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Complex chemical reaction
networks for future information
processing

Katja-Sophia Csizi* and Emanuel Lörtscher

Department of Science of Quantum and Information Technology, IBM Research Europe - Zurich,

Rüschlikon, Switzerland

Tackling the increasing energy demand of our society is one of the key challenges

today. With the rise of artificial intelligence, information and communication

technologies started to substantially contribute to this alarming trend and

therefore necessitate more sustainable approaches for the future. Brain-inspired

computing paradigms represent a radically new and potentially more energy-

e�cient approach for computing that may complement or even replace CMOS

in the long term. In this perspective, we elaborate on the concepts and properties

of complex chemical reaction networks (CRNs) that may serve as information-

processing units based on chemical reactions. The computational capabilities

of simpler, oscillatory chemical reactions have already been demonstrated in

scenarios ranging from the emulation of Boolean gates to image-processing

tasks. CRNs o�er higher complexity and larger non-linearity, potentially at lower

energy consumption. Key challenges for the successful development of CRN-

based computers are associated with their specific physical implementations,

operability, and readout modalities. CRNs are sensible to various reaction

triggers, and provide multiple and interlinked reaction pathways and a diverse

compound space. This bears a high potential to build radically new hardware

and software concepts for energy-e�cient computing based on neuromorphic

architectures—with computing capabilities in real-world applications yet to

be demonstrated.

KEYWORDS

chemical computing, neuromorphic computing, chemical reaction networks, low-

energy, brain-inspired

1 Introduction

Semiconductor technology constitutes one of the key-enabling technologies

responsible for numerous innovations in modern times. Thanks to the continuous

miniaturization of all integrated circuit components, the foundational technology has been

successfully adapted to varying and diverse computing tasks over several decades. The

validity and continuation of Moore’s Law is currently being controversially discussed. At

the same time, the increasing energy consumption of today’s computing infrastructures—

combined with other energy-expensive technologies—undoubtedly represents one of

the largest challenges to our society. The projected energy demand might soon surpass

the amount of energy being cumulatively generated. In the field of information and

communication technologies, this is due to an ever increasing number of systems (Internet

of Things (IoT), mobile systems, data centers, etc.) but also aggravated by emerging

artificial intelligence (AI) applications (image and voice recognition, analog sensor signal

processing, chatbots, etc.). The majority of AI applications entails workloads for which the

classical von–Neumann architecture, with separated memory and processing units, was
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originally not intended and now turns out to be costly in terms

of energy consumption. Furthermore, maintaining and running AI

systems creates similarly high costs as training thereof, currently

already consuming >500 MWh per day. Overall, this trend

will soon result in unaffordable energy demands beyond 100

TWh if the current systems cannot be substantially improved

(de Vries, 2023). Consequently, there are tremendous efforts in

semiconductor and related industries aiming at tuning existing

semiconductor devices (e.g., phase-change, FPGA), architectures

(e.g., specialized architectures), systems (e.g., GPUs, TPUs) or

computing tasks (e.g., in-memory computing) for AI applications.

Beyond those attempts, more disruptive and radically new ways

of computing beyond the use of electrons and transistors are

being evaluated. These initiatives include spintronics, quantum

computing, optical computing, DNA-based computing, and

neuromorphic computing. Generally, it is imperative for all new

approaches to prioritize sustainability aspects over the entire life-

cycle. This includes the use of abundant materials, green fabrication

processes, complete recycling, etc. to contribute to a circular

economy. To complement or replace existing technologies, it is

essential not only to meet the prevailing standards of scalability and

performance, but also to satisfy all aforementioned sustainability

constraints. At the moment, there seems to be no obvious successor

technology for CMOS. However, neuromorphic architectures

appear to be a promising foundation as they conceptuallymimic the

human brain, which serves as an unparalleled role model in terms

of energy efficiency. In addition, some neural networks are already

designed from an implicit, simplified brain inspiration, but with

orders of magnitude less complexity (Richards et al., 2019; Zador

et al., 2023).

In this perspective, we present the novel class of bio-

inspired, chemical information processing concepts that are based

on complex chemical reaction networks (CRNs). CRNs are

capable of processing information based on highly interconnected

and interlinked chemical reactions. Due to their chemical

self-organization and nonlinear characteristics, these systems

provide potentially useful means for low-energy and massively

parallel computing. To demonstrate the neuromorphic capabilities,

scalable physical implementations and operational protocols must

be developed.

2 Chemical reactions as
information-processing units

The human brain with its interconnected neurons and the

release of neurotransmitters in response to nerve impulses across

localized information-processing centers is still unmatched in

terms of energy efficiency. It consumes only around 20 watts

of power while performing more than 200 trillion operations

per second. New classes of HPC systems (e.g., ICNS Deep

South) parallel such cross-linked brain-inspired architectures

and are predicted to reach more than 100 trillion synaptic

operations per second at a significant—yet to be measured—

energy reduction. The cross-linking and collocation of memory

and information-processing units will be at the heart of next-

generation, semiconductor-based neuromorphic HPC to solve the

von-Neumann bottleneck. Additionally, radically new approaches

may take up the information-processing concept of our brain

even closer by using chemical compounds and chemical reactions

to encode and process information for computing purposes:

Not only does information processing on the chemical level

in living entities regulate and control fundamental processes

like immune response, growth, or gene expression, the human

brain runs entirely on chemical reactions for “logic” information

processing. It is therefore conceptually appealing to draw direct

analogies between the chemical compound and chemical reaction

space to bio-inspired brain-type architectures with reactions

emulating synapses and compounds representing neurons. By

their very nature, molecules can carry out complex tasks such as

molecular recognition and chemical reactions with the smallest

possible footprint and energy requirements. Furthermore, chemical

reactions can be cascaded, and are typically highly non-linear. It

has been demonstrated that interconnected chemical systems are

capable of mimicking Boolean logic gates (Tsompanas et al., 2021),

carrying out pattern recognition (Gizynski and Gorecki, 2017;

Parrilla-Gutierrez et al., 2020) or image processing tasks (Rambidi

et al., 1998), finding shortest paths (Rambidi and Yakovenchuk,

2001), or solving optimization problems (Guo et al., 2021). Like

other non-conventional computing architectures, these attempts

predominantly exploited time-dependent event-driven paradigms,

either in the form of spike-induced, or self-induced excitations (in

analogy to oscillatory, or spiking neural networks).

2.1 Beyond Belousov–Zabotinsky reactions

Chemical computing was pioneered using the Belousov–

Zabotinsky (BZ) reaction. The underlying chemical reactions result

in nonlinear temporal oscillations and spatial self-organization. In

the BZ oscillator, the time-evolution of excitations is determined by

chemical reactions and diffusion, therefore referred to “reaction–

diffusion” computing. In a very simplified representation, the BZ

can be described by three main reactions that form a closed-

loop catalytic cycle, as illustrated in Figure 1A. In BZ oscillations,

the clock rate correlates with the intrinsic oscillation frequency

and is somewhere between 1 and 100 Hz, not comparable to the

GHz frequencies of semiconductor devices (GHz). Apart from

that, the aforementioned complexity of information processing

in living entities may require massive parallel operation in

interlinked compartments. As a potential alternative, chemical

reaction networks that have a higher complexity than the BZ

reaction have been recently proposed as a chemical computing

platform (Ivanov et al., 2023). In principle, any real-world chemical

system can be encoded in the form of a chemical reaction

network, although the network width and depth (i.e., the number

of compounds formed and the number of reactions or reaction

sequences that connect these compounds) varies significantly.

Figure 1 conceptually illustrates, in a very simplified manner,

the different degrees of complexity and interlinkage of chemical

reactions suited for computing purposes.

Under the aspect of nonlinearity and complexity, CRNs more

closely resemble bio-inspired systems than oscillatory reactions.

The prebiotically relevant formose reaction is one of the archetype

CRNs of that kind to show a temporal evolution over time once
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the self-condensation of formaldehyde is energetically overcome.

As recently demonstrated, the formose CRN provides a high-

dimensional state space, nonlinear interactions, a fading memory

effect, and discrete output signals—namely products derived after

derivatization of the reaction mixture—that all depend susceptibly

on input variations (Robinson et al., 2022). A fading-memory

effect can moreover be realized by forcing the CRN into an out-

of-equilibrium steady state, where the system can then receive

inputs from and adjust its response to environmental conditions

by dynamically changing its underlying reactions. With all these

properties, the formose CRN can dictate some “design rules” and

properties of an artificial CRN to be used for future computing:

1. Complexity and nonlinearity: The evolution of a reaction

network constitutes a highly non-linear self-organization

process, as demonstrated for instance by van Duppen et al.

(2023) for the formose CRN;

2. Dynamicity: This evolution is highly time-dependent,

generating complex temporal patterns as a function of

different chemical inputs. These patterns can then be modulated

in a dynamical way by steering a CRN’s steady state through

variation of the input parameters;

3. Parallelizability: In CRNs, chemical reactions occur

simultaneously and independently in a massively parallel

manner, realizing the processing of a large amount of

information concurrently;

4. Low-energy operability: Due to the parallelization and

autonomous self-organization capabilities of CRNs, these

systems can be operated with extremely low external energy.

Furthermore, chemical systems exhibit a propensity to favor

pathways associated with the lowest overall system energy (if

not steered externally) and therefore autonomously populate

the kinetically least constrained reaction pathways;

5. Determinism and reproducibility: As chemical reactions are

defined by the laws of quantum mechanics, a reaction’s

outcome and its corresponding rate under given conditions are

unequivocally defined and should be precisely predictable and

reproducible, following deterministic rules instead of stochastic

(random) behavior. However, this does not directly translate

to the macroscale operation in a real lab. This is subject

to macroscopic effects, diffusion, local concentration effects,

evaporation, etc., where the unique but convoluted CRN state

must still be characterized by appropriate analytical techniques;

6. Tunability: A CRN must be tunable and its properties adaptable

to different computing tasks.

The design of a chemical reaction system that can transmit

signals, self-develop at corresponding non-equilibrium conditions

and respond to external and internal triggers that affect the

evolution to be used in the process of learning, are all crucial aspects

when designing a CRN-based computer. Figure 2 depicts the basic

components and a simple assembly of a chemical computer based

on CRNs. The chemical processor is fed with an operational

protocol derived from mapping real-world input data to reaction

input parameters, which comprise the initial chemical composition

and the reaction starting conditions. The reaction can then be

dynamically controlled and steered by changing the chemical input

flows and/or the reaction conditions. At different points in time,

intermediates and products are formed, which need to be read out

by some type of analytical instrument to collect output signals. For

details and challenges associated with encoding and read-out, see

Section 2.3.

2.2 Hardware requirements and challenges
for physical implementation

Compared to CMOS architectures, characterized by its

deterministic and scalable circuit design (rules), 3D assembly and

hierarchies with device and redistribution layers, wiring schemes,

thermal management and so forth, chemical reactions naturally

occur in a liquid environment and are often not solid state in

nature. Conceptually, computation of arbitrary complexity has

been theoretically demonstrated to be Turing complete in principle,

even by using only a small number of different molecular species

(Soloveichik et al., 2008). This can be achieved by storing and

processing information as integer counts of molecules in a well-

mixed solution. If chemical systems are perceived as stochastic, the

error probability is reduced at each computing step, and the total

error probability can made arbitrarily small by adjusting the initial

molecular species count. Then, a stochastic CRN can solve any

computational problem—no matter how complex—given enough

time and memory. However, a physical implementation of any

chemical computing approach into real-world computing devices

and systems will represent a disruptive change in design, fabrication

and operation compared to existing semiconductor architectures

with the following fundamental questions yet to be addressed:

1. Can automation and suitable hardware provide sufficient

control over all chemical reactions to reproducibly create

identical output states—both qualitative and quantitative—of

a CRN?

2. Do CRNs behave chaotically or do their reaction pathways

follow certain rules?

3. Can CRNs be cascaded to enable a scalable computing platform?

4. How fast can the system be encoded and what is the

typical latency?

5. How can chemical reactions be fueled as reagents are

being consumed?

6. What are means to clock a CRN?

7. Does self-organization and self-limitation within a CRN scale or

is there any fundamental limitation when miniaturizing it?

An obvious approach to handle and govern control over

wet-chemistry is to compartmentalize chemical reactions, e.g., by

introducing physical reactor volumes, following similar strategies

as found in biological systems and used when the required

selectivity cannot be achieved (Ruiz-Mirazo et al., 2014). In that

sense, semiconductor architectures and fabrication processes can be

highly beneficial as they enable scalable reaction volumes down to

fL with great flexibility regarding reactor volumes and types (static

reactors vs. flow reactors), while offering a high chemical resistivity

against corrosive solvents. In addition, the implementation of

smallest channels for mass-flow, and ion- and proton-selective

materials such as membranes is feasible. Furthermore, microfluidic
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FIGURE 1

Schematic and highly simplified illustrations of di�erent types of reaction networks: (A) The simplest form are closed-loop catalytic cycles as, for

instance, occurring in oscillatory reactions including the BZ reaction. In these reaction sequences, either a few dominant intermediates are

selectively formed (top) or, in more complex scenarios, cross-reactions between intermediates of the main reaction cycle occur (bottom). (B) In

contrast, CRNs comprise highly-interconnected, cascaded reaction sequences that populate individual branches of the reaction topology over time.

The time-evolution of CRNs occurs intrinsically at given fixed environmental conditions (upper row), or can be steered by dynamic input variation of

the compositional and/or operational input parameters (bottom row).

platforms provide means to control the reaction (e.g., dwell time,

temperature, etc.) and to monitor and feedback-control it, for

instance through electrode implementation. Highly complex 3D

liquid networks can be envisioned that may enable site-selective

supply of materials, e.g., to locally feed reactions or to steer the

reaction by providing reagents. The precise supply of feedstock

molecules is a crucial aspect in chemical computing, as chemical

compounds are consumed over time and must be fed for long

term operation. Currently, the lifetime of a chemical processor

is limited to a few minutes to hours, depending on the CRN’s

kinetics. Furthermore, silicon-based microfluidics may enable a

seamless integration into a CMOS stack or the direct use of

CMOS components suitable for controlling and monitoring wet-

chemical systems.

For a proof-of-concept, the chemical computer may still

be operated manually, involving typical labor-intensive chemical

procedures. For repeated use, unavoidable when processing larger

data sets, efficient operation can only be achieved if the platform

can be operated in full automation, ensuring reproducibility

and scriptability of all components including in-line analytical

readout, and in silico inference. In particular for CRNs where

the composition must be very accurately controlled at any time,

only a script-based orchestration of liquid handling hardware,

reactor operation and analytics can provide a precision suitable for

achieving reproducible chemical operations. In addition, handling

and disposal of chemicals require compliance with various safety

standards. Furthermore, the safe operation and risk assessment

relies on prior knowledge and understanding of the intermediates

and products formed. Another critical aspect is the realizable

computational speed: The typical latency of the CRN, together with

intrinsic kinetic properties that determine the reaction speed, can

only be modulated to a certain degree, and therefore constitute a

severe computing bottleneck. Furthermore, the determination of

the CRN state might require time-intensive post-processing steps,

e.g., derivatization, separation, etc. to characterize the products

both quantitatively and qualitatively. All these parameters are by

no means trivial to predict, and must be empirically addressed in

time-consuming parameteric studies when designing a new CRN

for computing.

2.3 Encoding and readout

Beyond the design and operation of the chemical processor

itself, a real-world computing task must be encoded into the

chemical world, and the corresponding solution decoded from the

properties derived from the chemical system. For that purpose,

specific problem-related data is mapped onto a typically rather

sparse input subspace, which comprises the chemical composition

and the operational input parameters at which the CRN can

autonomously self-develop. The non-equilibrium conditions that

span this subspace, however, are generally challenging to predict

a priori and require time-intensive parametric studies of this

multidimensional space. To obtain solutions to a given computing

problem, suitable analytical methods are required to read out the
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FIGURE 2

Methodological overview of the principle components and processing steps of a chemical computing platform: Problem-specific data is mapped to

chemical (pink) and static as well as dynamic operational (blue) inputs for a given computing problem. These inputs and reaction conditions

determine the evolution of the CRN, which acts as an information-processing unit based on the underlying CRN-embedded chemical reaction

pathways. The product (or intermediate) space of the CRN (type of compounds and quantities thereof) must be analytically identified and quantified

using libraries, and chemometric algorithms. All these characteristic features can be used to train a CRN’s response to a desired target function

in-silico, leading to classification, and forward prediction.

complex state of the CRN which is in principle given by the

type of products and their concentrations. In case the response

and temporal evolution of the CRN is not yet known for the

entire parameter space (chemical input + reaction conditions

+ initial state), high-resolution analytics must be employed to

identify and quantify all compounds. These methods are most

often based on sample extraction, preparation, separation and

physio-chemical sensing modalities, thereby creating a speed

bottleneck for computing. Suitable instrumentation includes gas or

liquid chromatography, mass spectrometry, trapped-ion mobility,

differential ion mobility etc., many of them further need to be

combined to achieve a complete picture. All these offline methods

cannot directly be incorporated into the computing platform

itself due to size limitations and an interruption of the chemical

reaction process upon sample extraction. In return, compounds

are identifiable through comparison with huge libraries, supported

by chemometric algorithms. These quantifications, which can

be traced down to parts-per-trillion levels, enable reasoning of

the detailed behavior of a CRN, at the cost of speed and ease

of operation.

At a later stage with known CRN behavior, such methods are

not suitable any more. Instead, a lower analytical resolution is

sufficient to determine essential features of the CRN state. Suitable

inline/online methods enable direct sensing within the reactor

or integration of the sensing component into the computing

platform to enable automated and timely measurements without

interrupting or terminating the platform operation. These

methods comprise, for instance, pH and electrochemical potential

measurements, ultraviolet—visible or Fourier-transformed

infrared (FTIR) spectroscopy and benefit from real-time

data acquisition. Mostly, however, quantitative information

is presented in highly convoluted features. For instance, in

FTIR spectroscopy, features may be assigned to characteristic

functional groups, and the total absorption intensities can

be integrated, but not dissected into individual compound’s

quantities. However, as long as enough of such features are

present in the spectra – which is the case for CRNs with high

chemical diversity in their output space – the signals represent

accumulated concentrations, which are directly proportional to

the individual compounds, thereby still representing the CRN

state. Furthermore, the analytics may only identify a subset of

all compounds generated or properties measured in an even

more convoluted way, including for instance (spectrally broad)

absorption or emission features, which are still cumulative

properties of the analytical matrix. In principle, only state-

representative, essential features are required to determine the

state of the CRN. Hence fully untargeted fingerprinting may be

another reasonable analytical modality for computing at much

less experimental effort. Consequently and by its nature, any

reasoning of the CRN’s chemical composition and behavior

will then not be possible anymore but the simpler readout

may be better scalable, cheaper and faster while still providing

enough features for computing. Hence, all these considerations

constitute a trade-off between precision, resolution, speed and ease

of use.

The exact timing and sequence of sampling of the CRN

state by analytical means is not trivial to assess, and the nature

of the data acquisition determines the scope of application.

While measurements of the instant response of the CRN are

only limited by the speed of instrumental data acquisition,

monitoring of an equilibrium or steady state depends on the

inherent chemical kinetics that govern reactions and that will

lead to the formation of new chemical species. These kinetics

dictate a specific evolution time for each type of CRN to

unfold its complexity. Subsequently, a single CRN state can be

sampled, yielding already enough data for classification tasks.

In contrast, the CRN reservoir state can be modulated by

static or dynamic changes in the input concentrations too,

providing a timely response of the network to evolve and

develop under these variations. This allows for monitoring a
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time-resolved read-out of the CRN state. This data can be

leveraged for various time-dependent computing tasks, such as

forward prediction, modeling complex dynamics of biological

systems, or solving voice recognition tasks, as the time-dependent

CRN input and output can always be mapped to these types

of problems.

2.4 Potential application areas

With the chemical computing platform depicted in Figure 2,

various applications, both in chemical sciences but also general

computing, can be envisioned. Conceptually, the CRN can be

considered a material embodiment of a fixed and non-linear

type of reservoir, whose properties are considered a black box

as being unknown at the beginning. For small networks, the

behavior of the reservoir may be mimicked by these AI/Machine

Learning algorithms, whose structure and dynamic behavior are

explainable. In reservoir computing, input variables are mapped

to the dynamics of a fixed system called a reservoir, whose

response is then read out by determining its state and mapped

to the desired computing solutions. For CRNs, there are multiple

features that may represent the state. A major advantage of the

reservoir computing approach for CRNs is the comparatively low

training effort as weights connecting reservoir nodes do not need

to be assigned explicitly, but are chosen randomly such that only

the readout-layer is trained. In a CRN, the intermediates and

reaction paths connecting these intermediates must hence not

be characterized explicitly, which would require the derivation

of reaction rate constants. However, if the chemical behavior of

the CRN is explainable, it can be encoded as a graph in which

compound nodes are connected by weights derived from reaction

kinetics, and must not be treated as a black box. However, the

mapping of a CRN reservoir‘s input layer to product output data

generates interpretable input–output correlations. These can be

used to perform simple classification or optimization tasks, for

instance the maximization of product outputs in the chemical

discovery sector. In a more long-term vision, they could even

be harnessed for the in-situ synthesis of drug molecules for

personalized patient treatment in the health-care sector. This

makes CRNs ideal candidates to forecast the spatiotemporal

behavior of dynamic and even chaotic systems.

3 Discussion

The energy-related economic and societal boundary conditions

imposed by an ever-increasing energy demand fuel the innovative

pressure to design fundamentally new computing approaches.

In this perspective, we discussed one emergent, brain-inspired

computing paradigm that exploits complex chemical reaction

networks as information processing units. Chemical reaction

networks are highly nonlinear, energy-efficient, and parallelizable

and therefore capable to mimic the information processing

capabilities of living systems, whose computing efficiency is still

unparalleled. However, an actual physical implementation of a

chemical (reservoir) computer poses various challenges associated

with operability, encoding of a real-world computing problem, and

readout. These operational parameters must be addressed carefully,

as they constitute a disruptive design change compared to the

predominant semiconductor architectures. Achieving a profound

understanding of the time-dependent behavior of complex

chemical reaction networks will enable the comprehension of

biological reaction networks and help improve automated and

yield-optimized retrosynthesis with multiple applications not

efficiently tackled by today’s computing systems.

Author contributions

K-SC: Conceptualization, Methodology, Visualization,

Writing – original draft, Writing – review & editing. EL:

Conceptualization, Funding acquisition, Project administration,

Resources, Supervision, Visualization, Writing – original draft,

Writing – review & editing.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

research was funded by the Swiss National Science Foundation –

NCCR Molecular Systems Engineering under the grant number

51NF40-205608. Further funding is received from the European

Union and the Swiss State Secretariat for Education, Research

and Innovation (SERI) under the contract numbers 22.00017

and 22.00034 (Horizon Europe Research and Innovation Project

CORENET).

Acknowledgments

The authors acknowledge scientific discussion with A. de la

Escosura, W. T. S. Huck, D. Merckle, D. Widmer, R. Lovchik, H.

Wolf, A. Valdés, and S. Vela Gallego.

Conflict of interest

K-SC and ELwere employed by company IBMResearch Europe

- Zurich.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2024.1379205
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Csizi and Lörtscher 10.3389/fnins.2024.1379205

References

de Vries, A. (2023). The growing energy foot print of artificial intelligence. Joule 7,
2191–2194. doi: 10.1016/j.joule.2023.09.004

Gizynski, K., and Gorecki, J. (2017). Cancer classification with a
network of chemical oscillators. Phys. Chem. Chem. Phys. 19, 28808–28819.
doi: 10.1039/C7CP05655A

Guo, S. Y., Friederich, P., Cao, Y., Wu, T. C., Forman, C. J., Mendoza,
D., et al. (2021). A molecular computing approach to solving optimization
problems via programmable microdroplet arrays. Matter 4, 1107–1124.
doi: 10.1016/j.matt.2021.03.002

Ivanov, N. M., Baltussen, M. G., Regueiro, C. L. F., Derks, M. T. G. M., and Huck,
W. T. S. (2023). Computing arithmetic functions using immobilised enzymatic reaction
networks. Angew. Chem. Int. Ed. Engl. 135:e202215759. doi: 10.1002/ange.202215759

Parrilla-Gutierrez, J. M., Sharma, A., Tsuda, S., Cooper, G. J. T., Aragon-Camarasa,
G., Donkers, K., et al. (2020). A programmable chemical computer with memory and
pattern recognition. Nat. Commun. 11:1442. doi: 10.1038/s41467-020-15190-3

Rambidi, N. G., Kuular, T. O. O., and Makhaeva, E. E. (1998). Information-
processing capabilities of chemical reaction–diffusion systems. 1. Belousov–
Zhabotinsky media in hydrogel matrices and on solid supports. Adv Mater
Opt Electron. 8, 163–171. doi: 10.1002/(SICI)1099-0712(1998070)8:4<163::AID-
AMO347>3.0.CO;2-A

Rambidi, N. G., and Yakovenchuk, D. (2001). Chemical reaction-diffusion
implementation of finding the shortest paths in a labyrinth. Phys. Rev. E 63:026607.
doi: 10.1103/PhysRevE.63.026607

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen,
A., et al. (2019). A deep learning framework for neuroscience. Nat. Neurosci. 22,
1761–1770. doi: 10.1038/s41593-019-0520-2

Robinson, W. E., Daines, E., van Duppen, P., de Jong, T., and Huck, W. T.
S. (2022). Environmental conditions drive self-organization of reaction pathways
in a prebiotic reaction network. Nat. Chem. 14, 623–631. doi: 10.1038/s41557-022-
00956-7

Ruiz-Mirazo, K., Briones, C., and de la Escosura, A. (2014). Prebiotic systems
chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366.
doi: 10.1021/cr2004844

Soloveichik, D., Cook, M., Winfree, E., and Bruck, J. (2008). Computation
with finite stochastic chemical reaction networks. Nat. Comput. 7, 615–633.
doi: 10.1007/s11047-008-9067-y

Tsompanas, M. A., Fyrigos, I. A., Ntinas, V., Adamatzky, A., and Sirakoulis, G. C.
(2021). Light sensitive Belousov–Zhabotinsky medium accommodates multiple logic
gates. Biosystems 206:104447. doi: 10.1016/j.biosystems.2021.104447

van Duppen, P., Daines, E., Robinson, W. E., and Huck, W. T. S. (2023).
Dynamic environmental conditions affect the composition of a model prebiotic
reaction network. J. Am. Chem. Soc. 145, 7559–7568. doi: 10.1021/jacs.
3c00908

Zador, A., Escola, S., Richards, B., Ölveczky, B., Bengio, Y., Boahen, K., et al. (2023).
Catalyzing next-generation artificial intelligence through neuroai. Nat. Commun.
14:1597. doi: 10.1038/s41467-023-37180-x

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2024.1379205
https://doi.org/10.1016/j.joule.2023.09.004
https://doi.org/10.1039/C7CP05655A
https://doi.org/10.1016/j.matt.2021.03.002
https://doi.org/10.1002/ange.202215759
https://doi.org/10.1038/s41467-020-15190-3
https://doi.org/10.1002/(SICI)1099-0712(1998070)8:4<163::AID-AMO347>3.0.CO;2-A
https://doi.org/10.1103/PhysRevE.63.026607
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41557-022-00956-7
https://doi.org/10.1021/cr2004844
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1016/j.biosystems.2021.104447
https://doi.org/10.1021/jacs.3c00908
https://doi.org/10.1038/s41467-023-37180-x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Complex chemical reaction networks for future information processing
	1 Introduction
	2 Chemical reactions as information-processing units
	2.1 Beyond Belousov–Zabotinsky reactions
	2.2 Hardware requirements and challenges for physical implementation
	2.3 Encoding and readout
	2.4 Potential application areas

	3 Discussion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


