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Introduction: With the help of robot technology, intelligent rehabilitation of

patients with lower limb motor dysfunction caused by stroke can be realized.

A key factor constraining the clinical application of rehabilitation robots is how

to realize pattern recognition of human movement intentions by using the

surface electromyography (sEMG) sensors to ensure unhindered human-robot

interaction.

Methods: A multilayer CNN-LSTM prediction network incorporating the self-

attention mechanism (SAM) is proposed, in this paper, which can extract and

learn the periodic and trend characteristics of the sEMG signals, and realize the

accurate autoregressive prediction of the human motion information. Firstly, the

multilayer CNN-LSTM network utilizes the CNN layer for initial feature extraction

of data, and the LSTM network is used to improve the enhancement of the

historical time-series features. Then, the SAM is used to improve the global

feature extraction performance and parallel computation speed of the network.

Results: In comparison with existing test is carried out using actual data from five

healthy subjects as well as a clinical hemiplegic patient to verify the superiority

and practicality of the proposed algorithm. The results show that most of the

model’s prediction R > 0.9 for different motion states of healthy subjects; in the

experiments oriented to the motion characteristics of patient subjects, the angle

prediction results of R > 0.99 for the untrained data on the affected side, which

proves that our proposed model also has a better effect on the angle prediction

of the affected side.

Discussion: The main contribution of this paper is to realize continuous motion

estimation of ankle joint for healthy and hemiplegic individuals under non-ideal

conditions (weak sEMG signals, muscle fatigue, high muscle tension, etc.), which

improves the pattern recognition accuracy and robustness of the sEMG sensor-

based system.

KEYWORDS

nonlinear systems, surface electromyography signal, machine learning network,
uncertainties, robust estimation
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1 Introduction

Stroke and other diseases may lead to lower limb motor
dysfunction in patients. With the assistance of robotic technology,
intelligent rehabilitation therapy can be realized to reduce the
workload of clinical medical staff and improve the efficiency of
patients’ rehabilitation training (Kapelner et al., 2020). In the
human–machine interaction between rehabilitation robots and
patients, traditional human–machine interaction techniques often
involve the robot passively receiving instructions, which may not
be convenient for patients with motor function impairments (Zhai
et al., 2017; Zhang et al., 2022). In recent years, human–machine
interaction technology needs to evolve toward allowing robots to
actively understand human behavioral intentions, resulting in a
new type of interaction based on human biological signals.

Human bioelectric signal is the potential difference activated
when the nerve signal containing human behavioral information
is transmitted to the relevant organs or tissues, which is a direct
reflection of human behavioral intentions (Ma et al., 2021). It
is of great significance to break the human–machine barrier
and realize natural human–machine interaction by decoding
human bioelectric signals to recognize human behaviors, and
empowering robots to understand the human body’s intentions
as an information medium for interaction between human
beings and the outside world (Qi et al., 2020). Currently,
widely studied bioelectric signals include electromyogram
(EMG), electroencephalogram (EEG), electrocardiogram
(ECG), and electrooculography (EOG). We focus on the surface
electromyography (sEMG), which originates from the bioelectrical
activity of spinal motor neurons under the control of the motor
cortex of the brain, and are the temporal and spatial sum of
sequences of action units produced by peripherally active motor
units. Since sEMG has the advantages of being non-invasive, and
simple to use, it is more suitable to be applied to the design of
human–machine interaction control systems for rehabilitation
robots (Xiong et al., 2021). The core technology to build the EMG
human–machine interaction system is to decode the human body’s
motion intention through EMG signals, and the usually discussed
motion intention decoding includes two categories, one is to
recognize the discrete limb movements based on sEMG, such as
the movements of the hand’s clenched fist, extended palm, etc.,
and the other is to estimate the continuous joint motions based
on sEMG, such as the continuous quantities of the joint moments
and the joint angles, etc. In this study, we focus on healthy people
and hemiplegic patients, and carry out research on sEMG-based
continuous motion estimation methods for the foot and ankle area
of the lower limb, which lays the foundation for future natural
human–machine interaction control.

Human walking characteristics are crucial in studies targeting
the continuous movement of the lower limb. Many features of the
musculoskeletal system of the lower limbs implied in the human
walking information. Human walking information can be used as
a basis for the recognition of human movement intentions and the
estimation and prediction of the human body’s movements, which
in turn improves the stability and accuracy of human–computer
interactions with external devices, such as exoskeletons. It is also
possible to compare the gait characteristics of different walking
bodies, especially between healthy and patients. This enables an
intelligent online evaluation of patient rehabilitation effects, such

as stroke rehabilitation. Lower limb walking in healthy people
is cyclic, and the inherent states of its musculoskeletal system,
such as human limb properties and muscle activation states, are
also relatively stable and have good model interpretability, so
mechanistic models have been used to describe them in many
studies (Zhang L. et al., 2021). There are also some research works
that describe machine learning models such as neural networks
with straightforward modeling process and unrestricted utilization
of sEMG.

However, in research focused on hemiplegic patients, there are
large differences in the nature of the bilateral cyclic reciprocity,
with the healthy side usually experiencing weak functional decline
and the affected side experiencing more severe fluctuations in
cyclic information (Aymard et al., 2000; Zhao et al., 2023). The
alternation of useful and useless information can lead to problems
such as gradient disappearance or gradient explosion, causing
loss of information (Meng et al., 2023). In addition, these weakly
abled people are also prone to problems such as muscle fatigue or
even spasticity, and in some cases excessive muscle tone (Zhang
et al., 2019; Moniri et al., 2021), all of which will lead to a high
degree of difficulty in estimating the continuity of a patient’s lower
extremities based on EMG signals (Sarasola-Sanz et al., 2018;
Fleming et al., 2021; Zhu et al., 2022).

In machine learning network architectures for the study of
continuous lower limb motion, auto-regression is a widely used
method for time series prediction. It can capture the correlation
and dependency of input and output sequences well, and has the
advantages of simple structure, flexible order selection and easy
application (Lehtokangas et al., 1996). The observations at the
current time of the time series data are correlated with the historical
observations. Autoregressive technologies can make use of cyclical,
trend and seasonal characteristics of historical data to predict
future data (Yin et al., 2023). The combination of autoregressive
techniques and neural networks can effectively improve the ability
of learning, understanding and forecasting of time series data
(Taskaya-Temizel and Casey, 2005). A nonlinear autoregressive
neural network with exogenous inputs has been proposed to
model the dynamic behavior of an automotive air conditioning
system (Ng et al., 2014). Combing autoregressive integrated moving
average (ARIMA) and probabilistic neural network (PNN), a
hybrid network model has been proposed in order to improve
the prediction accuracy of ARIMA models (Khashei et al., 2012).
Therefore, this article will process the sampled motion data by
autoregressive technology, so that the network can fully learn the
hidden features and improve the learning efficiency of the network.

In order to improve the robustness of time series signal
prediction, a convolutional neural network (CNN) can be used to
extract initial features from the data (Shao et al., 2024). The CNN is
a specific type of feedforward neural network with a grid topology
(Li Z. et al., 2021). CNN uses sparse interaction, parameter sharing
and variant representation techniques to improve the feature
extraction performance of convolutional operations (Li et al., 2016).
Each convolution layer of CNN contains multiple convolution
kernels, and each convolution checks data for sliding convolution
to achieve feature extraction of time series data to obtain local
features and short-term dependencies. The pooling layer performs
summary statistics on the output obtained by the convolution layer
(Gu et al., 2018). The local perception and weight sharing of CNN
can also effectively reduce the number of weight parameters for
model learning, thus improving the efficiency of model learning.
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Based on deep CNN, a joint multi-task learning algorithm has been
developed to predict effectively attributes in images (Abdulnabi
et al., 2015). A joint classification-and-prediction framework
has been proposed based on CNN for automatic sleep staging
(Phan et al., 2018). Combing CNN architecture with depth wise
separable convolutions with kernels (CNN-DSCK) has developed
for prediction rating exploiting product review (Khan and Niu,
2021). The prediction applications of these complex systems show
the advantages of CNN networks in time series feature extraction.
For complex and long-term dynamic systems, whose data series
have long-term correlation, LSTM network with better long-term
feature capture ability can be considered for feature extraction
(Bi et al., 2021; Zhang N. et al., 2021; Zha et al., 2022). LSTM
network is an improvement of recurrent neural network (RNN)
network, which can effectively improve the gradient disappearance
and gradient explosion of RNN network in time series prediction
(Kim and Cho, 2019). Complex system prediction based on LSTM
network has achieved a series of innovative results (Rathore and
Harsha, 2022). Based on multi-layer LSTM networks, a forecasting
method with a strong capability has been proposed for predicting
highly fluctuating demand (Abbasimehr et al., 2020). According to
the characteristics of chemical process data, a key alarm variables
prediction model has been developed in chemical process based
on dynamic-inner principal component analysis (DiPCA) and
LSTM network (Bai et al., 2023). Adding self-attention mechanism
after LSTM network can further capture the correlation between
features directly from a global perspective (Zhang et al., 2020).
Increasing attention mechanisms can also compensate for gradient
disappearance or gradient explosion problems that LSTM networks
face, which can lead to loss of information in time series data (Li J.
et al., 2021). By integrating CNN, attention mechanism and LSTM,
it is expected to build a network with better predictive performance.

Therefore, this article proposes a robust multi-layer network
with excellent performance by integrating LSTM network with
CNN network and adding self-attention mechanism technology.
In order to extract and learn the period and trend characteristics
of EMG signals, autoregressive processing is performed on the
collected data. The CNN layer is used to extract the features from
the EMG signal. The LSTM network is used to consolidate and
enhance the historical temporal features. self-attention mechanism
(SAM) is utilized to improve the global feature extraction
performance and the parallel computing speed of the network.
Finally, compared with the existing algorithm, the superiority and
practicability of the proposed network are verified by using the data
of healthy laboratory subjects and clinical patients with hemiplegia.

The main contributions of this article are as follows: (1)
To address the periodicity of human lower limb gait walking,
a multi-layer machine learning network architecture has been
designed. It improves the interpretability and prediction accuracy
of the auto-regression model, and reduces the problems of
gradient disappearance or explosion caused by redundant sensor
information. (2) The practicality of the algorithm has been
validated, undergoing testing not only on healthy individuals but
also utilizing data from hemiplegic patients. It has successfully
achieved continuous lower limb motion estimation under non-
ideal conditions (weak sEMG signals, muscle fatigue, high muscle
tension, etc.). This ensures both accuracy and robustness in

identification, laying a foundation for the design of human–
machine interaction methods for future rehabilitation robots.

In order to facilitate understanding, the chapter part of this
article is summarized as: a novel artificial intelligence algorithm is
proposed in section “2 Materials and methods,” the experiments
and results are presented in section “3 Experiments and results,”
and finally main key conclusions of this article are given in section
“4 Discussion and conclusion.”

2 Materials and methods

2.1 Data acquisition and processing

Five subjects (age: 26.6 ± 2.6 years, height: 1.74 ± 0.08 m,
weight: 69 ± 10.9 kg) and one patient tester (male, 67 years
old, Brunnstrom stage IV) participated in the data collection of
this experiment. The sEMG signal acquisition equipment is a
Noraxon Ultium EMG system and AgCl electrodes, as shown
in Figure 1. Alcohol wipes are used to wipe the surface skin
of the tested muscles to remove impurities such as dead skin
and sweat adhering to the skin surface. Two electrodes for each
channel are spaced 20 mm apart and affixed to the muscle belly
along the muscle fiber direction of the target muscles of both
legs of the subjects (Hermens et al., 2000). Subjects walk on a
treadmill at 2.0 km/h, 3 km/h, and 5.0 km/h and EMG signals
are collected. Subjects walk for 3 min at a time with a 1-min
rest between each trial to avoid the effects of muscle fatigue. The
sEMG sampling frequency is 1,200 Hz, as shown in Figure 2, three
muscles of the ankle joint, tibialis anterior, peroneus longus, and
gastrocnemius are collected. Meanwhile, the kinematic parameters
are collected using a Noraxon myoMOTION Inertial Measurement
Unit (IMU), which collects the angular changes in the sagittal plane
of the ankle joint of the lower limb, with a sampling frequency
of 200 Hz. Written informed consent was signed by all subjects
before inclusion in this study. The experimental procedures follow
the Declaration of Helsinki and were approved by the Ethics
Committee of Liaoning Provincial People’s Hospital (Grant No.
2022HS007).

In this experiment, the ankle EMG input and output signals
of five healthy individuals and one stroke patient are used as test
and validation signals for the network model. Four sets of test
data with a length of 120,000 are obtained from the left foot
of the healthy tester under four states: 2 km/h speed, 3 km/h
speed, 5 km/h speed, and plantarflexion dorsiflexion maneuver.
Two tests are conducted on the left foot of the stroke patient
and the length of the sampled data is taken as 70,000. Due to
the large amount of noise signals in the original acquired sEMG
signals, and the frequency range of sEMG signals are in the
range of 0–500 Hz. In this article, the original sEMG signals are
filtered and denoised, and then the irrelevant noises are removed
from the original sEMG signals in order to retain the valuable
information as much as possible. The sEMG signals are first
band-pass filtered with a fourth-order 10–500 Hz Butterworth
band-pass filter. Then, a 50 Hz trap filter is used to eliminate
the industrial frequency interference. After that, the data used
will be normalized.
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FIGURE 1

Noraxon sEMG and inertial sensor acquisition system.

FIGURE 2

Setup of the EMG signal acquisition experiment.

2.2 CNN-LSTM networks with
self-attention

2.2.1 Convolutional neural network
For the collected data, CNN uses convolution layer to convolve

the input vector matrix to extract the local features of the time
series data. The feature sequence generation equation is shown in
Equation 1.

Chi = f (WhXi:i+h−1 + b) (1)

where Wh is the weight matrix of the convolution kernel; b is
biased unit; Xi:i+h−1 is the sequence matrix from i to i+ h− 1
in a time series; h is the size of the convolution kernel; f is the
activation function.

The calculated feature set Cn can be expressed as Equation 2.

Cn = {C1,C2, ...,Ci+h−1} (2)

The pooling layer extracts the features of the time series obtained
by the convolution layer, outputs a matrix of fixed size, reduces
the dimension of the output result and retains the features. In
this article, the maximum pooling method is used to calculate the

pooling layer. The computational equation of the eigenvector after
the pooling of convolution nuclei is represented by Equation 3.

Cpool = Max(C1,C2, ...,Cn−h+1) (3)

2.2.2 LSTM neural network
LSTM network is a variant of RNN. The key point of LSTM

is to control the flow and forgetting of information through the
use of structures called gates. The function of these gates is to
selectively allow information to pass through or prevent the flow
of information, and the core unit is the cell state, which can be
regarded as the network’s memory. The LSTM network consists of
several key components.

1. Cell state: it is the main storage unit of LSTM and is
responsible for storing and transmitting information.

2. Input gate: the input gate determines whether new
information is added to the status unit at the current time step.

3. Forget gate: the forget gate determines what information is
deleted from the state unit.
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4. Output gate: the output gate determines which information
in the state unit is output to the next time step. The relevant
calculation formulas are shown as Equations 4–9.

It = σ(XtWxi +Ht−1Whi + bi) (4)

Ft = σ(XtWxf +Ht−1Whf + bf ) (5)

Ot = σ(XtWxo +Ht−1Who + bo) (6)

C̃t = tanh(XtWxc +Ht−1Whc + bc) (7)

Ct = Ft � Ct−1 + It � C̃t (8)

Ht = Ot � tanh(Ct) (9)

The principle is to combine the current input Xt and the hidden
state Ht−1 of the previous time step, which are activated by sigmoid
function respectively. Calculate the activation value It of the input
gate; calculate the activation value Ft of the forgetting gate and Ot
of the output gate; Xt and Ht−1 are combined, and then activated
by tanh function to selectively retain the current memory, which is
recorded as C̃t ; the state Ct−1 of the previous time step is selectively
forgotten by using the forgetting gate Ft . The input gate It is used to
selectively retain the current state C̃t of the time step, and the two
are added together to update the state unit Ct . Multiply the new
state unit Ct with the output gate Ot to get the hidden state Ht of
the current time step.

2.2.3 Self-attention mechanism
Compared with conventional networks such as RNN and

LSTM, which process the features of time series data with
equal weight, self-attention can calculate the correlation degree
between each time series data from a global perspective, and
allocate different attention to different locations at the end to
enhance the main features of time series data. The self-attention
mechanism can flexibly adapt to different input sequences and task
requirements. For time series A = [a1, a2, ...an], the attention
B = [b1, b2, ...bn] of each position is obtained by obtaining
the correlation degree between the sequence data. The specific
calculation process is as follows.

Each value of the sequence A maps to three different spaces. For
each input ai, multiply by three trainable weights wq, wk, and wv,
respectively, to obtain three values of qi, ki, and vi, namely query,
key, and value as shown in Equations 10–12.

qi = wq · ai (10)

ki = wk · ai (11)

vi = wv · ai (12)

Using the weight matrices, Wq, Wk, and Wv, they can be
further expressed in the following matrix form, as shown in
Equations 13–15.

Q = Wq · A (13)

FIGURE 3

Generation of Q, K and V matrices.

FIGURE 4

Generation of 3 and 3
′

.

FIGURE 5

Generation of output matrix O.

K = WK · A (14)

V = WV · A (15)

The generation diagram of matrix Q, K, and V is shown in Figure 3.
With each input value ai(i = 1, ...n) corresponding to qi,

and all input values aj corresponding to kj, calculate the degree
of correlation between ai and aj by dot product, as shown in
Equation 16.

δi,j = (ki)τ · qj (16)

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1379495
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1379495 March 29, 2024 Time: 18:32 # 6

Liu et al. 10.3389/fnins.2024.1379495

FIGURE 6

Proposed CNN-LSTM network model with self-attention mechanism.

Its matrix form is shown in Equation 17.

1 = KT
· Q (17)

Dividing δi,j by the dimension
√
dk of qi or ki can control the size

of the dot product result to prevent situations where the gradient is
too large or too small and leads to poor training results, as shown
in Equation 18.

αi,j =
δi,j√
dk

(18)

Its matrix form is shown in Equation 19.

3 =
1√
dk

(19)

The activated correlation matrix 3
′

can be obtained by softmax
operation on the correlation matrix3.

The calculation process is shown in Figure 4.
Use the resulting 3′ and V to calculate the attention

corresponding to each input vector ai as shown in Equation 20.

bi =
∑n

j = 1
vj · α

′

i,j (20)

Its matrix form can be expressed as Equation 21.

B = V ·3′ (21)

where B is the matrix of attention bi.
The computational equation of the self-attention mechanism

can be summarized as Equation 22.

Output = softmax(
KTQ√
dk
)V (22)

The calculation process of attention b1 for the first input value a1 is
shown in Figure 5.

2.2.4 CNN-LSTM network
The proposed CNN-LSTM prediction model integrated

with self-attention mechanism in this article is shown in
Figure 6. The predictive network model mainly includes data
autoregressive processing, preliminary feature extraction layer
based on CNN network, depth feature extraction layer based on
LSTM network, and full connection layer. Note that in practical
engineering applications, the collected data should be cleaned
reasonably, including removing singular values, averaging and
noise elimination which can effectively improve the training and
testing effect of the network. The time step of autoregression cannot
be taken too long or too short. If the time step is taken too long, the
less relevant time series information in the past may be added to the
current information prediction, which may reduce the prediction
accuracy. If the time step is taken too short, it may reduce the
correlation extraction between continuous data. Therefore, in the
practical application process, the regression time step should be
selected according to the specific research object and sequence
characteristics. When the network is used for online prediction
or control, too many network layers may improve the prediction
accuracy of the algorithm, but it may also increase the computing
burden of the network.

2.2.4.1 Autoregressive processing

Surface electromyography has typical nonlinear and fast time-
varying characteristics, and it is difficult to capture and extract
the trend of sEMG by conventional fitting methods. In order
to improve the periodicity, trend and seasonality of the output
data, autoregressive processing should be carried out on the pre-
training data.

2.2.4.2 Preliminary feature extraction layer

In order to make the input data after autoregressive processing
easier to train, the batch normalization layer (BN layer) is used to
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FIGURE 7

Fitted curves of ankle EMG signals at four exercise speeds in four healthy subjects. (A) Fitting results for subject 1. (B) Fitting results for subject 2.
(C) Fitting results for subject 3. (D) Fitting results for subject 4.

normalize each batch. The normalized operation of the BN layer
can not only improve the convergence speed of the network model,
but also enhance the correlation degree between the data in the
batch, and prevent the model from overtraining some data and
resulting in overfitting. Then, the features of the time series are
initially extracted by using CNN. The CNN can not only extract
features through the convolution operation of multiple convolution
kernels, but also obtain local dependencies of sequence data by
convolution operation with sliding window. For the obtained
features, the ReLU activation layer can be activated to enhance the
expression ability of the features.

2.2.4.3 Depth feature extraction layer
The extracted features can be used to further extract the long-

term dependencies in the time series data through the LSTM

network. The data processed by the LSTM layer enters the
Sigmoid layer for activation. Then, the self-attention mechanism
is added to calculate the correlation between all features and the
weight matrix, and the weight matrix is constantly trained, so
that the model can allocate attention independently according
to the data characteristics, and improve the role of features in
prediction. Finally, the ReLU activation layer is used to activate the
features. After the above two deep feature extraction, the obtained
deep features are fed into the LSTM layer for comprehensive
strengthening and consolidation.

2.2.4.4 Fully connected layer
The features obtained from the depth feature extraction layer

are mapped to the fully connected layer to obtain the prediction
results. In order to make the model have stronger generalization
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FIGURE 8

Comparison of the fitting results of the proposed algorithm for healthy subject 1 with the experimental results of the existing algorithm.

ability and avoid the problem of gradient vanishing or gradient
explosion, the network proposed in this article adopts the strategy
of gradually decreasing the number of neurons, and uses two linear
mapping layers in the fully connected layer to continuously reduce
the number of neurons, and obtains the single-valued prediction
result. In addition, adding the intermediate mapping layer can
also enable the model to learn more feature combinations and
representations.

3 Experiments and results

3.1 Performance evaluation

The R2 score and Root Mean Square Error (RMSE) are
commonly used as evaluation metrics of regression performance
for continuous estimation of joint angles (Zhong et al., 2022).
In order to obtain more accurate continuous estimation results
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FIGURE 9

Fitted curves of EMG signals of the healthy ankle from the first set of data of the diseased test subjects.

TABLE 1 Comparison of MSE based on training data.

Healthy (group 1) Healthy (group 2) Healthy (group 3) Healthy (group 4) Patient (group 1)

2 km/h 0.7412 0.6723 0.5221 0.2811 0.2362

3 km/h 0.5030 0.6530 0.9210 0.6909 \

5 km/h 0.6857 0.6110 0.6741 0.6267 \

Static 2.4677 3.7219 3.1074 1.0042 \

for the lower extremity joints, the regression performance of the
lower extremity hip, knee, and ankle joints is evaluated using the
following R2 performance metrics. R2 and RMSE are defined as
shown in Equations 23, 24, respectively:

R2
= 1−

i = 1
n
6 (θi−θ̂i)

2

i = 1
n
6 (θi−θ)2

∈ [0, 1] (23)

RMSE =

√√√√ i = 1
n
6
(
θi−̂θi

)2

n
(24)

where θi is the actual value of the angle of the target joint, θ̂i is the
angle of the joint predicted by the model, θ is the average value of
the actual angle θi, and n is the length of the sampling sequence. In
addition, we perform a statistical analysis using one-way analysis of
variance (ANOVA) under the 0.05 level of significance.

3.2 Result and discussion

Since each healthy person has 4 test states, 5 healthy people
contain 20 sets of test data. The patients contain 2 sets of test data.
Considering that the output signals are characterized by obvious
periodicity, trend and seasonality, autoregressive processing is
performed on the test data in order to highlight the characteristics
of the output data for the training of the proposed network model.
According to the length of the data sequence, the data of the first
4 healthy subjects, which is the first 90,000 points of the 16 sets
of data with the first 50,000 points of the first set of data of the
patients are taken respectively. The time step of autoregression is
chosen as 5, which is the input and output data at the moment
of t–1, t–2,......t–5 and the input data at the moment of t are used
simultaneously for the prediction of the output data at the moment

of t. In the experimental process, for the proposed network, one
layer CNN is set for initial feature extraction. A two-layer LSTM
network with SAM followed by one-layer LSTM is used for depth
feature extraction. Three full connection layers is applied to obtain
the predicted output. Adam is used as an optimizer to determine
the optimal solution of the loss function. The parameter setting
strategy of the network not only ensures that the network captures
data characteristics efficiently, but also does not have too much
computational burden. Since the data input dimension is 3 and the
output dimension is 1, the data before combination is a vector of
6 rows and 4 columns. The data after regression combination is
transformed into a vector of 1 row and 24 columns, where the data
in the first 23 columns are treated as input data to the model, and
the data in the last 1 column is the output data corresponding to the
current t moment. Combined with the time dimension, the length
of the time series is 1,490,000. The first 23 columns of data are input
into the model to obtain the predicted value y of the model, and the
loss value is calculated for the predicted value and the 24th column
of output data in order to update the parameters of the network
model and complete the learning and training of the model. Using
the trained model, predictions are made for the posterior 30,000
points of data for the first 4 health testers, and for the posterior
20,000 points of data for patient group 1. The test results for the
four groups of health testers are shown in Figure 7. In order to
highlight the superiority, the existing prediction LSTM algorithm
in Dong et al. (2023) and the algorithm in Zhou et al. (2022) are also
tested for prediction healthy subject 1 in Figure 8. Comparison and
verification results show that the proposed prediction algorithm has
better prediction accuracy and robustness. The results for patient
group 1 are shown in Figure 9. The results show that the proposed
method has good tracking performance for lower limb motion
angle prediction.

The results of the MSE comparison between the predicted data
and the real data for the different exercise modes are shown in
Table 1. It can be seen from the table that the MSE errors in the
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FIGURE 10

Histogram of the coefficient of determination of projected versus real data.

walking condition are small and within 1◦ for both healthy and
diseased subjects. The static metatarsal dorsiflexion exercise had an
MSE within 5◦ due to the wider angular range of the exercise.R2 can
be used as a better criterion for use in this study as the error range
of MSE fluctuates due to the different angular ranges of motion of
different subjects in different modes of motion.

3.2.1 Effects of different exercise modes
The ankle angle prediction curves for the four movement

speeds of the testers are shown in Figures 7, 9. Not only the
tracking deviation between the estimated angle and the target angle
of healthy subjects is small in the CNN-LSTM model, but the model
also shows good regression performance for the ankle motion of
diseased testers. It can be seen that our proposed multilayer CNN-
LSTM network model incorporating the self-attention mechanism
has good tracking performance and high prediction accuracy.

Two indicators, RMSE and R2 are used to evaluate the quality
of the method in predicting the ankle joint angle. Comparison of
the coefficient of determination between the predicted data and the
real data under different motion modes is shown in Figures 10, 11,
and it can be seen that most of the coefficients of determination
are above 0.99, which means that the predicted data of the model
have a better correlation with the real data, and they can reflect
the dynamic characteristics of the system very well. It should be
noted that the movement of the tester at 2 km/h belong to slow
movement. Due to the difference in height and weight, in this case,
the lower limbs of the test subjects cannot be fully moved, resulting
in different EMG signals for each test subject. The test results in
Figure 7 also show that the prediction error is larger under the
motion state of 2 km/h. Therefore, the error band for 2 km/h

FIGURE 11

Comparison of the coefficient of determination between predicted
and real data for different exercise modes.

is larger in Figure 11. When the walking speed is increased to
3 km/h, it is closer to the natural walking speed of the human body,
the human gait is more natural, the muscle coordination is stable
and flexible, and the prediction performance will be improved.
However, when the walking speed increases to 5 km/h, which
is faster than the human walking speed, the accuracy starts to
decrease. This indicates that the closer the walking speed is to
the normal walking speed of human body, the better the muscle

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1379495
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1379495 March 29, 2024 Time: 18:32 # 11

Liu et al. 10.3389/fnins.2024.1379495

FIGURE 12

Cross-validation of ankle EMG signal fitting curves for the fifth healthy tester and the second set of data from the diseased tester.

FIGURE 13

Comparison of determination coefficients between prediction and cross-validation data.

coordination of the lower limbs is; when it is faster or slower
than the normal walking speed of human body, the muscles of
the lower limbs are in a situation of insufficient coordination or

fatigue, which is contrary to the normal pattern, and the prediction
results of the model will decline more and more, which is in
line with the normal walking law. For the static plantarflexion
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TABLE 2 Comparison of MSE based on test data.

2 km/h
(healthy group 5)

3 km/h
(healthy group 5)

5 km/h (healthy
group 5)

Static (healthy
group 5)

Left foot (patient
group 2)

0.2728 0.6909 0.6267 1.0042 6.0589

state, the model predicted the best results, which may be due
to the fact that there is no floor force contact with the ankle
plantar dorsiflexion in the static state, which reduces the complex
interactions between the foot and the ground or the influence of
shoes.

3.2.2 Effects between healthy and patient
subjects

The MSE values of healthy subjects and patients under walking
exercise showed significant differences. Since people with weak
abilities are also prone to problems such as muscle fatigue or even
cramps, and in some cases there are factors such as high muscle
tone, this study can further explore the reasons for these differences,
such as physical fitness differences, testing conditions, and health
status. It helps to understand the differences in physiological
responses between healthy and sick subjects at different exercise
intensities. As shown in Table 1 the MSE values of sick subjects are
generally lower than those of healthy subjects, which suggests that
there are some differences between the results of sick testers and the
expected values in these particular exercises.

3.2.3 Effects of model-oriented motor
characteristics of healthy and patient subjects

For patients with lower limb motor dysfunction, there is usually
a more severe motor deficit on the affected side, whereas the
functional decline is usually weaker on the healthy side. As a result,
the sEMG signals we acquire often alternate between useful and
useless information, which can lead to problems such as gradient
vanishing or gradient explosion, causing loss of information. In
addition, these dysfunctional people are prone to problems such
as muscle fatigue and even spasticity. The angles of their lower
limb movements are more complicated and abnormal. Therefore,
extracting the relationship between sEMG signals and movement
trajectories under the above more complicated and non-ideal
factors is a challenging problem.

In order to verify the generalization performance of our
proposed model and the motion estimation performance for
subjects with lower limb motor dysfunction, we input the
second set of untrained data from the fifth healthy and diseased
participants into the model for ankle joint angle prediction. The
results are shown in Figure 12. For healthy subject 5, who is
not included in the trained dataset, sEMG and corresponding
movement angles are measured at different movement speeds
(2 km/h, 3 km/h, 5 km/h) and static plantarflexion and dorsiflexion
movement states. The results in Figure 13 indicate that, in
comparison with subjects 1–4, the predicted R for the walking
angle of healthy subject 5 without model training is slightly
lower but still greater than 0.985. However, with p > 0.05,
the difference is not statistically significant. This confirms that
the model exhibits good prediction performance for data from
subjects not included in the training set. For patient subject
2, the R > 0.99 for the untrained data on the affected side

demonstrates the effectiveness of our proposed model in predicting
angles on the affected side. However, as indicated in Table 2,
the MSE value is higher compared to the training data, reaching
6.0589. This may be attributed to the extensive angle fluctuation
in the late stages of exercise due to muscle spasm or fatigue in
diseased subjects. Consequently, the MSE value of the prediction
exhibits a substantial error compared to that of the training
data.

By estimating the lower limb motion for subjects other than
the training data, it can be seen that our proposed method
not only has better model generalization ability, but also can
predict the lower limb motion angle of the patient in a more
ideal way. This helps to identify the physiological differences
between healthy individuals and patients in specific movement
states or static states. Further analysis can try to identify the
physiological or medical factors that lead to these differences, which
has potential applications for disease diagnosis, treatment, or health
status assessment.

4 Discussion and conclusion

In this article, a multilayer CNN-LSTM prediction network
model incorporating a self-attention mechanism is proposed. In
order to validate the performance of the model in predictive
tracking of ankle joint mobility for different populations. The
remaining data of both healthy and patient subjects are treated
as test data and inputted into the model, and the prediction
results of different motion states for the fused model are
compared. The results show that most of the model’s prediction
R > 0.9 for different motion states of healthy subjects; in the
experiments oriented to the motion characteristics of patient
subjects, the angle prediction results of R > 0.99 for the untrained
data on the affected side, which proves that our proposed
model also has a better effect on the angle prediction of the
affected side. Therefore, the model we propose in this article
not only has a good exercise estimation ability for healthy
subjects, but also can be used for exercise estimation of lower
limb dysfunction, which helps to understand the differences
in physiological responses between healthy and patients under
different exercise modalities, and further analysis can try to find out
the physiological or medical factors that lead to these differences,
which can then be used for the evaluation of rehabilitation
efficacy oriented to clinical patients. The main merits of the
proposed method include that the design network architecture has
been designed and improves the interpretability and prediction
accuracy of the auto-regression model, and reduces the problems
of gradient disappearance or explosion caused by redundant
sensor information.

Electromyogram neural information collected from
the human body provides a new idea for human–robot
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interaction, and this study provides a feasible solution for
accurately estimating the ankle angle of the lower extremity in both
health and patients. Future work can be applied to the control of
exoskeleton robots, clinical rehabilitation training and evaluation.
However, this study also has some limitations. Since patients with
post-stroke hemiparesis are virtually unable to perform lower limb
walking movements in Brunnstrom stage I and II, our experiment
was only able to estimate movements for patients in stage III and
above. Subsequently, we will expand the number and range of
subjects and explore multi-sensor fusion methods to enhance the
reliability of the model.
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