes associated with GMV 
differences

Fifty-two AD risk genes overlapped with 10,027 background 
genes, resulting in 41 interesting genes for further analyses 
(Figure 3A). We ranked the normalized weights of PLS1 based on 
one-sample Z tests for all 41 genes (Figure 3B). We found that eight 
genes showed a significantly positive association with GMV changes 
in EMCI patients, 11 genes for LMCI patients, and 11 genes for AD 
patients, resulting in eight genes after intersection (Figure  3C). 
Moreover, six genes showed a significantly negative association with 
GMV changes in EMCI patients, seven genes for LMCI patients, and 
five genes for AD patients, resulting in four genes after intersection. 
Notably, we found that the PLS1 weighted gene expression map was 

FIGURE 2

GMV difference between groups. The GMV difference for EMCI (A), LMCI (B), and AD (C) patients as compared to NC. These results were obtained 
using two-sample t-tests, and multiple comparisons were corrected using a Gaussian random field (GRF, a cluster level of p  <  0.05 and a voxel level of 
p  <  0.001). The color bar represents t-values, and a positive t-value (warm color) indicates increased GMV in this group compared to NC. Negative and 
positive (D) overlap among the three groups.
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spatially correlated with the t-map for EMCI, LMCI, and AD 
(Figure 3D).

3.3 Consistent gene expressions associated 
with GMV differences

For 12 consistent genes, expressions of ABCA7, SORCS1, SORL1, 
PILRA, PFDN1, PLXNA4, TRIP4, and CD2AP showed significantly 
positive associations with GMV changes, whereas CD33, PLCG2, APOE, 
and ECHDC3 showed significantly negative associations (Table  2; 
Figure 4). Furthermore, we selected one positive and one negative gene 
from each dataset to present their correlation scatterplots between gene 
expression values and the t-statistic values of GMV changes.

3.4 Results for sub-groups

The weighted PLS1 scores and r values of Spearman correlation 
between 12 overlapped genes and GMV differences of cEMCI, cLMCI, 

sEMCI, and sLMCI compared to NC were significant and highly 
similar to the main results (Table 3).

3.5 Enrichment pathways associated with 
GMV changes

There were two significant GO biological processes, namely 
positive regulation of cellular protein localization and negative 
regulation of cellular component organization, for positively 
associated genes (Figure  5A). There was only one significant GO 
biological process, namely positive regulation of iron transport, for 
negatively associated genes (Figure 5B).

4 Discussion

Although GWAS, whole-exam sequencing approaches, and meta-
analyses showed many AD risk genes, little was known about which 
genes are associated with GMV changes in the AD spectrum. To 

FIGURE 3

Gene expression level related to regional GMV differences using PLS. (A) Forty-one genes were selected as interested genes. (B) Ranked PLS1 loadings 
for 41 selected AD risk genes. To estimate the variability of the PLS1 score for each gene, bootstrapping 1,000 times was performed. Z scores were 
defined as the ratio of the weight of each gene to its bootstrap standard error, and the genes were ranked according to their contributions to PLS1 
using univariate one-sample Z tests. The set of genes with Z  >  5 or Z  <  −5 were considered as positive or negative associated gene lists. All these steps 
were performed to correct multiple comparisons. (C) Twelve consistent genes among three groups, including eight positively associated genes and 
four negatively associated genes. (D) Scatterplots of regional PLS1 scores and regional changes of GMV. PLS1: the first component of PLS.
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narrow this gap, we explored structural changes across the full clinical 
AD spectrum and performed spatial correlations between these 
changes and the expression level of AD risk genes. As a result, 
we  identified significant volume atrophy in the left thalamus, left 
cerebellum, and bilateral middle frontal gyrus across the AD 
spectrum. These structural changes were consistently associated with 
expression levels of 12 genes for all three groups and all four 
sub-groups, which were mainly involved in cellular protein 
localization, cellular component organization, and regulation of 
iron transport.

As expected, we identified significant volume atrophy in the left 
thalamus, left cerebellum, and bilateral middle frontal gyrus across the 
AD spectrum, suggesting a consistent structural changing pattern. 
These results could also be used as potential biomarkers for early 
diagnosis of AD. Moreover, our results were consistent with previous 
studies reporting GMV reduction in the AD spectrum (Pini et al., 
2016; Spulber et al., 2012). A study suggested that GMV reduction 

might be associated with various micro-structural factors, such as 
alterations in size, morphology, and number of the cellular and 
non-cellular components, as well as microglial cells in the cerebral 
cortex and sub-cortical nuclei (Ji et  al., 2021). Indeed, such 
microstructural changes were widely reported in studies on AD 
(Davies et  al., 2017; Gasparoni et  al., 2018; Ishunina et  al., 2019; 
Nicastro et al., 2020). However, the genetic mechanisms resulting in 
these microstructural changes and GMV reduction remain largely 
unknown. Moreover, as we know, no direct relation was identified 
since there is no such large sample of patients with AD who 
simultaneously have brain-wide transcriptomic and neuroimaging 
data. Although it is an indirect method of assessing the similarity of 
spatial distribution patterns between them, our results offered a better 
understanding of biological mechanisms underlying structural 
changes in prodromal and clinical AD.

All gene expression values in this study were positive, but the 
t-statistic values were negative (indicating reduced GMV) or positive 

TABLE 2  Correlation results.

Genes EMCI-NC (R, P) LMCI-NC (R, P) AD-NC (R, P)

ABCA7 0.280 1.293E-24 0.304 8.03E-29 0.259 4.30E-21

SORCS1 0.295 3.735E-27 0.300 3.21E-28 0.153 3.25E-08

SORL1 0.313 1.183E-30 0.339 7.09E-36 0.311 3.17E-30

PILRA 0.228 1.213E-16 0.219 1.90E-15 0.168 1.43E-09

PFDN1 0.268 1.425E-22 0.304 8.03E-29 0.287 8.70E-26

PLXNA4 0.235 1.388E-17 0.225 2.95E-16 0.143 2.70E-07

TRIP4 0.215 6.034E-15 0.242 1.31E-18 0.192 3.86E-12

CD2AP 0.164 3.405E-09 0.203 2.09E-13 0.210 3.21E-14

CD33 −0.190 6.644E-12 −0.164 3.34E-09 −0.103 2.04E-04

PLCG2 −0.139 6.109E-07 −0.159 9.66E-09 −0.147 1.18E-07

APOE −0.235 1.386E-17 −0.296 2.55E-27 −0.285 1.64E-25

ECHDC3 −0.425 1.989E-57 −0.499 4.94E-82 −0.403 2.38E-51

FIGURE 4

Spearman correlations between gene expression levels of overlap genes and regional T values. We performed non-parametric Spearman correlations 
to explore the relationship between distributions of gene expression level and T values in 1,285 regions in each group. Bonferroni correction 
(p  <  4.16  ×  10–3  =  0.05/12) was used to correct for multiple comparisons. The blue font represents the negative association, and the red represents the 
positive association.
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(indicating increased GMV). Thus, the negative correlations indicated 
that brain regions with greater GMV reduction showed higher gene 
expression, and positive correlations meant that brain regions with 
greater GMV reduction showed lower gene expression. For instance, 
we  identified the strongest negative association between gene 
expression of ECHDC3 and GMV changes, whereas the strongest 
positive association between gene expression of SORL1 and GMV 
changes across the AD spectrum. The ECHDC3 is a gene that mainly 
encodes the enzyme enoyl-CoA hydratase domain containing 3, 
which has been found to be associated with brain neurodegeneration 
(Tan et al., 2021), especially in AD (Desikan et al., 2015). Moreover, a 
previous study showed that the pleiotropy at ECHDC3 may be related 
to the association finding at this locus among persons lacking the 
APOE ε4 allele (Jun et al., 2017). The SORL1, belonging to both the 
low-density lipoprotein receptor family and the vacuolar protein 
sorting-10 domain protein family (Lane et al., 2010), is a key protein 
involved in the processing of the amyloid-beta (Aβ) precursor protein 
and the secretion of the Aβ peptide (Campion et al., 2019). It has been 
observed with a deficiency in the brains of patients suffering from 
MCI (Sager et al., 2007) and AD (Shen et al., 2014; Dodson et al., 
2006) and was supported by results from meta-analyses (Campion 
et al., 2019). Moreover, the SORL1 genetic variants were reported to 
modulate or confer the risk of aMCI to probable AD in the Han 
Chinese population (Chou et al., 2016). Similar to our results, one 
study also showed that risk variants in SORL1 were associated with 
less gray-matter tissue in sub-cortical regions, such as the putamen, 
thalamus, and pallidum (Roshchupkin et al., 2016).

Most importantly, the gene expression level of APOE showed a 
significantly negative association with GMV changes across the AD 
spectrum. However, the gene expression levels of APOE sub-types 
were not available in this study, which mainly included three major 
polymorphic alleles in humans, namely APOE2, APOE3, and 
APOE4. Among them, APOE4 remains by far the strongest and most 
prevalent genetic risk of AD since it has a great influence on two 
hallmark pathological proteins by modulating the formation of 

amyloid-β peptide (Aβ) plaques and neurofibrillary tangles 
containing hyperphosphorylated tau protein (Serrano-Pozo et al., 
2021). Similar to our results, many previous studies report significant 
independent effects of APOE4 genotype on hippocampal volume in 
MCI and AD (Wang et al., 2015; Saeed et al., 2018; Veldsman et al., 
2021; Andrawis et al., 2012), especially in those who progressed to 
AD (Fang et al., 2019). Other studies described the effects of APOE4 
on CA1 (Kerchner et al., 2014), CA3/DG (Mueller and Weiner, 2009), 
and subiculum (Donix et  al., 2010) at sub-regional level. Mean 
adjusted hippocampal atrophy rates in APOE4 carriers were 
significantly higher in MCI converter, MCI stable, and AD compared 
with non-carriers (Manning et al., 2014). In addition to hippocampal 
atrophy, GMV loss in temporal and parietal lobes, right caudate 
nucleus, insula, right parietal operculum, the right precuneus, and 
the cerebellum bilaterally were also reported in APOE4 carriers in 
patients with MCI (Goni et  al., 2013; Spampinato et  al., 2011). 
Moreover, APOE4 has been shown to modify the association between 
cerebral morphology and cognitive performance in healthy middle-
aged individuals (Cacciaglia et  al., 2019) and between smaller 
volumes in the left hippocampus and a tendency to retrieve earlier 
acquired words in the category fluency task in MCI (Venneri 
et al., 2011).

In addition to APOE, we also identified that gene expression levels 
of CD33 and ECHDC3 were negatively associated with GMV changes 
in MCI and AD. Together, these genes were primarily involved in the 
positive regulation of iron transport. As we all know, iron is essential 
for neurons and glia in many aspects (Reinert et al., 2019), such as 
electron transport, reductase activity of nicotinamide adenine 
dinucleotide phosphate (NADPH), and myelination of axons. It is 
available to neurons and glia by transporting from the basolateral 
membrane of endothelial cells to the cerebral compartment (McCarthy 
and Kosman, 2015). Although the direct relationship between brain 
iron and AD remains largely unknown (Tripathi et al., 2017), improper 
iron transport mechanisms are speculated to lead to the accumulation 
in various cortical regions and the hippocampus in AD (Mezzaroba 

TABLE 3  Correlation results for sub-groups.

cEMCI-NC sEMCI-NC cLMCI-NC sLMCI-NC

Genes PLS1 R values PLS1 R values PLS1 R values PLS1 R values

ABCA7 12.667 0.239 13.25 0.278 13.799 0.293 13.802 0.298

SORCS1 10.810 0.217 12.566 0.311 11.095 0.262 10.839 0.314

SORL1 8.165 0.240 11.973 0.327 12.868 0.344 13.298 0.301

PILRA 10.854 0.209 9.225 0.220 9.667 0.205 9.878 0.227

PFDN1 6.404 0.184 10.507 0.283 11.070 0.304 11.306 0.279

PLXNA4 7.120 0.195 10.014 0.244 8.459 0.203 8.179 0.234

TRIP4 8.629 0.196 7.551 0.205 8.657 0.223 8.666 0.243

CD2AP 6.386 0.140 6.625 0.165 8.199 0.210 8.752 0.176

CD33 −11.351 −0.206 −7.969 −0.175 −7.383 −0.141 −7.097 −0.188

PLCG2 −7.159 −0.107 −6.644 −0.153 −7.139 −0.159 −6.958 −0.149

APOE −8.936 −0.185 −9.880 −0.240 −13.004 −0.303 −13.192 −0.270

ECHDC3 −14.868 −0.343 −14.708 −0.437 −15.944 −0.473 −16.488 −0.470

PLS1 scores and Spearman correlations between gene expression levels of overlap genes and regional GMV difference of cEMCI, sEMCI, cLMCI, and sLMCI patients compared to NC. To 
estimate the variability of the PLS1 score for each gene, bootstrapping 1,000 times was performed. Z scores were defined as the ratio of the weight of each gene to its bootstrap standard error, 
and the genes were ranked according to their contributions to PLS1 using univariate one-sample Z tests. The set of genes with Z > 5 or Z < −5 were considered as positive or negative associated 
gene lists. All these steps were performed to correct multiple comparisons.
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et al., 2019; Li et al., 2019). Once exceeding, it might produce reactive 
oxygen species and pro-inflammatory proteins (Yauger et al., 2019), 
which cannot be optimally handled in MCI and AD patients (Mills 
et al., 2010). Indeed, increased iron in the brain has been considered 
to be  one of the primary causes of neuronal death in several 
neurodegenerative diseases, especially in AD (Lu et  al., 2017). In 
addition, iron is able to induce tau and Aβ aggregation (Sayre et al., 
2000) and enhance the toxicity of Aβ (Squitti, 2012). Previous AD 
models further support the interlinkage between iron metabolism and 
AD by showing that iron chelators may prevent neuronal loss (Ward 
et al., 2015). Therefore, it is reasonable to speculate that gray matter 
atrophy might be  related to the dysregulation of iron transport, 
possibly iron deposit, and neuronal death.

Gene-related changes in GMV were also observed in different 
brain regions of AD mouse models. For example, a recent study 
found significant GMV reductions in several brain regions, including 
the insular cortex (left), basal forebrain (left), subiculum (right), and 
others, in AAV/APP transgenic mice (Lin et al., 2024). The 3 × Tg-AD 
mice model, which carries three human mutant genes, has also 
demonstrated GMV reductions, particularly in the visual cortex 
(Chiquita et  al., 2019). Observations in amyloid beta precursor 
protein/presenilin 1 (APP/PS1) transgenic AD model mice revealed 
that the volume of the left hippocampus and right olfactory were 
reduced (Xu et al., 2024). The APOE gene, which was significantly 
associated with GMV changes in our study, has also been implicated 
in exhibiting phenotypes related to cognitive decline in mouse 
models (González et al., 2023). While the literature predominantly 
focuses on the APOE gene, the interplay between other genes and 
GMV in mouse brains remains less explored. Although current 
literature lacks direct evidence for some genes, we  posit that 
investigating their functions and phenotypes in mouse models could 
yield significant insights.

Several major methodological limitations are worth mentioning 
in the current study. First, the gene expression level was calculated 
from six postmortem brains, whereas the neuroimaging data were 

obtained from the ADNI dataset. Moreover, we  only used gene 
expression data from the left hemisphere since only two right 
hemisphere data were available in the AHBA. Therefore, a large 
sample across the AD spectrum with both brain-wide transcriptomic 
and neuroimaging data of the same individuals is needed to further 
verify our results. In future research, we plan to expand the scope of 
our gene set to include genes from NIAGADS, Alzforum, and ADGC 
databases, which will increase the likelihood of identifying significant 
correlations between gene expression and GMV. Second, although 
most previous studies used surface-based morphology to gray matter 
segmentation, several previous studies successfully adopted VBM 
and performed transcriptome-neuroimaging spatial correlation 
analyses to explore gene expression profiles associated with gray 
matter volume changes in epilepsy (36444721), children with 
persistent stuttering (34041495), schizophrenia (37607339), and 
Alzheimer’s disease (28,105,773, 27,718,423). Due to the algorithm 
potentially involving brain sites in close spatial proximity but not 
closely anatomically connected, its potential effects on our results 
cannot be  excluded. Finally, the associations of these structural 
changes with alterations in the expression of specific genes are 
indirect and notably weak. Although corrections for multiple 
comparisons were performed, more attention should be paid to the 
interpretation of our results.

5 Conclusion

In conclusion, this exploratory study linked structural brain 
changes to gene expression levels by assessing the similarity of spatial 
distribution patterns. It showed eight genes positively associated and 
four genes negatively associated with GMV alterations across the AD 
spectrum, which were validated in four MCI subgroups. These genes 
were mainly enriched in biological processes related to cellular protein 
localization, cellular component organization, and iron transport 
regulation. Collectively, these findings provide a deeper understanding 

FIGURE 5

Functional enrichment analyses. Ontology terms and Metascape enrichment network visualization for positive (A) and negative (B) associated genes. 
The left bar graph represents the set of hallmark genes that we first identified. Accumulative hypergeometric p-values and enrichment factors were 
calculated and used for filtering. The remaining significant terms were then hierarchically clustered into a tree based on Kappa-statistical similarities 
among their gene memberships. Then, a 0.3 kappa score was applied as the threshold to cast the tree into term clusters. The right-hand network 
diagram represents the size of the circle represents the number of genes involved in a given term. Each term is represented by a circle node, where its 
size is proportional to the number of input genes included in that term, and its color represents its cluster identity.
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of the biological mechanisms underlying structural changes in both 
prodromal and clinical Alzheimer’s disease.
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