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1 Introduction

The advancement of wearable technologies (wearables) and their use in neurosciences

signifies a new period filled with many possibilities and great potential (Byrom et al.,

2018). Contemporary wearables incorporate a range of sensing modalities including but

not limited to inertial measurement units (IMUs i.e., accelerometer and gyroscope),

electroencephalogram (EEG), and functional near-infrared spectroscopy (fNIRS) which

can provide high-resolution multimodal data to monitor significant (digital) clinical-

based biomarkers or functional/performance outcomes pertaining to domains of interests

within neuroscience. Notable examples include walking (i.e., gait performance) while

simultaneously examining electrical brain activity or concentration changes of oxygenated

and deoxygenated hemoglobin following neuronal activation (Stuart et al., 2018).

Digital biomarkers or performance outcomes arising from wearables could aid a better

understanding of neurological conditions like Parkinson’s Disease (PD), epilepsy, or

stroke during routine functional tasks (like walking) to get a better insight into real-

world challenges and incidents arising from home and/or community-based activities.

Moreover, integrating multi-modal wearable data (e.g., environmental) could enhance the

understanding of real-world challenges for those with a neurological disorder (Johnson

and Picard, 2020) e.g., unstable gait leading to near falls or falls during free-living walking

(Warmerdam et al., 2020; Moore et al., 2023).

1.1 Going beyond the clinic

Traditionally, the evaluation of motor impairments in PD is often performed through

visual observation by a clinician. However, that process is significantly dependent on

the experience and subjective opinion of the clinician. To curb subjectivity, the use

of specialized equipment, such as instrumented walkways has been adopted to obtain

objective high-resolution data and greater insights. Yet, regardless of the effectiveness of
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the objective measures that process necessitates patients to travel to

bespoke facilities, which can be inconvenient, costly, and physically

challenging for those with mobility impairments (Syed et al.,

2013). For a more decentralized approach, home motion systems

(e.g., Microsoft Kinect) that include cameras, infrared, and radar-

based devices have been utilized (Wang et al., 2014) but are

costly and have limited widespread use (Demiris et al., 2009;

Stone and Skubic, 2013). Accordingly, the need for low-cost/cost-

effective technology became apparent. Achieving an economically

decentralized approach would have added benefits of empowering

patients to use these devices at home which in turn could ease

the strain on healthcare systems to foster individualized care and

independent living (Chen et al., 2023). Equally, the onus is no

longer completely on the restrictive operational hours of clinics or

the availability of medical professionals.

Wearables can provide a cost-effective and empowering

approach for monitoring and rehabilitation beyond the clinic.

They enable real-time assessment, potentially enabling healthcare

providers to e.g., remotely monitor daily or weekly progress

during rehabilitation exercises. Not only could wearables

make rehabilitation more accessible by better accessing remote

geographical areas, but they could also enable the personalization

of treatment plans based on precise data tracking. However, the

global push for technological integration and societal acceptance is

an essential precondition for its widespread acceptance. Here, we

broadly examine the technology-based challenges facing the use of

wearables by care delivery teams or those working in clinical trials

within neuroscience. It is worth noting that real-world deployment

of wearables in care delivery and clinical trial settings face different

regulatory pathways and the reader is directed elsewhere for those

topics (Vasudevan et al., 2022; Izmailova et al., 2023; Leyens et al.,

2024).

2 Clinical challenges

2.1 Validation

For wearables to be used consistently and reliably they must

have a clearly defined contribution to improving clinical decisions

while not dramatically increasing workload. For consistency and

reliability, academic-based literature with robust evidence to show

effectiveness in quantifying a physiological response is required.

For example, quantifying gait in PD has emerged as a potential

outcome to inform diagnosis and disease progression (Zhu et al.,

2022). Validation of gait outcomes to known gold standard

references is a fundamental must and/or investigation to determine

any absolute differences due to any technology-based discrepancies

between device comparison (Del Din et al., 2016). Recently,

guidance on a flexible framework to inform clinical validation has

been presented (Goldsack et al., 2020). In short, those creating,

and using new wearables must follow proposed frameworks to

show clinical effectiveness in their cohort of interest to convince

associated healthcare professionals that adopting the technology

has a real-world positive effect for their patients. Moreover,

adoption of any wearable can only be truly achieved if it does

not add extra burden to the healthcare professional to undertake

patient assessments in what might be very time-limited meetings.

2.2 Perceptions and the future: education
and upskilling

The successful trajectory of wearables within neurosciences is

intertwined with perceptions and understanding (Karahanoğlu and

Erbuğ, 2011). As with any technology, its widespread acceptance

is contingent upon trust and comprehension of its functionalities.

It’s not solely about the technological proficiency of these devices

but also about how their usability is determined by the public

(Lee and Lee, 2020). For example, older adults often grapple

with digital illiteracy and present a layer of complexity in this

landscape (Wu et al., 2015). A well-informed public can discern the

transformative capabilities of wearables, recognizing their potential

to revolutionize healthcare, enhance daily life, and potentially

unlock deeper health insights. Conversely, misconceptions or

unwarranted fears, often stemming from a lack of understanding

or misinformation, could hinder adoption (Cheung et al., 2019).

Apprehensions may include privacy concerns, potential health

implications, or even societal implications of widespread patient

monitoring (Awotunde et al., 2021). To effectively engage older

adults resistant to technology, a more personalized approach is

required. For example, Xie (2011) proposed an initial assessment

of technological skills to identify specific knowledge gaps and areas

of discomfort. Following this assessment, training programs are

tailored to the individual’s needs and interests, focusing on practical

technology applications they find engaging and relevant. To foster

a conducive environment for the growth of wearable neurotech,

proactive steps must be taken to educate where educational

campaigns could play an important role. Leveraging various media

platforms, from traditional outlets like television and newspapers

to digital platforms such as social media and podcasts, could reach

a diverse audience. Interactive workshops could offer hands-on

experiences, allowing individuals to familiarize themselves with the

technology (Yang et al., 2022). Furthermore, open dialogues in the

form of talks at local community centers and societies or webinars

can provide a platform for experts to address questions, dispel

myths, and engage in constructive discussions about the future

of wearables in healthcare (Shegog et al., 2020). However, public

education is just one facet of the equation. As wearables become

more integrated into healthcare and daily living, professionals

interfacing with them may often require specialized training, so

they can adequately inform patients how to use them in their

homes (Bruno et al., 2018). Healthcare providers must be adept

at interpreting arising data and understanding the application for

altering patient care (Hilty et al., 2021). Caregivers could also need

training, such as through video tutorials, to ensure optimal benefits

for those in their care (Bruno et al., 2018; Li et al., 2019).

Upskilling should also extend to future healthcare

professionals. Higher education institutions are beginning to

employ the use of digital learning tools such as games, podcasts,

e-compendiums, massive open online courses (MOOCs), and

simulations. Those tools aim to produce better-skilled healthcare

professionals, supplementing conventional teaching approaches

with indispensable training in utilizing contemporary technologies

that enhance patient care (Foss and Haraldseid, 2014). However,

more adoption and integration into curricula is required to

ensure the next generation of healthcare professionals is adept

at dealing with a wearable revolution (Grimwood and Snell,
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2020). It is essential that the future workforce is accustomed to

the technology and what it is providing. That includes learning

intricate functionalities and implications of wearables and how

they can effectively utilize data (Brice and Almond, 2020). It is

imperative they also have an awareness of how to integrate this

information into personalized care plans, ensuring a balance

between technological efficiency and human-centered care to

ultimately improve patient care (Dyb et al., 2021). These unique

challenges highlight the need for advanced but intuitive devices,

where design prioritizes simplicity and intuitive interactions over

mere technological feats (Noble and Blandford, 2013).

2.3 Data integrity: security, privacy, and
user autonomy

The increasing connectivity of devices brings a concern:

the secure handling of data. Wearables collect vast personal

data, from activity patterns to sleep cycles. In malicious hands,

those data could reveal an individual’s habits and health,

leading to threats like tailored phishing attacks (Peppet, 2014).

Additionally, as wearables integrate with payment platforms

and smart homes, breaches could expose financial data or

allow unauthorized device control (Bezovski, 2016). Therefore,

manufacturers have a responsibility to ensure comprehensive

and evolutionary security measures (Safavi and Shukur, 2014).

Central to this is the principle of clear data management,

where users should be clearly informed about the handling of

their data e.g., storage location, accessibility, and use (Troiano,

2016).

On a broader level, the healthcare industry faces its own set of

challenges, highlighted by a report from the HIPAA Journal which

noted 505 healthcare data breaches in 2019 alone, underscoring

vulnerability to cyber-attacks (Alder, 2020). These breaches not

only risk patients’ personal information but also expose healthcare

providers to legal actions from affected individuals seeking

compensation for the invasion of privacy and potential harm.

That emphasizes the necessity for robust data security measures,

such as adopting advanced encryption, two-factor authentication,

and conducting regular security audits. Those approaches should

instill strong customer trust but may only be maintained through

transparent communication and continuous technical support

(Seh et al., 2020). However, the variability of data security and

privacy regulations across jurisdictions poses a significant challenge

for healthcare. Dimitropoulos and Rizk (2009) highlight the

difficulty in accommodating varying policy requirements for health

information exchange, stressing the need for a consensus on

common policies to ensure adequate data protection and security.

Manufacturers should provide users with easily accessible and

understandable privacy policies, ensuring that even those without

technical expertise can grasp how their data are used (Gluck et al.,

2016). Moreover, the principle of data minimization should be

adopted. This means wearables should only collect data that is

necessary for their functionality, thereby reducing potential harm if

a breach occurs. For instance, if a fitness tracker’s primary function

is to measure steps, it shouldn’t unnecessarily collect location data

unless it’s essential for a specific feature (Wolf et al., 2015). Finally,

another crucial aspect is the implementation of user-controlled data

permissions, where users should have the power to decide what

data they are comfortable sharing and with whom. That empowers

individuals but also fosters trust between users and manufacturers

(Waldman, 2018).

2.4 Joined-up thinking: interoperability and
IoT

The real value of this innovation emerges when wearables and

peripheral technologies can communicate and work together. For

example, heart failure events in patients with implanted devices

were accurately predicted using a multi-modal approach with

the integration of physical activity, heart rate, respiration rate,

and other physiological variables (Boehmer et al., 2017). Another

example could involve evaluating the relationship between sleep

quality, heart rate variability, and stress levels during the day

(Khanna and Jones, 2023). That scenario would require data

fusion from various sensors, including actigraphy, respiratory

sensors (e.g., nasal airflow sensors), galvanic skin response (GSR),

body temperature, and heart rate sensors (Celik and Godfrey,

2023).

Currently, many proprietary systems exist, and each has

its bespoke protocols and interfaces, resulting in compatibility

issues. That fragmented environment poses challenges for users

who wish to integrate wearables from different manufacturers

in a seamless manner (Zeadally et al., 2019). Consequently,

the need for standardization becomes essential, with Ravizza

et al. (2019) providing a review of the current and upcoming

regulatory requirements for wearable sensors in preclinical

and clinical testing, highlighting the need for adherence to

international standards set by bodies such as the International

Electrotechnical Commission (IEC) and the International

Organization for Standardization (ISO). Although some guidelines

exist, e.g., Surface Electromyography for the Non-Invasive

Assessment of Muscles (SENIAM) other physiological outcomes

are lacking e.g., guidelines for inertial-based wearable placement

(Celik et al., 2021). Key stakeholders should often prioritize

collaboration over competition for a unified approach. By

supporting standard protocols, wearables of any origin could

communicate effectively, improving interoperability. Another

potential approach to overcoming interoperability challenges

involves standardizing the data outputs from various wearable

technologies. This could be implemented similar to the model of

the WHO’s cytokine standards, which have facilitated uniform

comparisons by setting a universal metric system (Mire-Sluis

et al., 1998). That could also help facilitate, seamless integration

and technological advancement by benchmarking against

established standards to (i) understand data variations and

normalize outputs and, (ii) enhance the precision and reliability of

wearable healthcare technologies (Baker et al., 2017). Additionally,

embracing open-source platforms could be a key driver for

innovation beyond borders. Such collaborative efforts not only

improve user experience but also enable a more inclusive and

dynamic future for wearable neurotechnology (Bhat et al.,

2019).
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FIGURE 1

Key challenges and strategies for wearable healthcare technologies. This diagram classifies the challenges into four main categories: technical and

design, data management, economic and accessibility, and sustainability, with a focus on ensuring e�ectiveness, secure integration, a�ordability, and

long-term viability of wearables in healthcare.

3 Developmental challenges

Some wearables can be expensive, making them elusive to

a large proportion of society, where such financial constraints

potentially deprive many of benefiting from the technologies ability

to support a healthy life (He et al., 2023). For democratization

of wearables, it’s pivotal for manufacturers to innovate. That

encompasses cost-effective production, scalable designs, and

creating partnerships. Collaborations, especially with entities

like governmental health bodies, can be instrumental in

offsetting costs, ensuring wearables are universally accessible,

and of benefit to the wider public (Kang and Exworthy, 2022).

Manufacturers must also prioritize applications that offer the

most substantial benefits and value. That concept, much like the

evaluation of potential technology platforms in pharmaceutical

pipeline management, would involve assessing wearables for

their cost-effectiveness, patient outcome improvements, and

efficiency in healthcare processes (Bode-Greuel and Greuel,

2005).

3.1 User-centric design: ergonomics,
accessibility, and support

Continuing technological advancements can improve daily

lives, but even advanced wearables can lose appeal if they don’t

align with user needs/preferences (Lidwell et al., 2010). That

sentiment is accentuated in those with a neurological disorder,

where people might be intricately navigating the challenges
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of physical or cognitive impediments (Wilson et al., 2022).

Therefore, ergonomics is key. A device, irrespective of its

capabilities, must be crafted to blend seamlessly into the user’s

daily routine. For instance, those with tremors might benefit

from stabilization features or larger tactile buttons, while those

with sensory sensitivities might prefer adjustable feedback settings

or hypoallergenic materials (Imbesi and Scataglini, 2021; Kang

and Exworthy, 2022). It is also essential that the wearables be

comfortable for extended wear, ensuring they neither exert undue

pressure nor evolve into a source of discomfort (Lewis and Neider,

2017). The user interface (tactile buttons, interactive touchscreens,

or voice-activated commands), should be conceptualized with

user ease at the forefront and should resonate as a harmonious

extension of the user’s intent, rather than an unwieldy appendage

(Kumari et al., 2017). Furthermore, individuals grappling with

functional limitations may experience difficulties in adeptly

utilizing wearables that lack user-friendly fixation to their body, e.g.,

devices designed for lower back attachment. Consequently, these

challenges serve to curtail their engagement with, and adoption

of, such technological innovations (Guerra et al., 2023). Beyond

the wearable itself, a robust support infrastructure can also play

a pivotal role in amplifying the user experience. This includes

available customer helplines, comprehensive online tutorials, and

active community forums, where the primary goal is to ensure that

users not only have access to a modern tool but are adequately

supported in using it to its full potential (Vassli and Farshchian,

2018).

3.2 Evolution and sustainability: meeting
the needs of tomorrow

In a time of rapid technological progress, there’s a genuine

concern about devices becoming outdated quickly (Spender

et al., 2019). This poses a distinct challenge for manufacturers

where they must now think ahead, creating devices that cater

to current demands while also being prepared for future

needs. This can be realized through regular software updates

that bring new features and security, ensuring these devices

remain current and reliable (Schukat et al., 2016). Another

concern is battery life where a wearable’s utility is significantly

diminished if it cannot last a day without recharging (Godfrey

et al., 2018). Manufacturers face the challenge of innovating

while balancing power consumption with performance,

especially since battery technology, despite its advancements,

often lags the demands of modern devices, resulting in user

frustrations. Solutions must encompass energy-efficient designs,

the exploration of alternative power sources, and software

optimizations (Rault et al., 2017). The emerging use of energy

harvesting systems in wearable technology is spearheading

this ethos, utilizing sophisticated methods to transform the

body’s kinetic energy, such as movement and gait, and thermal

energy, like body heat differential, into electrical power to

enhance the autonomy and longevity of wearables (Ali et al.,

2023). For wearables to thrive, they must be forward-thinking

and power-sustainable.

4 Conclusion

The use of wearables has the potential to reshape the

understanding of neurological conditions and revolutionizing

patient care. Wearables, with their potential to monitor intricate

biomarkers, could provide a plausible decentralized approach

to healthcare. However, the journey to pragmatically integrate

wearables into routine practice has clinical and developmental

challenges: validation, perceptions, data integrity, lack of joined

up thinking, weak user-centric designs, and evolutionary needs.

Realizing wearable neurotech potential requires a concerted

effort from manufacturers, healthcare professionals and the

public (Figure 1). By addressing these challenges and fostering a

collaborative environment, wearables can find their rightful place

to unlock new possibilities in better understanding neurological

conditions from beyond the clinic.
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