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Data-driven spiking neuronal network (SNN) models enable in-silico analysis

of the nervous system at the cellular and synaptic level. Therefore, they

are a key tool for elucidating the information processing principles of the

brain. While extensive research has focused on developing data-driven SNN

models for mammalian brains, their complexity poses challenges in achieving

precision. Network topology often relies on statistical inference, and the

functions of specific brain regions and supporting neuronal activities remain

unclear. Additionally, these models demand huge computing facilities and their

simulation speed is considerably slower than real-time. Here, we propose a

lightweight data-driven SNNmodel that strikes a balance between simplicity and

reproducibility. Themodel is built using a qualitative modeling approach that can

reproduce key dynamics of neuronal activity. We target the Drosophila olfactory

nervous system, extracting its network topology from connectome data. The

model was successfully implemented on a small entry-level field-programmable

gate array and simulated the activity of a network in real-time. In addition, the

model reproduced olfactory associative learning, the primary function of the

olfactory system, and characteristic spiking activities of di�erent neuron types.

In sum, this paper propose a method for building data-driven SNN models from

biological data. Our approach reproduces the function and neuronal activities of

the nervous system and is lightweight, acceleratable with dedicated hardware,

making it scalable to large-scale networks. Therefore, our approach is expected

to play an important role in elucidating the brain’s information processing at

the cellular and synaptic level through an analysis-by-construction approach. In

addition, it may be applicable to edge artificial intelligence systems in the future.
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1 Introduction

Elucidating the mechanisms underlying information

processing in the brain represents a great challenge in neuroscience.

In parallel to collecting data with experiments, building brain

models has proven to be a powerful approach to enable in-silico

analysis and provide a framework for understanding information

processing in the brain. Macroscopic models (Kawato, 1999;

Frank et al., 2001; Norman and O’Reilly, 2003; Walther and

Koch, 2006) describe information flow at the functional level

and present an overview of neural processing. In contrast,

spiking neuronal network (SNN) models emulate the brain at the

cellular and synaptic level and provide their in-silico counterparts,

which are more tractable and easier to manipulate. From an

engineering perspective, properly built SNN models are expected

to be capable of intelligent information processing equivalent

to the brain. Silicon neuronal network (SiNN) chips, which

are highly power-efficient neuromorphic hardware optimized

for SNN models, have already been developed (Merolla et al.,

2014; Qiao et al., 2015; Davies et al., 2018). Therefore, they

have great potential for next-generation artificial intelligence

(AI) applications.

The structure of the brain is highly diverse, which makes

it demanding to capture the comprehensible rules about the

network topology. In addition, a wide variety of neuronal and

synaptic properties has been reported. The data-driven approach

intends to replicate the brain by semi-automatically incorporating

vast amounts of anatomical and physiological data. Several

large-scale data-driven SNN models (Markram et al., 2015;

Bezaire et al., 2016; Ecker et al., 2020) that reproduce a part

of the mammalian cortex and hippocampus have been built.

They were designed to replicate the network topology, neuronal

anatomy and electrophysiology, and synaptic properties, and

they successfully reproduced the characteristic spiking activities

seen in the target regions. However, in mammalian brains,

the considerable number of neurons makes it challenging to

measure the exact connection topology between the neurons.

Hence, the network topology was inferred based on statistical

data. In addition, because each brain region closely interacts

with various other brain regions, it is not trivial to understand

the specific function of the target region. Generally, data-driven

models employ the ionic-conductance-based neuronal models,

which can reproduce arbitrary electrophysiological properties

but incur enormous computational costs. For example, the

model in Bezaire et al. (2016) runs on a supercomputer

consisting of 3,488 processors, and its simulation speed is

1,600 times slower than real-time. Moreover, these models

are not suitable for implementation on SiNNs because they

involve complex calculation processes that require enormous

circuit resources.

In this study, we built a data-driven SNN model for the

olfactory nervous system of Drosophila melanogaster (fruit fly).

The system is a relatively small (∼2,200 neurons) network

having a known function, whose complete network topology,

or connectome, is available. The electrophysiological activity of

neurons was reproduced by using the piecewise quadratic neuron

(PQN) model, which is a lightweight neuron model suitable for

digital arithmetic circuit implementations (Nanami and Kohno,

2016a,b, 2023; Nanami et al., 2016, 2017, 2018).

The PQN model was adopted to reduce the computational

cost and enable the SNN model to be run on a SiNN chip.

It focuses on reproducing the key dynamics behind neuronal

activities with lightweight calculations. Themodel is designed using

the dimension reduction techniques of nonlinear dynamics such

that the dynamical structure of the activity of the target neuron is

preserved. Unlike integrate-and-fire (I&F) based models, such as

the leaky I&F model, Izhikevich (IZH) model (Izhikevich, 2003),

and adaptive exponential I&F model (Brette and Gerstner, 2005),

the dynamics in the neuronal spike are not replaced by a resetting

of the membrane potential. I&F-based models are generally more

lightweight than the PQNmodel. However, they have been reported

to have limitations in the reproducibility of neuronal activities.

For example, because their spike amplitudes are fixed, they cannot

reproduce the propagation of spike intensity observed in some

brain regions including the hippocampus (Alle and Geiger, 2006).

In addition, the IZH model can only reproduce spiking within a

limited range of stimulus intensities (Nanami and Kohno, 2016b).

Furthermore, the phase-resetting curve of the Class II mode in

Hodgkin’s classification (Hodgkin, 1948) of the IZH and AdEx

models differs from the typical shape (Nanami and Kohno, 2023).

In addition to the aforementioned advantages, the PQN model

supports the efficient implementation on digital arithmetic circuits.

Thus, the SNNmodel can be executed efficiently (power and speed)

with a SiNN on field-programmable gate arrays (FPGAs) and

application-specific integrated circuits (ASICs). The results in this

study were obtained using a SiNN on an entry-level low-cost FPGA

chip to demonstrate its potential for low-power brain-morphic

artificial intelligence (AI) applications.

In recent years, brain-inspired AI has become popular, where

spike-based machine learning (Yang and Chen, 2023a,b; Yang

et al., 2023a,b) is studied mainly using I&F-based models. These

studies built massively parallel information processing systems

inspired by the brain’s structure to enable advanced and robust

information processing with low power consumption. In contrast,

here we aim to provide an in silico platform that more faithfully

reproduces neuronal connectivity and information processing in

brain microcircuits, which is distinct from the objective of brain-

inspired AI.

The fruit fly brain comprises 100,000 neurons. Moreover,

its connectome was recently revealed (Scheffer et al., 2020). It

is compact compared to the mammalian brain but capable of

complex information processing. Its olfactory nervous system

consists of brain regions including the antennal lobe and the

mushroom body, the anatomy and physiology of which have

been widely studied (Wilson, 2013; Modi et al., 2020). The

function and activity of each type of neuron in these regions

are better characterized in the context of sensory input and

behavioral output than those of the mammalian cortex and

hippocampus, enabling us to adequately verify the reproducibility

of the model. However, previous modeling studies (Wessnitzer

et al., 2012; Faghihi et al., 2017; Kennedy, 2019) (not data-driven)

of the olfactory nervous system used simplified I&F-based neuron

models, which did not fully reproduce the electrophysiological

properties of each type of neurons. Specifically, they did not
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reproduce the characteristic spiking activities seen in the olfactory

nervous system including (1) odor-evoked oscillatory firing in

the projection neurons (PNs) and local neurons (LNs) (Tanaka

et al., 2009), (2) absence of oscillations in Kenyon cells (KCs)

(Turner et al., 2008), (3) different contributions of LN subclasses

to the formation of oscillations (Tanaka et al., 2009), and (4)

temporal dynamics of firing in mushroom body output neurons

(MBONs) (Hige et al., 2015). Thus, it is uncertain whether they

accurately capture information processing mechanisms in the

olfactory nervous system. More sophisticated, ionic-conductance-

based SNN models of the insect brain (Bazhenov et al., 2001a,b)

had been built for the antennal lobe of locust. However, they were

not data-driven and did not reproduce most of the aforementioned

characteristics of spiking activities. This is likely because they

modeled only PNs and LNs, and also lacked electrophysiological

data on identified neurons. Here we built a model of a fly olfactory

system incorporating the connectome data as well as neuronal

and synaptic electrophysiological properties of neurons. Ourmodel

successfully reproduced not only the aforementioned characteristic

spiking activities (1)–(4) of the constituent cells, but also olfactory

associative plasticity, the primary function of the olfactory system.

Although we did not intend to implement every single known

neuron or connection in our model, this study lays a foundation

for building lightweight data-driven SNN models and is expected

to aid in understanding the brain and developing brain-morphic

AI systems.

2 Methods

2.1 Network model

This section provides an overview of the proposed network

model. The model comprises an antenna, the antennal lobe, and

the mushroom body (Figure 1). The antenna contains olfactory

receptor neurons (ORNs), and the antennal lobe contains LNs

and PNs (Stocker et al., 1990). KCs, an anterior paired lateral

neuron (APL), and MBONs are present in the mushroom body

(Aso et al., 2014a). The two MBONs, MBON-α1 and MBON-α3,

project to SMP354 neuron, whose excitatory activity can trigger a

series of olfactory approach behaviors including upwind steering

and locomotion (Aso et al., 2023). ORNs, PNs, KCs, and MBON-

α3 are cholinergic (Yasuyama and Salvaterra, 1999; Kazama and

Wilson, 2008; Tanaka et al., 2008; Barnstedt et al., 2016) and

form excitatory synapses. Some LNs are cholinergic (Shang et al.,

2007) or glutamatergic (Das et al., 2011) and are considered

as sources of excitatory or inhibitory input (Olsen et al., 2007;

Shang et al., 2007). However, most LNs are GABAergic (Python

and Stocker, 2002; Wilson and Laurent, 2005) and have been

shown to provide inhibitory input (Olsen and Wilson, 2008; Root

et al., 2008). Thus, in this model, all LNs were set as inhibitory.

APL is GABAergic (Tanaka et al., 2008) and inhibitory, whereas

MBON-α1 is glutaminergic (Aso et al., 2014a) and inhibitory.

The numbers in Figure 1 represent the numbers of neurons

implemented in the model. Synaptic connections were determined

using the connectome database hemibrain v1.2.1 (HEM, 2020;

Scheffer et al., 2020). Since this model targets the olfactory nervous

system of the right hemisphere, we first obtained the number of

neurons of each type in the right hemisphere from the hemibrain

server using the NC function of the neuprint-python library.

We then determined the connections between neurons using the

fetch_neurons function of the neuprint-python that returns the

number of synaptic connections between neurons. Connections

with more than ten synapses were assumed to have sufficient

strength, and their weight w was set to 1. Otherwise, w was set to

0. Note that the connections of LNs were determined based on a

previous study (Seki et al., 2010).

A variety of LN subclasses were reported (Chou et al., 2010;

Seki et al., 2010) identified four subclasses, each with different

spiking properties. However, the connectome database (HEM,

2020; Scheffer et al., 2020) does not describe which subclass each

LN belongs to. Therefore, the connection of LNs was determined

based on Seki et al. (2010) where the probabilities that each LN

subclass has a connection to a certain glomerulus were shown.

In the antennal lobe, glomeruli are neuropils comprising axons

and dendrites of PNs, LNs, and ORNs. ORNs and PNs are

generally connected to only one glomerulus. We first determined

the subclasses to which 191 LNs belong. As the proportion of

each subclass is unknown, we set the number of NP2426_class1

to 47 and the remaining to 48 to ensure that the distribution

of subclasses was as even as possible. Next, for each LN, we

randomly determined whether each LN innervates each glomerulus

according to the innervation probabilities shown in Seki et al.

(2010). If an ORN/PN and LN innervate the same glomerulus,

the ORN/PN was assumed to make a synaptic connection

onto the LN, and the synaptic weight w was set to 1. For

example, LNs NP1227_class1 connect to glomerulus DA1 with a

probability of 75% (Seki et al., 2010). Based on this probability,

we determined whether each LN NP1227_class1 connects to

glomerulus DA1.

Each ORN expresses one of the olfactory receptors, each of

which has different odor selectivity. A previous study (D.Münch

and Galizia, 2016) described a correspondence table between

glomerulus and olfactory receptor (OR) types. We used this table

and the glomerulus type for each ORN listed in the connectome

database to determine the OR type for each ORN. When multiple

OR types were assigned to a single glomerulus type, one OR was

randomly selected.

Odors are first detected by ORNs on the antenna. ORNs express

one of the ORs, each possessing different odor selectivity. ORNs

extend their axons to the antennal lobe and project to PNs and

LNs. As the firing activities of ORNs are the input data, they are

not modeled. Figure 2A shows part of the connection structure

from ORNs to PNs in the model. The black squares represent the

presence of connections. On average, each ORN projects to 1.6

PNs, and each PN receives input from 24.0 ORNs. ORNs and PNs

were sorted based on their glomerulus type, the borders of which

are represented by blue lines. ORNs generally project to all the

PNs in the same glomerulus type (Kazama and Wilson, 2009). This

convergent projection is considered (Bhandawat et al., 2007) to

enable PNs to produce reliable output by averaging the input from

a large number of ORNs, whereas the responses of ORNs to odors

are noisy and unreliable (Stocker et al., 1990). LNs receive inputs

from a wide range of ORNs and extensively inhibit PNs and LNs.

On average, each LN receives input from 1337.4 ORNs and inhibits

90.9 PNs. LNs are considered to contribute to the gain control of the
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FIGURE 1

Network overview. The network comprises an antenna, the antennal lobe, and the mushroom body. ORNs, PNs, KCs, and MBON-α3 are excitatory

neurons, whereas LNs, APL, and MBON-α1 are inhibitory neurons. SMP354 neuron receives excitatory and inhibitory input from the two MBONs and

produces the approach cue. KC > MBON-α1 synapses can express synaptic plasticity, which is driven by the reward signal.

FIGURE 2

Synaptic connections from ORNs to PNs (A) and PNs to KCs (B).

input from ORNs (Olsen and Wilson, 2008) and to the generation

of oscillations in the antennal lobe (Tanaka et al., 2009).

PNs extend their axons to the entrance of the mushroom

body, where they provide excitatory input to KCs. On average,

each PN projects to 67.6 KCs, and each KC receives input

from 4.2 PNs. Figure 2B shows part of the connection structure

from PNs to KCs in the model. In contrast to the connections

between ORNs and PNs, there is no regularity in the connections

between PNs and KCs, which was confirmed in a previous

study (Caron et al., 2013). APL receives input from almost

all KCs and PNs and returns inhibitory feedback to KCs

and MBONs.

There are 28 MBONs, or 44 including atypical MBONs (Li

et al., 2020), at least some of which signal either positive or

negative valence (Aso et al., 2014b). While how MBON signals

are further processed by the downstream circuits to determine

the behavioral output is still largely elusive, the connectome study

discovered that postsynaptic neurons of the MBONs typically

receive synaptic input from more than one type of MBONs (Li

et al., 2020), suggesting that valence signals could be integrated by
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those neurons. A recent study characterized such a circuit motif

experimentally (Aso et al., 2023). A cluster of 8–10 neurons named

UpWind Neurons (UpWiNs) directly and indirectly integrates

excitatory and inhibitory input from MBON-α3 and MBON-α1,

respectively. Direct optogenetic activation of MBON-α3 induces

upwind locomotion, which can be interpreted as an olfactory

approach behavior (Matheson et al., 2021), while activation of

MBON-α1 does not induce such behavior (Aso et al., 2023).

Experiments using compartment-specific optogenetic activation

of dopaminergic neurons demonstrated that α3 and α1 are

an aversive- and appetitive-memory compartment, respectively

(Aso and Rubin, 2016). Moreover, optogenetic activation of

UpWiNs triggers robust upwind locomotion (Aso et al., 2023).

Thus, the UpWiN cluster is one of the sites where signals

of opposite memory valence are integrated and translated into

olfactory navigation behavior. Since neurons in the UpWiN

cluster are heterogeneous in their anatomy and connectivity,

in our model, we focused on one of the neurons, SMP354,

(bodyId in hemibrain is 390003153), which receives direct synaptic

input from both MBON-α3 and MBON-α1. Because there is

no specific genetic driver to label this particular neuron, we

were unable to use experimentally determined electrophysiological

parameters for this neuron. Although our model is simplified

in terms of the readout mechanism of the mushroom body

signals, we believe that the SMP354 circuit represents one

of the common motifs that interpret the population signals

of MBONs.

If a reward or punishment is given to a fly with an

odor, the fly will learn to approach or avoid that odor

thereafter (Tully and Quinn, 1985). Multiple studies (Cohn

et al., 2015; Hige et al., 2015; Owald et al., 2015) indicate

that this olfactory associative learning is caused by long-

term depression of KC>MBON synapses. In the case of the

circuit associated with UpWiNs, it has been experimentally

demonstrated that induction of plasticity in α1, which mimics

appetitive conditioning, depresses olfactory responses of MBON-

α1. This in turn potentiates responses of UpWiNs, whose naïve

odor responses are typically weak (Aso et al., 2023). In our

model, when an odor is given, excitatory signals reach KCs

via ORNs and PNs, then KCs generate spikes. Here, each

individual odor elicits spikes in small, distinct population of

KCs. A reward stimulus given following the odor weakens

the weights of KC>MBON-α1 synapses whose presynaptic

KCs had been firing within 5 seconds prior to the stimulus.

Although the magnitude of the decrease in the synaptic weight

after a single learning is not clear, we set the initial value

of w to 1 and the weakened value to 0.25. Reward stimuli

are transmitted to KC>MBON synapses through dopaminergic

neurons innervating the mushroom body (Aso et al., 2014b);

however, this pathway was not modeled in this study. Whereas

MBON-α1 fires in response to all odors before learning, after

learning, it will reduce responsiveness only to the learned odor

because the synaptic connections from the KCs representing the

learned odors will be selectively weakened. Since MBON-α1 is

inhibitory, the activity of SMP354, receiving input from MBON-

α1 will be disinhibited and thus fire only in response to the

learned odor. This activity of SMP354 represents the output of

the network.

We prepared electrophysiological data of each neuron and

tuned the PQN models to replicate them. For LNs and KC,

data recorded in previous studies (Seki et al., 2010; Inada et al.,

2017) were used. The detailed procedures for the data acquisition

from PNs and MBONs are described in the Methods section.

Owing to the lack of data on APL and SMP354 neurons,

only the modeling results are shown. Since we did not have

data on MBON-α3, we used the one on MBON-α1. The

PQN model was used to model the neurons. The parameter

sets of the PQN model are shown in Supplementary Tables S1–

S9. Figure 3 illustrates the responses of the somatic membrane

potentials in vivo (red) and those of the PQN models on FPGA

(blue). The black plots are the step input currents, whose unit

in the recording is pA. The FPGA simulation results have

no physical unit. Although a variety of LN subclasses were

observed (Chou et al., 2010; Seki et al., 2010), we employed

four electrophysiologically identified subclasses reported in Seki

et al. (2010). They are Krasavietz_class1, Krasavietz_class2,

NP1227_class1, and NP2426_class1; we fitted PQN models

to each of them. The parameters of the PQN model were

automatically determined using a fitting method (Nanami et al.,

2017, 2018) based on the differential evolution algorithm (Storn

and Price, 1997). Detailed activities of each neuron are shown in

Supplementary Figures S1–S7.

2.2 Electrophysiological measurements

2.2.1 Recording from PNs
Whole-cell patch-clamp recordings from PN somata were

performed as previously described (Inada et al., 2017). Briefly,

the brain of w;UAS-ReaChR::Citrine(attP40) /+;VT033006-

Gal4(attP2)/+ female flies (von Philipsborn et al., 2011; Inagaki

et al., 2013), 3 days post eclosion, was removed from the

head capsule and fixed on a glass slide with surgical glue

(GLUture, Abbott). Part of the perineural sheath covering

the antennal lobe was removed to obtain an access to cell

bodies. The external saline added on top of the plate was

circulated throughout the experiment. A patch pipette was

pulled from a thin-wall glass capillary (1.5 mm o.d./ 1.12 mm

i.d., TW150F-3, World Precision Instruments). Resistance

of the pipette was typically 8–10 M�. The internal solution

contained (in mM) 140 KOH, 140 aspartic acid, 10 HEPES,

1 EGTA, 4 MgATP, 0.5 Na3GTP, 1 KCl, and 13 biocytin

hydrazide (pH ∼7.2, osmolarity adjusted to ∼265 mOsm).

Electrophysiological recordings were made with a Multiclamp

700B amplifier (Molecular Devices) equipped with a CV-

7B headstage. Signals were low-pass filtered at 2 kHz and

digitized at 10 kHz. Multiple levels of depolarizing currents

were injected into the soma of individual PNs to examine the

relationship between the input current and the membrane

potential or spike output. PNs were identified based on

the signals from Citrine as well as biocytin included in the

internal solution.
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FIGURE 3

Electrophysiological properties of somatic membrane potentials of the in vivo data (red) and the simulated results of the PQN models in silico (blue)

in response to step stimulus inputs (black). We conducted recordings from PNs and MBONs in this study. The data of the KC and four subclasses of

the LNs are from previous studies (Seki et al., 2010; Inada et al., 2017). As there is no recorded data of APL and SMP354 neuron, we only show the

simulation results.
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2.2.2 Recording from MBONs
In vivo whole-cell current-clamp recordings from MBON-

α1 and optogenetic trainings were performed as previously

described (Hige et al., 2015; Aso et al., 2023). Female flies

with the genotype of 10xUAS-ChrimsonR-mVenus (attP18)/w;

R71C03-LexA (attP40)/LexAop-GFP (attp5); MB043C/+ reared on

conventional cornmeal-based food were collected on the day of

eclosion, transferred to all-trans-retinal food (0.5 mM) and kept

in the dark for 48–72 h until experiments. The patch pipettes

were pulled for a resistance of 4–6 M� and filled with pipette

solution containing (in mM): L-potassium aspartate, 140; HEPES,

10; EGTA, 1.1; CaCl2, 0.1; Mg-ATP, 4; Na-GTP, 0.5 with pH

adjusted to 7.3 with KOH (265 mOsm). The preparation was

continuously perfused with saline containing (in mM): NaCl, 103;

KCl, 3; CaCl2, 1.5; MgCl2, 4; NaHCO3, 26; N-tris (hydroxymethyl)

methyl-2-aminoethane-sulfonic acid, 5; NaH2PO4, 1; trehalose, 10;

glucose, 10 (pH 7.3 when bubbled with 95% O2 and 5% CO2,

275 mOsm). Whole-cell recordings were made using the Axon

MultiClamp 700B amplifier (Molecular Devices). MBON-α1 was

visually targeted by the GFP signal with a 60X water-immersion

objective attached to an upright microscope. Cells were held at

around −60 mV by injecting hyperpolarizing current. Signals

were low-pass filtered at 5 kHz and digitized at 10 kHz. Data

acquisition and analyses were done by custom scripts in MATLAB

(MathWorks). 3-octanol (OCT) and 4-methylcyclohexanol (MCH)

were presented to flies with custom odor delivery system after

diluting to 1% of the saturated vapors. After recording baseline

responses by alternately presenting OCT and MCH five times

(duration, 1 s; interval, 30 s), OCT was paired with 625 nm

LED photostimulation (pulse duration, 1 s; frequency, 0.5 Hz;

power, 17 mW/mm2) for 1 min. MCH was presented without

photostimulation for 1 min. 1.5 min later, post-pairing responses

to both odors were recorded five times. The pairing resulted

in selective depression of OCT responses, which is consistent

with a previous study (Aso et al., 2023). The I-V relationship

was measured before pairing by injecting 1-s square pulses with

incrementing amplitudes (0–10 pA, 2 pA steps).

2.3 ORN input data

The input data were generated using the DoOR dataset

(D.Münch and Galizia, 2016), which comprehensively reports the

response properties of ORs of Drosophila. The dataset shows the

response intensities of each OR for a wide variety of odorants.

Given a certain odor, the firing frequency r of an ORN that

expresses a certain OR is given by Equation (1).

r = c0kjrij + rspo, (1)

where rij is the response intensity of the ith OR to the jth odorant,

and its value ranges from 0 to 1. rspo represents the spontaneous

firing frequency, which was set to 8 from the average value

examined in de Bruyne et al. (1999). kj is a constant that abstractly

refers to the concentration of the jth odorant; its values range from

0 to 1 and are listed in Supplementary Table S10. As ORNs fire at

approximately 200 Hz in response to the most favorable odorants

(Hallem and Carlson, 2006), parameter c was set to 192, such that

the maximum firing frequency r would be 200 when rij and kj were

1. Based on the Poisson process, each ORN generates a spike with

probability rdt at every time step, where time step dt is 1 ms. In

the input dataset, six odorants were applied sequentially for one

second every five seconds. The synaptic currents from ORNs were

calculated using the following Equations (2, 3).

s← 1 (x = 1) (2)

ds

dt
= −βs (x = 0) (3)

where x represents the spiking information of an ORN. x is 1

when a spike is emitted in the current time step by an ORN and

0 otherwise. ORNs are cholinergic (Kazama andWilson, 2008), and

their β was set to 203.125 as well as the other synapses.

We prepared three types of input data for the in-silico

experiments. In the first type of the input data, one of

the six odorants, 3-octanol, cis-3-hexenol, cyclohexanone, 2,3-

butanedione, 2-hexanol, and ethyl butyrate, was applied in turn

for 1 second every 5 seconds. In the second type of data, 3-

octanol, was applied for ten seconds every twenty seconds. In the

third type of data, the same six odorants as the first type were

applied in turn for ten seconds every twenty seconds. In all in-

silico experiments, the first type of data was initially given for 300

seconds, during which time the PN’s homeostasis was adjusted

(details are described in Supplementary Note 1). Subsequently, the

first type of data was continuously provided, and experiments on

associative learning and the activity of MBON-α1 were conducted.

In contrast, in the experiments on the oscillations in the antennal

lobe, the second type of data was applied following the 300-second

homeostatic period. The third type of data was only used in the

experiment to show the variations in oscillations for each odor

(Supplementary Note 2).

2.4 PQN model

The piecewise quadratic neuron (PQN) model (Nanami and

Kohno, 2016a,b, 2023; Nanami et al., 2016, 2017, 2018) is a

qualitative neuron model designed to replicate a wide variety of

neurons in the nervous system and to be efficiently implemented on

digital arithmetic circuits. Compared with other qualitative models

(FitzHugh, 1961; Nagumo et al., 1962; Hindmarsh and Rose,

1984), the PQN model possesses additional parameters, enabling

it to represent more functional forms and reproduce a variety of

neurons, each with its unique dynamical structure. In addition,

although other qualitative models have cubed variable terms, which

consume a vast amount of circuit resources in digital arithmetic

circuits, the PQN model uses piecewise functions composed of a

squared term to represent comparable dynamics and consumes few

circuit resources.

The nervous system ofDrosophila primarily comprises unipolar

neurons, the soma of which is separated from the rest of the cell by

a long and thin membrane. In the patch-clamp recording from the

soma, only action potentials with extremely small amplitudes were

observed. This is attributed to the fact that the action potentials are

generated in the axon and propagated with decay to the cell body

(Gouwens and Wilson, 2009). Therefore, we modeled PNs, KCs,
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and MBONs using two-compartment models; one compartment

corresponded to the soma, and the other contained axons and

dendrites. In contrast, in the soma of LNs, sufficiently large action

potentials were observed (Seki et al., 2010); therefore, they were

modeled using single-compartment models. APL is an inhibitory,

non-spiking neuron whose axons extend to the whole mushroom

body. It was reported (Inada et al., 2017; Amin et al., 2020) that

APL performs local inhibition; however, the details are not clear.

Therefore, in this study, we modeled APL as a simple non-spiking

neuron with a single-compartment.

The equations of the PQN model in the single-compartment

version for LNs, APL, and SMP354 are given by Equations (4–16).

dv

dt
=

φ

τ
(f (v)− n− q+ Ib0 +m(I)), (4)

dn

dt
=

1

τ
(g(v)− n), (5)

dq

dt
=

ǫ

τ
(h(v)− q), (6)

f (v) =

{

afn(v− bfn)
2
+ cfn (v < 0)

afp(v− bfp)
2
+ cfp (v ≥ 0),

(7)

g(v) =

{

agn(v− bgn)
2
+ cgn (v < rg)

agp(v− bgp)
2
+ cgp (v ≥ rg),

(8)

h(v) =

{

ahn(v− bhn)
2
+ chn (v < rh)

ahp(v− bhp)
2
+ chp (v ≥ rh),

(9)

m(I) =











kIm0 (I < m0)

kII (m0 ≤ I ≤ m1)

kIm1 (I > m1),

(10)

bfp =
afnbfn

afp
, (11)

cfp = afnb
2
fn + cfn − afpb

2
fp, (12)

bgp = rg −
agn(rg − bgn)

agp
, (13)

cgp = agn(rg − bgn)
2
+ cgn − agp(rg − bgp)

2, (14)

bhp = rh −
ahn(rh − bhn)

ahp
, (15)

chp = ahn(rh − bhn)
2
+ chn − ahp(rh − bhp)

2, (16)

where v, n, and q correspond to the membrane potential, recovery

variable, and slow variable, respectively. Parameter Ib0 is a bias

constant. Parameter I represents the stimulus current. The function

m performs a nonlinear transformation of I, adjusting the scale

of I with parameter kI and extending the dynamic range with

parameters m0 and m1. Synaptic currents from other neurons

and current injections shown in Figure 2 were given to I. The

parameters τ , φ, and ǫ determine the time constants of the

variables. The parameters rg , rh, ax, bx, and cx, where x is fn,

fp, gn, gp, hn, or hp, are constants that determine the nullclines

of the variables. The parameters bfp, cfp, bgp, cgp, bhp, and chp
are determined by other parameters such that the nullclines are

continuous and smooth. All variables and parameters are purely

abstract with no physical units. The initial values of all state

variables were set to zero.

The equations of the two-compartment version for KCs and

MBONs are given by Equations (17–20).

dv

dt
=

φ

τ
(f (v)− n+ Ib0 + kIm(I)− Ic), (17)

dn

dt
=

1

τ
(g(v)− n), (18)

dvs

dt
=

θ

τ
(−αvs + Ib1 + Ic + krIr), (19)

Ic = k0(v− vs), (20)

where v and n are the membrane potential and recovery variables

in the axonal compartment, respectively, and vs is the membrane

potential of the somatic compartment. Parameters θ , α, and Ib1 are

the time constant, bias constant, and leakage constant, respectively.

Ic represents the internal current that flows from the axonal

compartment to the somatic compartment, and k0 is its kinetic

parameter. When synaptic currents are given to I, the current

injected into the soma (Figure 2) is given to Ir , and kr is its scaling

parameter.

In PNs, homeostatic control of synaptic efficacy has been

indicated (Kazama and Wilson, 2008). Although various types of

homeostatic mechanisms are found in neurons, we modified the

equation for PNs based on the mechanism of synaptic scaling

proposed in a previous study (Turrigiano, 1999), where the weights

of synaptic connections were gradually scaled according to the

activity level of the postsynaptic neuron. The equations used are

as Equations (21, 22).

dv

dt
=

φ

τ
(f (v)− n+ Ib0 + ukIm(I)− Ic), (21)

du

dt
=

κ

τ
(Ft − F), (22)

where F and Ft represent the neuronal current firing frequency

and target firing frequency, respectively. The equation of Ic and the

differential equations of n and vs are the same as those in KCs and

MBONs (Equations 18, 20). The parameter κ determines the time

constant. Note that the value of u is fixed between 0 and 1.

The synaptic current is calculated as Equation (23).

ds

dt
=

{

α(1− s) (v ≥ 0),

−βs (v < 0),
(23)
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where s denotes the synaptic current and the parameters α and β

determine the time constants. This synaptic model is a qualitative

version of the simplified kinetic model of chemical synapses (Li

et al., 2012). Although the dynamics of each synapse are unclear,

the decay constants of cholinergic synapses from PN to KC and

GABAergic synapses in cultured embryonic neurons have been

investigated (Lee et al., 2003; Gu and O’Dowd, 2006) and are both

approximately 5 ms. Therefore, the values of β were set to 203.125

so that their decay time constants were close to 5 ms. The value of

α was chosen to be 250 so that a single spike results in a synaptic

current amplitude of approximately 1.

The synaptic current I of the i−th neuron is calculated as

Equation (24).

Ii =

N
∑

j=1

wjisjpx_y, (24)

where j represents the index of a presynaptic neuron. wji is the

weight of the synaptic connection from the j-th neuron to the i-

th neuron. N is the total number of neurons. x and y indicate

the classes of presynaptic and postsynaptic neurons, respectively,

and the parameter px_y scales the synaptic current. As the extent

to which the single spike of each class of neurons affects the

membrane potential of different classes of postsynaptic neurons is

not known clearly, the values of px_y were manually fitted such that

the simulation results reproduce the experimental results as closely

as possible. Here, the four LN subclasses share the same px_y value.

First, the values of px_y where y is a PN or LN were set to reproduce

the characteristics of oscillations observed in the antennal lobe in

vivo. Next, the values of px_y, where y is a KC, APL, or MBON-α1,

were determined to make the responses of MBON-α1 as consistent

as possible with the in vivo data. Finally, the values of px_y, where y

is MBON-α3 or SMP354 neuron, are set such that the success rate

of olfactory associative learning becomes as high as possible. Note

that, px_y is positive or negative when x is an excitatory or inhibitory

neuron. All the parameter sets of neurons and synapses are listed in

Supplementary Tables S1–S9.

2.5 FPGA implementation of the PQN
model

In the FPGA implementation, the PQN model is simulated by

the PQN engine. As an example, the details of the PQN engine

of the PN mode are shown in Figure 4. Figure 4A shows the

information flow of the PQN engine. The PQN engine updates

the internal state variables and synaptic currents of 121 individual

PNs in turn at each time step. The internal variables(v, n, vs, u,

and F), input currents I, and synaptic currents s are sent via the

PQN controller from block RAMs named PQN internal variables,

I5, and s5 shown in Figure 6, respectively. The next step values of

the internal variables and synaptic currents computed by the PQN

engine are returned to the block RAMs and stored. Figure 4B shows

a block diagram of the PQN engine of the PN mode. The symbols

×, +, and M in the figure represent the multipliers, adders, and

multiplexers, respectively. Each state variable is computed in four

pipelined stages. In the first stage, the square of v and the product

of u and I are calculated using two multipliers. The second stage

involves multiplication of the variables and coefficients determined

from the parameters, and v_x, s_S, and s_L represent the results

of the calculations, where x is vv_S, vv_L, v_S, v_L, n, vs, or I. For

example, the calculation of v_vv_S is performed by multiplying the

square of v by 0.021484375, the binary representation of which is

0.000001011. Therefore, the calculation of the sum of the sixth,

eighth, and ninth right-shift operations on the square of v is

performed (Figure 4C). In the third stage, the values of v, n, vs,

and u are calculated. In the fourth stage, the values of s and F are

determined based on the new value of v. When the old value of v

is negative and the new value is zero or greater, the spike detector

detects a spike. The values of v, n, vs, and F are updated every 1 ms,

whereas the value of u is updated only once per second. The current

firing frequency is calculated from the number of spikes counted

in one second. All state variables are expressed in an 18-bit fixed-

point representation, of which 10 bits are the decimal part and the

remaining are the integer part.

3 Results

3.1 Olfactory associative learning

Flies are capable of olfactory associative learning, where they

remember the odor associated with the reward. One of the main

goals of our model is to reproduce the neuronal mechanisms

underlying this learning. Figure 5A shows a portion of the

raster plots for ORNs, PNs, and KCs. Every 5 seconds, one of

the six odorants, 3-octanol, cis-3-hexenol, cyclohexanone, 2,3-

butanedione, 2-hexanol, and ethyl butyrate, was applied in turn

for one second. As the responses propagate from ORNs to PNs to

KCs, a smaller number of neurons are activated. These have also

been observed in the olfactory nervous systems in multiple species

(Wilson et al., 2004; Turner et al., 2008). This sparse activity of KCs

suggests that individual odors are represented by a small number

of KCs, which in turn allows flies to selectively identify the odor

associated with the reward.

Figure 5B shows the activities of MBONs and SMP354 neuron

before and after olfactory associative learning in silico (FPGA).

The application of 3-octanol was followed by a reward signal at

t = 304. This resulted in LTD at KC>MBON-α1 synapses, the

presynaptic neurons of which fired in the previous five seconds.

Subsequently, MBON-α1 became selectively unresponsive to 3-

octanol, whereas MBON-α3 remained responsive to all odorants.

Consequently, SMP354 neuron that receives excitatory input from

MBON-α3 and inhibitory input from MBON-α1 fires only when

3-octanol is applied.

Figure 5C shows the success rates of olfactory associative

learning for individual odors. Each set of experiments comprised

one associative learning and ten trials. In each trial, all six odors

were applied sequentially in a unique order. A trial was considered

successful when SMP354 neuron responded solely to the learned

odor. Ten sets of experiments comprising 100 trials were conducted

for each odor, and the probabilities of success were calculated. This

model achieved an average success rate of 84.0%. The variation in

the results of each trial originates from the variable input spike

streams from ORNs.
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A

C

B

FIGURE 4

Details of the PQN engine of the PN mode. (A) Information flow of the PQN engine. NPN is the number of PNs. (B) Block diagram. This circuit

calculates the succeeding values of internal variables (v, n, vs, u, and F). The symbols ×, +, and M represent multipliers, adders, and multiplexers,

respectively. (C) Internal circuit for the calculation of v_vv_S.

3.2 Oscillations in the antennal lobe

In order to test whether our model is applicable to known

activity dynamics observed in theDrosophila olfactory system other

than plastic changes induced by learning, we next focused on

neuronal oscillations. Neuronal oscillations are widely observed

in the olfactory nervous system of insects and are believed to be

important in odor information processing (Stopfer et al., 1997;

Perez-Orive et al., 2002). Oscillations have also been reported

(Tanaka et al., 2009) in the PNs of Drosophila, which are absent

without odors or when LNs are inactivated. A similar oscillatory

behavior was observed in our model. Whereas Tanaka et al. (2009)

measured the local field potential (LFP) caused by the synaptic

currents of PNs, we calculated a virtual LFP by averaging the

synaptic currents for each type of neuron. Figure 6A shows the

virtual LFP of PNs, LNs, and KCs when 3-octanol was applied,

where clear oscillations can be seen in PNs and LNs. The peak

amplitudes of their frequency spectra were estimated to clarify

their oscillatory nature. Figure 6B shows the power spectra (details

are explained in Supplementary Note 3), which have the peak at

approximately 20–30 Hz. Here, the odor was applied for ten

seconds. Following this, we applied 3-octanol twenty times and
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FIGURE 5

Activities of each type of neuron and the success rate of olfactory associative learning. (A) Parts of the raster plot of ORNs, PNs, and KCs. The

horizontal axis represents time and the vertical axes represents indices of the neurons, respectively. The colored bars represent the onset of the

one-second odorant applications. The blue dots represent spikes. (B) Waveforms of somatic membrane potentials of MBON-α3, MBON-α1 and

SMP354 neurons during and after learning. The light blue arrow indicates the timing of the reward signal that triggered learning. (C) Success rates of

olfactory associative learning for six odorants. Error bars represent standard deviation over the success rates of the six odorants.

plotted the averaged values of the peak power on a logarithmic scale

(Figure 6C). The peak power of LNs was considerably higher than

that of PNs; whereas, the peak power of KCs was much smaller than

that of PNs, which is consistent with Turner et al. (2008) reporting

no clear oscillations in the membrane potentials of the Drosophila

KCs. In addition, the peak power when odor was not given was

much lower than that under normal conditions, which is consistent

with the results in Tanaka et al. (2009).

The previous study (Tanaka et al., 2009) selectively inactivated

the synaptic output of NP1227_class1 and NP2426_class1 LNs in

turn, and reported that the oscillations of PNs were attenuated only

when NP2426_class1 was inactivated. We inactivated each subclass

of LNs in turn and plotted the average of their peak spectra of

the oscillations of PNs (Figure 6D). Here, inactivation of LNs was

performed by forcing the stimulus input to the LNs to zero. 3-

octanol was applied five times for each condition. The peak power
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FIGURE 6

Neuronal oscillations in PNs, LNs, and KCs. (A) Examples of the virtual LFP for each type of neuron. (B) Power spectra of the virtual LFPs of PNs, LNs,

and KCs. 3-octanol was applied for ten seconds. (C) Averages of the peak power spectra were plotted on a logarithmic scale graph. Average of the

peak power spectra of PNs in the absence of the odor was also plotted. Error bars represent standard deviation over 20 trials. (D) Averages of the

peak power spectra when one of the four types of LNs was inactivated. LNs of Krasavietz_class1 (i), Krasavietz_class2 (ii), NP1227_class1 (iii), and

NP2426_class1 (iv) were inactivated, respectively. The results obtained without inactivation are also plotted for comparison (v). Error bars represent

standard deviation over 20 trials. (E) Averages of the peak power spectra of each LN subclasses. Krasavietz_class1 (i), Krasavietz_class2 (ii),

NP1227_class1 (iii), and NP2426_class1 (iv). The average peak power spectra of the virtual LFPs over all LNs were also plotted for comparison (v).

Error bars represent standard deviation over 20 trials.

was significantly attenuated when NP2426 class1 but not NP1227

class1 was inactivated. This is consistent with the experimental

results in Tanaka et al. (2009). The second and third largest

attenuation was observed following the inactivation of Krasavietz

class1 and class2, respectively.

We also calculated the virtual LFP for each LN subclass

under the normal condition. Figure 6E shows the average

peak power when 3-octanol was applied twenty times. The

peak power of NP2426_class1 was the largest, indicating

that it was the primary source of oscillation in LNs. The

peak powers of Krasavietz_class1 and Krasavietz_class2 are

the second and third largest, respectively. There are almost

no oscillations in NP1227_class1, which could explain why

inactivation of NP1227_class1 does not attenuate the oscillations

in PNs.

3.3 Temporal dynamics of firing in
MBON-α1

Figure 7A shows the responses of the somatic membrane

potential of MBON-α1 in vivo (red) and in silico (blue) before and

after olfactory associative learning. The solid plots represent the

values of the somatic membrane potential, and the black dots above

them represent the detected spike timing. The gray arrows indicate

the onset of 3-octanol input. 3-octanol was given for 1 second. We

calculated the firing frequency for each 50 ms time window from

the spikes and plotted the average firing frequency transition over

five trials as dotted curves. The procedures for detecting spikes and

calculating their frequency are described in Supplementary Note 4.

In vivo, whereas odor-evoked firing frequency of MBON-α1 is

constantly high before learning, it decreases rapidly after learning.

We reproduced this characteristic temporal dynamics of firing

in silico. The somatic membrane potential and synaptic current

of APL are shown in Figure 7B to illustrate how the temporal

dynamics occur in silico. While MBON-α1 fires immediately

after odor onset, the membrane potential of APL reaches the

threshold with a delay due to its slow neuronal dynamics. This

delayed inhibition from APL may contribute to suppressing the

firing of MBON-α1 from approximately t = 0.7, together with

LTD at KC>MBON-α1 synapses. We tested this possibility in

silico by examining the activity of MBON-α1 while inactivating

APL (Figure 7C). Without APL, the odor-evoked firing frequency

of MBON-α1 is constantly high even after learning, and this

result indicates that APL is essential for the temporal activity

of MBON-α1.
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FIGURE 7

Responses of MBON-α1. (A) Comparison of somatic membrane potential of MBON-α1 in vivo (red) and in silico (blue) before and after olfactory

associative learning. The gray arrows indicate the onset of a 1-second-long application of 3-octanol. In silico, the odor input caused ORNs to fire

instantaneously, whereas in vivo, there was a delay for the odor to travel through the tubing and reach ORNs. Example responses of the somatic

membrane potential for a single trial (solid line) and the temporal dynamics of firing frequency averaged over five trials dotted line). Error bars

represent standard deviation over five trials. The black dots above the solid lines represent spikes. (B) The membrane potential and synaptic current

of APL are shown. The black dotted line represents the threshold for the release of the synaptic current of APL. (C) Example responses of the somatic

membrane potential of MBON-α1 in the absence of APL for a single trial (solid line) and its averaged firing frequency over five trials (dotted line). Error

bars represent standard deviation over five trials. The black dots above the solid line represent spikes.

3.4 FPGA implementation

Our qualitative modeling approach allowed to implement the

entire model on an entry-level FPGA (Xilinx Artix-7 XC7A35T on

a Digilent cmod-a7 board) using Xilinx Vivado 2016.4. Figure 8

presents an overview of the implementation. As the network

has nine types of neurons, namely four LN subclasses, PN, KC,

APL, MBON, and SMP354 neuron, we constructed nine PQN

engines corresponding to each of them. The weights of synaptic

connections, input current, synaptic current, and neuronal internal

state variables are stored in block RAMs. Spike signals of ORNs

were generated by the PC and sent to the FPGA through a serial

communication bus. The spike signals were composed of 11 bits

representing the indices of ORNs, which were initially stored in the

FIFO buffer; the synaptic currents of ORNs were calculated using

the SC engine. The accumulators calculated the input currents

for neurons from the synaptic currents in parallel. The antennal

lobe and the mushroom body are distant, and only PNs provide

a one-way connection from the antennal lobe to the mushroom

body. Therefore, we built three accumulator blocks, a, b, and c,

which consisted of seven, three, and one accumulator(s), that were

responsible for the processing inside the antennal lobe, between the

antennal lobe and the mushroom body, and inside the mushroom

body, respectively. The weights w of the KC>MBON-α1 synapses

are represented by two bits to realize the LTD, whereas all other

synaptic weights are represented by one bit. The PQN controller

activates each PQN engine in turn. Each PQN engine receives the

current values of the internal variables, input currents, and synaptic

currents of the corresponding type of neurons. It then returns the

next step values of the internal variables and synaptic currents.

A reward signal was also transmitted using serial communication

to the LTD unit, which triggered the LTD of KC>MBON-α1

synapses. The LTD unit holds the indices of KCs that have fired

in the previous five seconds, and when the reward signal arrives, it

rewrites w of synapses made by those KCs onto MBON-α1.

Figure 9A shows the resource consumption of this

implementation. The look-up tables (LUTs) are truth tables

that were used primarily for addition calculations in this

implementation. Digital signal processors (DSPs) are blocks for

complex calculations that were used to multiply the state variables.

Flip-flops (FFs) and block random-access memories (BRAMs) are

memory elements. Most BRAMs store synaptic weights, whereas

the rest store state variables. A mixed-mode clock manager

(MMCM) was used to generate a 100 MHz clock. Figure 9B lists

the on-chip power consumption of each resource estimated by

Vivado. The static represents the steady-state leakage power of the

device and is independent of the circuit design. The total power

consumption is approximately 0.37 watts.

4 Discussion

In this study, we built the first data-driven SNN model

of the olfactory nervous system of Drosophila melanogaster.

Our modeling approach proposed a way to overcome the

trade-off between replicating the detailed biological data (the

connectome and electrophysiological activities of neurons) and

the computational cost, such that the model can run in real-time
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FIGURE 8

Architecture overview. The rectangle, rounded rectangle, and arrows represent the block RAM, computation unit, and data flow, respectively. PQN

engines, where x ranges from 1 to 9, simulate the activities of each type of neuron. LN0, LN1, LN2, and LN3 correspond to Krasavietz_class1,

Krasavietz_class2, NP1227_class1, and NP2426_class1, respectively. sx, where x ranges from 0 to 9, and Iy, where y ranges from 1 to 9, are the

synaptic and input currents, respectively. w0, w1, and w2 store the weight of synaptic connections. The PQN internal variables store neuronal

internal state variables. Spike signals of ORNs are sent from the PC using serial communication. They are temporarily stored in the FIFO and

subsequently converted to synaptic currents using the SC engine. The accumulator blocks a, b, and c comprise seven, three, and one accumulator(s),

respectively, and each accumulator calculates the input currents from the synaptic currents in parallel. The PQN controller activates each PQN

engine in turn to simulate neurons. Each PQN engine receives the internal variables, input currents, and synaptic currents of the corresponding type

of neurons and returns the next step values of the internal variables and synaptic currents. The reward signal from the PC activates the LTD unit and

reduces the weights of KC>MBON-α1 synapses that are stored in part of w2. The information required for each result section, such as the spike

information of the PQN neurons, values of membrane potential, and synaptic currents, is selected and sent to the PC and stored.

on a low-power SiNN chip while reproducing the characteristic

neuronal activities in the brain. Features of previous data-

driven models (Markram et al., 2015; Bezaire et al., 2016;

Ecker et al., 2020) that reproduced parts of the mammalian

cortex and hippocampus as well as this work are compared

in Table 1. Specifically, our model went beyond the preceding

models in the following four aspects: the higher reproducibility

of (1) synaptic connectivity, (2) characteristic spiking activities,

(3) neuronal functions, and (4) the lower computational cost.

Whereas the preceding models reproduced the electrophysiological

and morphological properties of each type of neuron using

multicompartmental ionic-conductance-based models, our model

reproduced electrophysiological properties using the PQN model,

which requires a lower computational cost. In Markram et al.

(2015) and Ecker et al. (2020), the Tsodyks–Markram (TM) synapse

model (Tsodyks and Markram, 1997) with a stochastic mechanism

was used to accurately reproduce synaptic physiology, whereas

in Bezaire et al. (2016), the double exponential synapse model

reproduced the rising and decaying time constants of the synaptic

current for each type of synaptic connection. In this study, the

decay time constant of the double exponential synapse model was

fitted to electrophysiological data for the corresponding type of

neurotransmitter. In the preceding models, synaptic connections

were randomly determined based on the position and morphology

of individual neurons and statistical information for each neuron

type. However, in this model, they were based on the connectome

(HEM, 2020; Scheffer et al., 2020) identified from comprehensive

electron microscopy images. In the preceding models, the vast

number of neurons and complex structures of the mammalian

brain limited the validation of the models. In Markram et al. (2015)
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A B

FIGURE 9

Results of FPGA implementation. (A) Utilization ratio for each type of resource. The numbers above the bar indicate the number of units used. (B)

Power estimation for each type of resource.

and Bezaire et al. (2016), synchronous oscillations at the network

level were validated, but not for each type of neuron. Spiking

activities were not examined in Ecker et al. (2020). Additionally,

the preceding models did not reproduce the function of the

network, as mammalian cortical and hippocampal functions at

the circuit level have not yet been elucidated. In contrast, because

the olfactory nervous system has a smaller network size and its

function is clearer, we were able to demonstrate that our model

successfully reproduces olfactory associative learning, characteristic

spiking activities of each type of neuron, such as odor-evoked

oscillatory firing in PNs and LNs, absence of oscillations in

KCs, different contributions of LN subclasses to the formation

of oscillations, and temporal dynamics of firing in MBON-α1.

Whereas the preceding models required supercomputers owing to

their enormous computational cost, our model was light enough to

be simulated on an entry-level low-cost FPGA chip at 0.37 watts,

which may be acceptable for small robots and portable AI devices.

In addition, whereas the simulation speed in Bezaire et al. (2016)

was approximately 1,600 times slower than real time, our model

performs real-time simulations.

There also are differences between our model and the latest

preceding model (Kennedy, 2019) of the Drosophila olfactory

system. Unlike our model, the preceding model is not data-

driven. The preceding model used the leaky I&F model, and did

not reproduce the electrophysiological properties of each class

of neurons. As for the structure of the network, our model

employs a slightly extended version of the preceding model.

Whereas the preceding model consists of PNs, LNs, KCs, APL,

and MBON, our model has another MBON and SMP354 neuron

in addition, reproducing the valence-balance model (Heisenberg,

2003; Aso et al., 2023), where learning-induced plasticity in

the KC>MBON synapses tips the balance of valence signals of

MBONs. This competitive memory circuitry is important because

it is the basis for the interactions among MBONs that are

responsible for flexible and complex behavioral decisions associated

with memory. As for the learning rule, both models employ

reward-induced depression of KC>MBON synapses to implement

olfactory associative learning. As for the synaptic connections,

whereas the preceding model stochastically determines the

connections between layers such as ORN>PN and PN>KC,

our model precisely reproduces the connections based on the

connectome database.

As for the spiking dynamics, the characteristic spiking activities

of each neuron are not considered in the preceding model.

For example, the spiking activities of PNs and LNs are not

calculated by spiking neuron models but are generated by

the Poisson process. The activities of MBONs are represented

using nonlinear activation functions. KCs are described by the

LIF model, and their firing properties are not fitted to the

in vivo data.

The peak frequency of PN oscillation in this model was

approximately 24 Hz, whereas experimentally observed peak

frequency in the antennal lobe was 10–15 Hz (Tanaka et al.,

2009). In the antennal lobe, PNs and LNs are connected via

glomeruli, which are neuropils comprising the dendrites and axons

of PNs, LNs, and ORNs. However, the model does not consider

the dynamics of the glomeruli, which may cause a gap in peak

frequencies. In addition, the proportion and detailed connections

of the four subclasses of LNs are not known; therefore, they

were not incorporated into the model and may have affected

the peak frequency. A more detailed model awaits to be built

to clarify the mechanism and function of oscillations in the

antennal lobe.

To examine the oscillations (Figure 6), we only applied 3-

octanol to the network. This is because the magnitude of PN’s

oscillations greatly depends on the identity of odors both in vivo

(Tanaka et al., 2009) and in silico (Supplementary Figure S8). Since

our intention was to measure the effect of inactivation of the

LN subclass on PN’s oscillations, we used only one type of odor.

In the future, we will comprehensively examine the relationship
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TABLE 1 Comparison of the data-driven SNNmodels.

This paper (Markram et al.,
2015)

(Bezaire et al., 2016) (Ecker et al., 2020)

Target
Drosophila olfactory

nervous system

Microcircuit

of rat neocortex

CA1 of

rat hippocampus

CA1 of

rat hippocampus

Model PQN model
Ionic-conductance

-based model

Ionic-conductance

-based model

Ionic-conductance

-based model

Scale 2,200 neurons 31,000 neurons 340,000 neurons 400,000 neurons

Reproducibility

of neuronal

electrophysiology

High High High High

Reproducibility

of neuronal

morphology

No High High High

Reproducibility

of synaptic

properties

Low

(PQN synapse)

High

(TM with stochastic)

Medium

(double exponential)

High

(TM with stochastic)

Reproducibility

of synaptic

connectivities

High

(connectome-based)

Medium
(

morphology-based

statistical method
)

Medium
(

neuronal distance

-based statistical

method
)

Medium
(

morphology-based

statistical method
)

Reproducibility

of characteristic

spiking activities

High Medium Medium Low

Reproducibility

of functions
High No No No

Computing

environment
FPGA(0.3W)

Supercomputer
(

4-rack IBM

Blue Gene/Q
)

Supercomputer

(3,488 processors)
Supercomputer

Simulation

speed
Real time Not available 1,642 times slower Not available

A B

FIGURE 10

(A) Success rate of olfactory associative learning while changing pPN_KC. To calculate the success rate, 50 trials were performed for each odor. (B)

Average number of firing KCs per trial.

between oscillations and odors and clarify why the magnitude of

the oscillations differs between odors.

In honeybees, oscillations in the antennal lobe are necessary

for distinguishing between similar odors (Stopfer et al., 1997).

In locusts, oscillations appear not only in the antennal lobe but

also in KCs, and they are believed to contribute to the sparse

representation of odors in the KC population (Perez-Orive et al.,

2002). Although the role of oscillations in Drosophila remains

unclear, oscillations likely contribute to the processing of odor

information given the similarity of olfactory network structure

between different insects. One possible candidate is the generation

of the sparse representation of odors in the antennal lobe.

In this study, the PQN model employs function m(I), which

was not incorporated into the original PQN model (Nanami and

Kohno, 2023). This function performs a nonlinear transformation

of the stimulus input so that the membrane potential behaves as
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expected in response to a wide range of stimulus inputs. However,

this function does slightly complicate the model and has no

biological counterpart. By changing the parameters and adjusting

the dynamics, we expect to be able to remove this function in future

works.

As shown in Figure 7, after olfactory associative learning,

MBON-α1 fires for approximately 250 ms, immediately after

the arrival of the odor signal, and subsequently enters a resting

period, successfully reproducing the temporal firing observed

in Hige et al. (2015) in MBON-γ 1pedc. To our knowledge,

there has been no report on the mechanism underlying this

firing dynamics characteristic for the post-learning response. The

result of our simulation suggests that the delayed activation

of APL contributes to shaping this activity pattern. Thus, our

modeling not only reproduces observed physiological data but

also provides mechanistic insight by proposing an experimentally

testable hypothesis.

The SiNN implemented in this study operates at the same

speed as the olfactory nervous system with a 100 MHz clock

signal. However, if we use a higher clock, the model can provide

accelerated simulations, albeit with increased power consumption.

For example, we confirmed that the model can simulate four times

faster than real-time using a 400 MHz clock with a Xilinx Virtex

UltraScale+ xcvu37p-fsvh2892-3-e FPGA. In this implementation,

the estimated power consumption was about 4W. The power

efficiency and simulation speed can be further improved by using

Application Specific Integrated Circuits (ASICs).

As shown in Figure 9B, most of the power is consumed by the

MMCM, BRAMs, and the steady-state leakage (Static). Except for a

few BRAMs that are used to store the neuronal state variables, these

resources are not directly used to compute the neuronal dynamics.

Ignoring the reproducibility of the spiking properties and using

I&F-based models instead of PQN might reduce the power of

clocks, signals, logic, and DSPs. However, these resources consume

only 18.5% of the total power and their impact on the overall

system is expected to be small. Ionic-conductance-based models

can reproduce the dynamics of the spiking process as accurately

as or better than the PQN model. However, they have many

exponential terms that consume a large number of DSPs in FPGA

implementations (Akbarzadeh-Sherbaf et al., 2018; Khoyratee et al.,

2019). Even in themost well-optimized implementation (Khoyratee

et al., 2019), it requires more than 20,000 LUT units and more than

100 DSPs to build a network of 2,000 neurons, which would lead to

significantly higher power consumption.

Our modeling approach is applicable to not only FPGAs but

also ASICs. Conversion from FPGA to ASIC improves power

efficiency by a factor of 14 to 20 (Amara et al., 2006; Kuon

and Rose, 2007). The network reproduced in this study accounts

for approximately 2% of the entire brain. Thus, our approach

enables the construction of an ASIC chip that simulates the

entire Drosophila brain while consuming approximately 1 watt.

Such chips have considerable potential in the engineering and

scientific fields. Because of its low power consumption, the chip

can be mounted on small insect-like robots. The resulting system

is expected to move around autonomously, solve unknown tasks,

and adapt to changes in the environment, similar to insects. In

addition, owing to its intrinsic power efficiency, the chip can

serve as a sufficiently fast simulator of the whole brain within the

constraints of the power supply typically available in laboratories.

It can facilitate long-term measurement of neuronal activities and

is expected to contribute to the analysis of phenomena with long

timescales, such as continuous learning and forgetting.

To evaluate the robustness of our approach, we measured

how the success rate of the olfactory associative learning varied

while changing one of the empirically determined parameters

(Figure 10A). We varied pPN_KC which scales the strength of

synaptic connections from PN to KC. Increasing or decreasing

from the original value (pPN_KC = 1.03125) decreased the success

rate. This is because at the lower value, the inputs from PNs to

KCs are weakened, and KCs rarely fire (Figure 10B). As a result,

KC>MBON synaptic depression, which is the basis of learning,

does not occur sufficiently. When pPN_KC is large, too many KCs

fire, preventing the sparse representation of odors in KCs and

reducing the success rate. At present, these parameters have to be

carefully tuned manually, which hinders the easy application of

this approach to other nervous systems. In future research, we plan

to develop a method to automatically determine these parameters

to achieve the functionality of the network. Metaheuristics will be

applied, just as we determined the parameters of neurons by the

differential evolution algorithm.
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