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Introduction:Major depressive disorder (MDD) is a debilitating disease involving

sensory and higher-order cognitive dysfunction. Previous work has shown

altered asymmetry in MDD, including abnormal lateralized activation and

disrupted hemispheric connectivity. However, it remains unclear whether and

how MDD a�ects functional asymmetries in the context of intrinsic hierarchical

organization.

Methods: Here, we evaluate intra- and inter-hemispheric asymmetries of the

first three functional gradients, characterizing unimodal-transmodal, visual-

somatosensory, and somatomotor/default mode-multiple demand hierarchies,

to study MDD-related alterations in overarching system-level architecture.

Results: We find that, relative to the healthy controls, MDD patients exhibit

alterations in both primary sensory regions (e.g., visual areas) and transmodal

association regions (e.g., defaultmode areas). We further find these abnormalities

are woven in heterogeneous alterations along multiple functional gradients,

associated with cognitive terms involving mind, memory, and visual processing.

Moreover, through an elastic net model, we observe that both intra- and inter-

asymmetric features are predictive of depressive traitsmeasured by BDI-II scores.

Discussion: Altogether, these findings highlight a broad andmixed e�ect ofMDD

on functional gradient asymmetry, contributing to a richer understanding of the

neurobiological underpinnings in MDD.

KEYWORDS

hemispheric asymmetry, functional gradient, major depressive disorder, brain network,

resting-state fMRI

1 Introduction

Major depressive disorder (MDD) is among the most prevalent psychiatric illnesses

worldwide (Bromet et al., 2011; Kyu et al., 2018), characterized by persistent low mood,

diminished interests, vegetative symptoms, and increased suicide attempts (Otte et al.,

2016). Patients with MDD have been reported to exhibit dysfunction in both sensory

perception (e.g., visual and pain perception) and integrative cognitive functions (e.g.,

memory and social communication; Adler and Gattaz, 1993; Bubl et al., 2010; Fitzgerald,

2013; Kupferberg et al., 2016; Dillon and Pizzagalli, 2018), in parallel with disrupted

functional brain connectome in both local and global features (Yang et al., 2021). For
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example, previous studies have identified alterations in regional

functional connectivity, community structures, and network global

efficiency (He et al., 2018; Yan et al., 2019; Yang et al., 2021), offering

valuable information for the pathophysiology of MDD. However,

these pieces of information are fragmented and sometimes

inconsistent, leaving the neurobiological mechanisms of cognitive

impairments in MDD unclear.

By embedding functional connectomes into a low-dimensional

space, functional gradients recently proposed by Margulies et al.

(2016) provide an appealing tool to reconcile interactions among

distributed brain regions with systematic organizational principles.

Regions with similar functional connectivity (FC) profiles are

embedded in similar positions along gradient axes, resulting

in topographic maps that capture continuous variations of

connectivity patterns. In other words, functional gradients depict

a continuous spatial arrangement of macroscale brain networks,

with variation of functional hierarchy informing how functional

connectivity patterns of distinct regions are integrated and

segregated (Huntenburg et al., 2018; Bayrak et al., 2019). For

example, the principle gradient reflects a macroscale hierarchy

where unimodal sensory/motor areas and transmodal default

mode areas are situated at two opposite ends, in line with

the intrinsic brain geometry that transmodal systems show

the greatest geodesic distance from unimodal systems. This

unimodal-transmodal gradient hierarchy also corresponds to

an increasingly abstract functional spectrum from specialized

to integrated information processing. The second gradient

captures transitions from visual to somatosensory cortices and

the third gradient spans from somatomotor/default mode to

multiple demand systems. These gradients characterize regional

heterogeneity in a continuous manner, complementary to discrete

areas or community identification and mapping (Genon et al.,

2021). They also show potential benefits for capturing systematic

relationships between distributed cortical regions as well as

contextualizing functional patterns of specific regions with

global spatial organization (Bernhardt et al., 2022). Moreover,

functional gradients have been consistently observed across species

(Coletta et al., 2020; Valk et al., 2020; Wan et al., 2022)

and have been associated with multi-modal and multi-scale

architecture, including variations in gene expression (Burt et al.,

2018), microstructure (Paquola et al., 2019b), myeloarchitecture

(Huntenburg et al., 2017), and structure-function coupling

(Vázquez-Rodríguez et al., 2019; Yang et al., 2023), advancing the

exploration of brain intrinsic organization. Functional gradients

are becoming increasingly common in the literature and have been

used to study functional alterations during development and aging

(Paquola et al., 2019a; Bethlehem et al., 2020; Larivière et al., 2020)

as well as neuropsychiatric disorders (Bayrak et al., 2019; Hong

et al., 2019; Dong et al., 2020). In particular, a global compression of

the principal gradient and focal deviation of visual, sensorimotor,

and default mode network areas have been observed in patients

with MDD (Xia et al., 2022), promoting the account for symptoms

in MDD that encompass low-level and high-level domains of

functioning.

Despite current progress, gradient mapping techniques on

MDD considered bilateral systems in brain hemispheres as a whole,

and MDD-related alterations in hemispheric patterns remain

largely unexplored by using functional gradients. Hemispheric

asymmetry is thought to be a critical feature for less redundancy

and increased efficiency, affording advantage in parallel and flexible

information processing to adapt to sophisticated neurocognitive

demands (Hartwigsen et al., 2021). For example, leftward

dominance has been associated with language and reasoning

capacities whereas rightward dominance is relevant to visuospatial

and emotion processing (Demaree et al., 2005; Hagoort and

Indefrey, 2014; Chen et al., 2019; Goel, 2019). By taking

brain hemispheres into account, previous electroencephalographic,

neuroimaging, and behavioral studies have shown considerable

evidence for altered patterns of hemispheric asymmetries in

depressive disorders. EEG and fMRI findings suggested that

depressive disorders displayed disturbed hemispheric activity in

frontal and parietal regions, potentially linked to aberrant brain

lateralization involved in cognitive and emotional processing

(Grimm et al., 2008; Bruder et al., 2017). Studies with dichotic

listening and visual hemifield tasks revealed abnormal perceptual

asymmetry in depressive subjects (Herrington et al., 2010;

Bruder et al., 2012). Connectome analysis pointed to increased

normalized local efficiency of the left hemispheric functional

networks as well as decreased intra- and inter-hemispheric

functional connectivity in MDD (Jiang et al., 2019). Recent

evidence from the REST-meta-MDD Project reported that MDD

exhibited reduced hemispheric specialization (i.e., increased inter-

hemispheric FC relative to intra-hemispheric FC) in broad brain

areas, including posterior cingulate cortex, dorsolateral prefrontal

cortex, frontal eye fields, and parts of cerebellum and visual cortex

(Ding et al., 2021). These hemispheric abnormalities, spanning

distributed brain regions and multiple functional systems, are

likely to reflect or elicit global deficits of brain organization and

lateralization as characterized by the asymmetric disruptions of

functional gradients, but empirical research for such alterations

is lacking.

Here, we aimed to explore whether, and if so, how MDD

influenced the hemispheric asymmetry of brain functional

gradients.We employed the diffusion mapping method to evaluate

hemispheric functional gradients. Notably, brain operations

involve the recruitment of not only separated modules within

each hemisphere but also functional cooperation between two

hemispheres. Asymmetry of both intra-hemispheric and inter-

hemispheric functional connectivity has been reported to be

affected in MDD (Van Velzen et al., 2020; Ding et al., 2021).

Thereby, we focused on MDD-related alterations in intra-

hemispheric and inter-hemispheric gradient asymmetry. The intra-

and inter-hemispheric connectivity organizations are suggested to

provide complementary information: the former is supposed to

reflect hemispheric specialization and corpus callosum inhibition,

playing roles in language functions, reasoning, and attention

(Gazzaniga, 2000; Wan et al., 2022); the latter is supposed to

reflect signal transmission and information integration across both

hemispheres, which has been seen for motoric information or

rough spatial location information (Gazzaniga, 2000; Wan et al.,

2022). These two patterns, mediated by the corpus callosum,

are relevant to specialized and integrated information processing

(Hartwigsen et al., 2021).With amultivariate approach, we assessed

MDD effects on intra-hemispheric and inter-hemispheric gradient
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asymmetry to provide insights to abnormalities in hemispheric

localized organization and cross-hemispheric interplay, separately.

Given the overall brain symmetry and the flexible recruitment

of hemispheric specialization, we would not expect dramatic

differences between MDD and healthy participants. Instead, we

hypothesized that there would be small effect sizes distributed

across multiple gradient patterns. We finally applied an elastic net

model to establish a phenotypic association of asymmetry features.

The robustness of results using data after global signal regression

(GSR) was also tested.

2 Materials and methods

2.1 Data acquisition

The MRI data was from the Strategic Research Program for

Brain Sciences (SRPBS) Multi-disorder MRI database (Tanaka

et al., 2021). All participants in this database provided written

informed consent, and all data collection protocols were approved

by the institutional review boards of the principal investigators’ss

respective institutions. We used MRI data collected from four

different sites in the database (UTO, COI, HKH, and KUT).

The UTO site was acquired using a 3T GE MR750w scanner,

resting-state functionalMRI data were collected using the following

parameters: TR = 2,500 ms, TE = 30 ms, flip angle = 80◦, slice

thickness = 3.2 mm, slice gap = 0.8 mm, matrix = 64*64, 40 slices,

240 volumes, in-plane resolution = 3.3*3.3; T1-weighted data were

collected using the following parameters: TR = 7.7 ms, TE = 3.1

ms, TI = 400 ms, flip angle = 11◦, matrix = 256*256, 1*1*1.2

mm3 voxel size. Individuals with MDD were diagnosed based on

the Diagnostic and Statistical Manual of Mental Disorders Fourth

Edition (DSM-IV) and the Mini-International Neuropsychiatric

Interview (MINI). The COI site was acquired using a 3T Siemens

Verio. Dot scanner, resting-state functional MRI were collected

using the following parameters: TR = 2,500 ms, TE = 30 ms, flip

angle = 80◦, slice thickness = 3.2 mm, slice gap = 0.8 mm, matrix

= 64*64, 40 slices, 240 volumes, in-plane resolution = 3.3*3.3; T1-

weighted data were collected using the following parameters: TR

= 2,300 ms, TE = 2.98 ms, TI = 900 ms, flip angle = 9◦, matrix

= 256*256, 1*1*1 mm3 voxel size. Individuals with MDD were

diagnosed based on the Diagnostic and Statistical Manual ofMental

Disorders (DSM) and the Mini-International Neuropsychiatric

Interview (MINI). The HKH site was acquired using a 3T Siemens

Spectra scanner, resting-state functional MRI data were collected

using the following parameters: TR = 2,700 ms, TE = 31 ms, flip

angle = 90◦, slice thickness = 3 mm, slice gap = 0 mm, matrix =

64*64, 38 slices, 107 volumes, in-plane resolution = 3.0*3.0; T1-

weighted data were collected using the following parameters: TR

= 1,900 ms, TE = 2.38 ms, TI = 900 ms, flip angle = 10◦, matrix

= 256*256, 1*1*1 mm3 voxel size. Individuals with MDD were

diagnosed based on the Diagnostic and Statistical Manual ofMental

Disorders (DSM) and the Mini-International Neuropsychiatric

Interview (MINI). The KUT site was acquired using a 3T Siemens

TimTrio scanner, resting-state function MRI data were collected

using the following parameters: TR = 2,500 ms, TE = 30 ms, flip

angle = 80◦, slice thickness = 3.2 mm, slice gap = 0.8 mm, matrix =

64*64, 40 slices, 240 volumes, in-plane resolution = 3.3125*3.3125;

T1-weighted data were collected using the following parameters:

TR = 2,000 ms, TE = 3.4 ms, TI = 990 ms, flip angle = 8◦, matrix =

240*256, 0.9375*0.9375*1 mm3 voxel size. Individuals with MDD

were diagnosed based on the Structured Clinical Interview for

DSM-IV Axis I Disorders-Patient Edition (SCID). For more details

on MRI acquisition see this paper (Tanaka et al., 2021). Due to the

extreme imbalance between the number of healthy participants and

participants with major depression in three sites (COI, KUT, and

UTO), we performed optimal group matching using the R package

MatchIt (Stuart et al., 2011). To avoid the possible influence of

handedness on the results, we excluded all left-handed participants.

2.2 Data preprocessing

Structural and functional data were preprocessed using

fMRIPrep 20.2.3 (Esteban et al., 2018a,b; RRID:SCR_016216),

which is based on Nipype 1.6.1 (Gorgolewski et al., 2011, 2018;

RRID:SCR_002502). In short, each T1w image was corrected for

intensity non-uniformity, skull-stripped, brain tissue segmented,

and spatial normalization to standard spaces. Each functional data

was co-registered to the T1w reference, slice-time corrected, and

resampled onto naive space. The preprocessed functional data in

naive space was resampled into the standard MNI152NLin6Asym

space. The detailed preprocessing description can be found

in Supplementary material. The preprocessed data was further

denoised by nilearn (Abraham et al., 2014), which included

(1) motion scrubbing [Power et al., 2012, 2014; volumes with

framewise displacement (FD)> 0.35 or the derivative of root mean

square variance over voxels (DVARS) > 50, and their neighboring

volumes (1 forward and 2 back) were flagged as censored volumes

and interpolated using cubic spline], (2) detrending, (3) first-order

butterworth filtering (0.01–0.1 Hz), (4) censoring high motion

volumes, (5) nuisance regression of 24 head motion parameters

(Friston et al., 1996; Satterthwaite et al., 2013), mean cerebrospinal

fluid and white matter signals [nuisance regression was performed

orthogonally to temporal filtering (Lindquist et al., 2019)], and

(6) standardization. Quality control reports of the preprocessing

processes generated by fMRIPrep were checked by Y. Y. and Y.

Zhen., and functional data with poor T1 image segmentation and

inaccurate alignment of functional and anatomical MRI data were

excluded. To obtain reliable estimates of functional connectivity,

we also excluded participants with <4 min of functional data after

motion scrubbing (Parkes et al., 2018). Finally, we used a 400-

region homotopic atlas (Yan et al., 2023) to parcellate functional

data. In the robustness analysis, we additionally included global

signal regression (GSR) and evaluated the influence of GSR on our

findings.

2.3 Hemispheric functional gradients

For each subject, we reconstructed the functional connectivity

(FC) matrix by calculating the Pearson correlation of regional time

series, which was subsequently converted to Fisher’s Z-values. We

partitioned FC into four different parts (Supplementary Figure 1):

FC within the left hemisphere (LL intra-hemisphere), within
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the right hemisphere (RR intra-hemisphere), from the left to

right hemisphere (LR inter-hemisphere), and from the right to

left hemisphere (RL, inter-hemisphere) following previous work

(Wan et al., 2022, 2023). Therefore, for each subject, two 200

x 200 intra-hemispheric and two 200 x 200 inter-hemispheric

FC matrices (4 matrices per subject) were generated. Intra-

hemispheric gradients are obtained from functional connectivity

within each hemisphere separately (LL and RR intra-hemispheric

matrices) whereas inter-hemispheric gradients are obtained from

functional connectivity between two hemispheres (LR and RL inter-

hemispheric matrices). For each hemispheric matrix, we estimated

the functional gradients using the BrainSpace toolbox (Vos de

Wael et al., 2020). Specifically, we thresholded each column of the

hemispheric matrix by preserving the top 10% strongest functional

connections (Margulies et al., 2016; Hong et al., 2019; Royer

et al., 2020). We utilized this thresholded hemispheric matrix to

calculate the normalized angle similarity coefficient that captures

the similarity of regional FC profiles (Liang et al., 2021). Then,

we applied the nonlinear diffusion map embedding (Coifman

et al., 2005) to the similarity matrix, obtaining multiple continuous

components (i.e., functional gradients) that explain connectome

variance in descending order. This algorithm treats the affinity

matrix as a graph and estimates a low-dimensional embedding

from the high-dimensional connectome matrix. Along these

low-dimensional axes (i.e., functional gradients), nodes strongly

interconnected by either many suprathreshold connections or few

very strong connections are closer together whereas nodes with

little or no interconnectivity are farther apart. That is, nodes with

similar/dissimilar functional connectivity profiles are embedded

closer together/ farther apart along the hierarchy, informing the

functional integration and segregation among distinct regions

(Huntenburg et al., 2018). The parameter α of this algorithm is set

to 0.5 (Margulies et al., 2016). The resultant functional gradients

characterize the relevant functional organization of the brain, with

the gradient scores associated to brain regions informing their

spatial positions within the embedding space. Thus, the differences

in gradient scores of brain regions reflect their functional distance

along the functional gradient.

To ensure the comparison between functional gradients of

the hemispheric matrices as well as the comparability among

subjects, we estimated two group-level gradient templates, one

for intra-hemisphere and the other for inter-hemisphere. For

intra-hemisphere, we average all left and right intra-hemispheric

FC matrices (both LL and RR) based on both MDD and

healthy controls (HC) and then calculated the group-level gradient

templates from this mean intra-hemispheric FC matrix to align

the first 10 intra-hemisphere gradient components of each subject

via Procrustes rotation. For inter-hemisphere, we calculated the

template gradients from a mean inter-hemispheric FC matrix

generated by averaging all inter-hemispheric FC matrices (both LR

and RL) across all subjects and aligned inter-hemisphere gradient

components of each subject to the group-level gradient templates

via Procrustes rotation. Procrustes alignment has been widely

used to rotate a matrix to maximum similarity with the group-

level template without a scaling factor, facilitating comparisons

of gradients across different hemispheres and individual subjects

(Hong et al., 2019; Dong et al., 2020; Meng et al., 2021; Wan et al.,

2022; Xia et al., 2022). Moreover, we also constructed a gradient

template exclusively from the HC group and algined individual

gradients to this template. Correlations between all-subject aligned

gradients and HC-group aligned gradients were high (Pearson

rG1_intra = 0.998, rG2_intra = 0.997, rG3_intra = 0.997, rG1_inter =

0.999, rG2_inter = 0.999, rG3_inter = 0.999, all P < 0.000).

In agreement with previous studies (Meng et al., 2021; Wan

et al., 2022; Xia et al., 2022), we focused on the first three

gradient components (G1, G2, and G3) that explained the most of

connectome variance (Supplementary Figure 2, which also shows

components G4–G10). Each component reflects a well-described

functional hierarchical pattern (e.g., G1: unimodal-transmodal

gradient; G2: visual-somatosensory gradient; G3: multi-demand

gradient). Specifically, G1 explained 19.3 ± 1.8% of the total

connectivity variance (MDD, 19.3 ± 1.9%; HC, 19.3 ± 1.7%); G2

explained 14.5± 1.3% of connectome variance (MDD, 14.5± 1.4%;

HC, 14.5±1.3%); G3 explained 11.5±0.8% of connectome variance

(MDD, 11.4 ± 0.8%; HC, 11.6 ± 0.8%). There is no statistically

significant difference in variance explained in MDD and HC across

gradients (two-tailed t-test, P > 0.1, uncorrected).

2.4 Asymmetry index

To assess the hemispheric asymmetry of functional gradients,

we introduced an asymmetry index (AI) following (Raemaekers

et al., 2018; Liang et al., 2021; Wan et al., 2022). Specifically,

for intra-hemispheric asymmetry, AI was calculated as left

intra-hemispheric gradient scores minus right intra-hemispheric

gradient scores (i.e., LL-RR). A positive AI value indicates leftwards

asymmetry, that is, the region in the left hemisphere exhibits a

larger gradient score than the homologous region in the right

hemisphere. Note that we did not adopt (LL-RR)/(LL+RR), since

functional gradient scores contained both positive and negative

values and the use of (LL-RR)/(LL+RR) potentially exaggerated the

AI values or resulted in discontinuity (Nielsen et al., 2013; Sha

et al., 2022). For inter-hemispheric asymmetry, AI was calculated

as LR-RL.

2.5 MDD-HC comparison

To examine differences in sex distributions between MDD

and HC groups, we performed a Chi-square test. To quantify the

similarity of spatial maps of hemispheric gradient components, we

calculated the Pearson correlation coefficient (r) of the gradient

scores across regions in the left and right hemispheres.

To assess MDD-related alterations in the gradient asymmetry

(AI), we applied multivariate analyzes for both intra-hemispheric

and inter-hemispheric patterns. Given that the fMRI data were

collected from four acquisition sites, we first corrected for the

multi-site effects using a combat harmonization with age, sex,

and head motion (mean FD) entered as covariates (Fortin et al.,

2018; Yu et al., 2018; Xia et al., 2019, 2022). We then performed

MDD-HC comparisons at both region-level and network-level.

For region-level analyzes, we assessed the AI scores of each

brain region along the first three functional gradients. For

network-level analyzes, we aggregated the AI scores of regions
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by Yeo’s seven functional systems (Yeo et al., 2011), which

included default mode, limbic, control, salience, dorsal attention,

somatomotor, and visual networks. In line with previous work

(Wan et al., 2023), the MDD-HC comparisons were conducted

using a multivariate linear model whose dependent variable

consisted of AI patterns along G1, G2, and G3. Age, sex, and

head motion (mean FD) were entered as covariates in the model.

We employed this multivariate analysis and used Hotelling’s T

to identify the shared effects of MDD across the three functional

gradients (FDR-corrected P < 0.05). We then conducted post-

hoc analyses to further identify the contribution of each individual

gradient to the overall effects, correcting for the number of

considered functional gradients (P < 0.05/3). The analyses

were conducted using the BrainStat toolbox (Larivière et al.,

2023).

2.6 Meta-analysis

To explore the functional implication and behavioral

characterization of brain regions with statistically significant

MDD-related alterations, we conducted a Neurosynth meta-

analysis (Yarkoni et al., 2011) that associated topic terms

with the identified abnormal regions. The meta-analysis was

conducted using the python package NiMARE (version 0.1.1;

Salo et al., 2023). Specifically, we exploited the Neurosynth’s

ROI association approach based on the latest version of the

Neurosynth database (version-7). We used the vocab-terms

annotation approach, which included 3,228 terms for version-7.

We only retained the top 25 terms relevant to cognitive behaviors

or functions in the results. The analysis was conducted using both

hemispheres.

2.7 Prediction

We exploited an elastic net model (a linear regression

with combined L1 and L2 penalties) to investigate whether the

asymmetry scores of the first three functional gradients (3 ×

200 = 600 features) could predict depressive traits measured

by the Beck Depression Inventory-II (BDI-II). Specifically, we

performed a nested cross-validation. We randomly split the

individuals into training and test sets (4:1) and repeated 100 times.

Multi-site effects were controlled using combat harmonization for

training and test sets, separately. For each training set, we applied

another 5-fold cross-validation to select the hyperparameters.

We varied alpha values from 0.0001 to 1 and selected the one

with the minimum mean absolute error (MAE). A predictive

model with the optimal alpha was then constructed on all

training samples. The model performance was evaluated on the

test set by Pearson r between the predicted and empirical BDI-

II scores. To determine whether our prediction performance

exceeded the chance level, a total of 10,000 permutation tests

with randomly shuffled BDI-II scores were performed. In the

above processes, we performed elastic net with ten L1_ratio values

ranging from 0.1 to 1. L1_ratio = 0.5 worked best for intra-

hemispheric features and L1_ratio = 0.9 for inter-hemispheric

features, and hence, we applied them to our prediction pipeline.

The results using other L1_ratio parameters could be found in

Supplementary Figure 8.

3 Results

We utilized resting-state fMRI data from four sites from

the SRPBS Multi-disorder MRI Dataset (unrestricted), including

Hiroshima COI (COI, n = 97), University of Tokyo Hospital

(UTO, n = 74), Kyoto University TimTrio (KUT, n = 28), and

Hiroshima Kajikawa Hospital (HKH, n = 42). A total of 109

MDD patients and 132 healthy controls (n = 241) were included

in our analyzes. All participants were right-handed and there is

no statistically significant difference in sex and age between MDD

and HC groups (sex: male/female = 56/53 for MDD, male/female

= 58/74 for HC, chi-square test, χ2
= 1.32, P = 0.25; age:

43.29 ± 11.85 for MDD, 42.10 ± 10.71 for HC, t-value = 0.13,

P = 0.89).

3.1 Hemispheric asymmetry of functional
gradients

Through the diffusion map embedding algorithm and the

alignment procedure, we generated intra-hemispheric (LL and

RR) and inter-hemispheric (LR and RL) maps of the first

three functional gradients (G1, G2, and G3) for each subject.

Figure 1A illustrated the average intra-hemispheric patterns of

the first three gradients across all individuals. Consistent with

previous literature (Margulies et al., 2016; Wan et al., 2022,

2023), the principle gradient (G1) of both hemispheres capture

a hierarchical organization where unimodal regions (e.g., visual

and somatomotor networks) and transmodal regions (e.g., default

mode network) were situated at opposite ends. The second gradient

component (G2) reveals a hierarchy traversing from visual regions

to somatosensory regions. The third gradient component (G3)

spans somatomotor/default mode and multiple demand systems.

As shown, the spatial patterns of functional gradients were highly

similar between the two hemispheres (group-level: r = 0.98 for

G1, r = 0.99 for G2, r = 0.97 for G3; individual-level: r =

0.86 ± 0.04 for G1, r = 0.82 ± 0.07 for G2, r = 0.73 ±

0.09 for G3). Results for inter-hemispheric gradients were shown

in Supplementary Figure 3A, which exhibited similar patterns to

intra-hemispheric gradients.

Despite the overall commonality, there existed some

differences/asymmetries between the two hemispheres in

both MDD and HC groups. The between-hemispheric differences,

indexed by AI scores, were assessed for each subject. Themagnitude

of AI scores reflects the difference in positions of homologous

regions in the left and right hemispheres along functional

gradients. Positive AI scores indicate leftwards asymmetry, that is,

the region in the left hemisphere exhibits a larger gradient score

than the homologous region in the right hemisphere. For instance,

regions having positive AI scores in G1 occupy positions closer

to the transmodal apex along the principle gradient in the left

hemisphere relative to the right hemisphere. Figure 1B presented

the group-average AI maps of intra-hemispheric gradient patterns

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1385920
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnins.2024.1385920

FIGURE 1

Asymmetry of intra-hemispheric gradients. (A) The average intra-hemispheric patterns of the first three gradients across all subjects. LL indicates

gradients within the left hemisphere and RR indicates gradients within the right hemisphere. (B) Mean asymmetry scores (AI) of the first three

gradients (G1, G2, and G3) across subjects in healthy control (HC) and MDD groups.

for both MDD and HC participants, and patterns of inter-

hemispheric AI maps could be seen in Supplementary Figure 3B.

We also reported Cohen’s d maps for intra- and inter-hemispheric

patterns (Supplementary Figures 3C, D), with FDR adjustments

for the statistical significance of AI scores (FDR-corrected

P < 0.05). We found that hemispheric asymmetry was widely

present across each of the three gradients. In particular, for

the intra-hemispheric gradient G1, the inferior parietal lobule,

inferior frontal gyrus, superior frontal gyrus, and superior

temporal gyrus exhibited significant leftward asymmetry.

In contrast, the middle frontal, lateral occipital lobe and

temporal occipital junction, and insular exhibited significant

rightward asymmetry.

3.2 Network-level analyzes

In this section, we attempted to investigate whether MDD

altered gradient asymmetries, and if so, whether MDD-related

alterations were concentrated in specific functional systems.

Broadly, we found that MDD-related alterations in asymmetric

organization were concentrated in default mode (DMN) and

salience ventral attention (SVA) networks (Figure 2), whose

dysfunctions are typically involved with MDD (Kaiser et al.,

2015; Mulders et al., 2015). Specifically, for the intra-hemispheric

G1, both DMN and SVA exhibited a significant MDD effect on

brain lateralization, with DMN showing a shift from leftward

to rightward asymmetry (t = −3.239, p = 0.001) and SVA

showing weakened dominance in the right hemisphere (t =

2.866, p = 0.005). We also found that DMN exhibited increased

leftward asymmetry for intra-hemispheric G3 (t = 2.799, p =

0.006) and a leftward-to-rightward shift for inter-hemispheric

G2 (t = −3.499, p = 0.001). Besides, the alterations in

asymmetric organization for SVA came from a decrease in right-

hemispheric gradient values while alterations for MDD mainly

came from a mixed effect of changes in both left and right

hemispheres. Details were reported in the Supplementary Table 1

and results were largely unchanged under global signal regression

(GSR; Supplementary Table 2). We also repeated our analyzes

with gradient templates contructed exclusively from the HC

group. The MDD-HC comparison results were virtually identical

(Supplementary Table 3).

3.3 Region-level analyzes

We next explored the MDD-HC differences of hemispheric

gradient asymmetry at the region level. As illustrated in Figure 3A,

the multivariate analyzes revealed significant MDD-HC differences

in 12 regions for intra-hemispheric patterns and in 13 regions

for inter-hemispheric patterns (FDR-corrected P < 0.05

for both cases). For intra-hemispheric patterns, these regions

were mainly located within prefrontal cortex, lateral temporal

cortex, inferior parietal cortex, insula, paracentral lobule, and

precuneus/posterior cingulate. For inter-hemispheric patterns,

regions with MDD-HC differences included lateral frontal cortex,

lateral temporal cortex, insula, inferior parietal cortex, visual cortex,

and somatomotor cortex. For single-gradient comparisons, post-

hoc analyzes showed that MDD-HC differences of asymmetry

existed in all three gradients (Supplementary Figure 4). Specifically,

for intra-hemispheric G1, MDD-HC differences were mainly

located around inferior parietal lobule (IPL_6, t = 2.769, P =

0.006), posterior cingulate cortex (PCC_3, t = −2.882, P = 0.004),

ventral prefrontal cortex (PFCv_5, t = 2.520, P = 0.012), temporal

cortex (Temp_7, t = −2.573, P = 0.011), and insula (Ins_1,

t = −3.621, P = 0.000). For intra-hemispheric G2, regions

included orbital frontal cortex (OFC_3, t = 2.494, P = 0.013)

and superior parietal lobule (SPL_2, t = 3.244, P = 0.001).

For intra-hemispheric G3, regions included frontal medial cortex

(FrMed_2, t = −2.713, P = 0.007) and somatomotor cortex

(SomMot_8, t = 3.093, P = 0.002). Details were reported in

the Supplementary Table 4, which also included results concerning
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FIGURE 2

Network-level comparison of asymmetry between MDD and HC groups. (A) illustrates the t-statistic of the MDD e�ect on hemispheric asymmetry

(AI) for each functional gradient and each RSN. Positive t-values indicate larger AI scores of MDD relative to HC and asterisks indicate statistical

significance. RSNs: DMN, default mode; CON, control; LIM, limbic; SVA, salience ventral attention; DAN, dorsal attention; SM, somatomotor; VIS,

visual networks. (B) The violinplot of network-level AI scores across subjects in MDD and HC groups. In each violinplot, the box indicates the

interquartile range and the empty circle indicates the median value.

FIGURE 3

Regional-level comparison of asymmetry between MDD and HC groups. (A) Overall MDD-HC di�erences in hemispheric asymmetry across three

gradients (G1, G2, and G3) identified by the multivariate analyzes. The brain maps are colored according to Hotelling’s T-values (two-sided P < 0.05;

FDR-corrected). (B) Cognitive terms associated with abnormal brain regions. The bigger size of words informs the larger correlation to each topic

term.

MDD-HC differences in inter-hemispheric asymmetry. We also

repeated our analyzes with data after global signal regression (GSR)

and the results were roughly consistent (Supplementary Figure 5,

Supplementary Table 5). Moreover, we repeated the analyzes

with gradient templates contructed exclusively from the HC

group. All results were virtually identical (Supplementary Figure 6,

Supplementary Table 6).

3.4 Cognitive relevance to alterations in
MDD

To decode the behavioral relevance of the MDD-altered

regions, we applied a NeuroSynth meta-analyzes with 25 cognitive

topic terms retained (Margulies et al., 2016). As shown in Figure 3B,

for intra-hemispheric asymmetry, regions with significant MDD-

HC differences were mainly associated with mind, (episodic and

autobiographical) memory, and emotion. For inter-hemispheric

patterns, regions with MDD-related alterations were correlated

with visualization and mind.

3.5 Relevance to phenotypic measures

To examine whether gradient asymmetry could inform

depressive traits, we utilized AI scores of the first three

gradients to predict BDI-II measures via an elastic net (intra-

hemispheric: L1_ratio = 0.5; inter-hemispheric: L1_ratio = 0.9).

Supplementary Figure 7 illustrated the frequency of selected
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features and Figure 4 illustrated the distribution of prediction

accuracy r on test sets across 100 random splits. As shown, both

intra-hemispheric asymmetry and inter-hemispheric asymmetry

could significantly predict BDI-II scores, with Pearson r being

0.190 ± 0.161 for intra-hemispheric features and being 0.230 ±

0.125 for inter-hemispheric features (empirical P < 10−4 in both

cases). Results using other L1_ratio parameters could be found in

Supplementary Figure 8, Supplementary Tables 7, 8.

4 Discussion

In the current study, we employed the SRPBS Multi-disorder

MRI Dataset, a publicly available, multi-site data of MDD patients

and healthy controls (HC) to examine the MDD-related alterations

in hemispheric asymmetry of functional gradients. Corresponding

to the multi-domain functional deficits in MDD, we found that

patients with MDD displayed widespread abnormal asymmetric

patterns, including both primary sensory regions (e.g., visual

and somatomotor cortices) and higher-order association regions

(e.g., prefrontal and default mode areas), implying that MDD

may manifest as a consequence of broad disruption of brain

efficient lateralized processing. Notably, these abnormalities were

distributed across all three functional gradients (G1: unimodal-

transmodal gradient; G2: visual-somatosensory gradient; G3:

somatomotor/default mode-multiple demand gradient) and for

both intra- and inter-hemispheric patterns, which reflect a

global and mixed effect of MDD on brain intrinsic organizing

principles that depict distinct hierarchical information transitions

across the cortex. Besides, both intra- and inter-hemispheric

asymmetry features were found to be predictive of depressive traits,

indicating MDD-related alterations in both within-hemispheric

interaction patterns that underline differentiated processing within

each hemisphere and across-hemispheric interaction patterns that

support information transfer between two hemispheres. Altogether,

our work provides evidence of aberrant asymmetry along

functional hierarchies in MDD, advancing our understanding of

the pathophysiology of MDD from a new systematic, hemispheric

lateralization perspective.

Previous research has revealed connectome gradient

dysfunction along fundamental unimodal-transmodal hierarchy

in MDD (Xia et al., 2022). Here we extend the findings by

assessing hemispheric functional gradients and MDD-HC

differences in asymmetry patterns. To our knowledge, this is

the first attempt to reveal hemispheric gradient dysfunction

in MDD, which is informative for understanding hemispheric

lateralized architecture relevant to sensory-cognitive deficits in

patients with MDD. Despite the overall similar gradient patterns

between the two hemispheres, we found that both MDD and

healthy participants exhibited significant left-right differences,

with each hemisphere showing relative advantages in particular

functional modules. For example, we observed the leftward

principal gradient in language-related regions, which has also

been consistently observed in previous studies (Liang et al., 2021;

Wan et al., 2022, 2023), indicates higher integration of language

and transmodal regions in the left hemisphere than in the right

hemisphere. In contrast, we found that visual cortices exhibited

rightward asymmetry, which may be related to previously reported

right dominance of visuospatial function (Fink et al., 2001).

Such hemispheric lateralization in functional organization is

supposed to facilitate parallel and efficient information processing

(Vallortigara and Rogers, 2005; Corballis, 2009), and human

advanced neurocognitive operations involve flexible recruitment

of brain hemispheric specialized modules to meet a variety of

contextual demands (Gazzaniga, 2000; Davis and Cabeza, 2015;

Hartwigsen et al., 2021).

By assessing left-right asymmetry of hemispheric functional

gradients, we found broad and distributed MDD-HC differences

across the brain, spanning from primary sensory regions (e.g.,

visual and somatomotor cortices) to higher-order association

regions (e.g., prefrontal, lateral temporal, and inferior parietal

cortices). These identified regions were compatible with the

multi-domain functional deficits in MDD and showed somewhat

overlap with previous hemispheric studies of depressive disorders.

Specifically, the frontal and parietal cortices are mainly involved

in cognitive or emotional processing. The approach-withdrawal

model has related frontal lateralization to emotional valence

(Davidson, 1998; Coan and Allen, 2003) and its expanded model

linked parietal asymmetry to emotional arousal (Heller et al., 1995).

Despite the mixed results, studies using electrophysiological and

neuroimaging measures have reported altered frontal and parietal

asymmetry in depressive disorders, which is related to depression

and anxiety symptoms (Bruder et al., 2017). Here, abnormal

functional gradient asymmetry of frontal and parietal cortices

(e.g., prefrontal, lateral frontal, and inferior parietal cortices)

was also observed in MDD patients, which provide evidence

supporting the involvement of the frontal and parietal asymmetry

in the MDD pathology. In addition, depressed individuals have

been reported to show poor memory for positive materials

and good memory for negative events as well as impaired

autobiographical retrieval (Dillon and Pizzagalli, 2018). Our study

found aberrant asymmetry of functional gradient organization in

part of frontal cortex, parietal cortex, precuneus, and cingulate.

These brain regions are involved in attention, episodic memory,

and execution functions (Fossati et al., 2002; Fitzgerald et al.,

2006; McIntyre et al., 2013). In particular, precuneus has been

reported to play a central role in episodic memory retrieval

and self-processing (Cavanna and Trimble, 2006). Previous work

showed evidence that depressive patients exhibited significantly

increased FC among part of frontal cortex, parietal cortex,

precuneus, and cingulate with left dorsolateral prefrontal cortex

relative to healthy controls (Shen et al., 2015). As functional

gradients reflect organizational axes characterizing segregation

and integration between distinct regions, our results, as well as

the previous findings, suggest that aberrant organization among

these brain regions might be implicated in disrupted pattern

separation, which potentially suppresses the encoding of positive

memories and biases memory retrieval toward negative events

(Dillon and Pizzagalli, 2018). Besides, we also observed altered

gradient asymmetry of visual cortex and somatomotor cortex in

MDD, potentially corresponding to aberrant visual processing and

psychomotor retardation in depressive disorders (Buyukdura et al.,

2011; Bruder et al., 2017). Consistent with our findings, previous

studies have also reported abnormal connectivity asymmetry of

visual cortex and decreased regional homogeneity in somatomotor

regions (Iwabuchi et al., 2015; Ding et al., 2021). Collectively,
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FIGURE 4

Relation to depression traits. The distribution of Pearson r between the predicted and empirical BDI-II scores on test sets across 100 random splits.

L1_ratio = 0.5 for intra-hemispheric features and L1_ratio = 0.9 for inter-hemispheric features. For both cases, the prediction accuracy r significantly

exceeded the chance level (10,000 permutations, P < 0.0001). The results using other L1_ratio parameters could be found in Supplementary

Figure 8, Supplementary Tables 7, 8.

our observation of widespread alterations across the cortex

could be implicated with affective, cognitive, memory, visual and

somatic symptoms in MDD patients. Furthermore, our work

provided a potential bridge between these distributed abnormal

regions from the perspective of reconfiguration of brain lateralized

functional hierarchy, promoting the understanding of how focal

alterations and network architecture jointly contribute to the broad

pathophysiology of MDD.

Importantly, we found that significant MDD-HC differences

were distributed across different functional gradients and that

all three gradient features contributed significantly to predicting

depressive traits, suggesting that the effects of MDD on

brain asymmetry are multidimensional and woven in multiple

hierarchical organizations encoding distinct systematic shifts in

function. This finding is in line with emerging evidence that

hemispheric asymmetry is more complex than could be captured

by a single dimension (Liu et al., 2009; Badzakova-Trajkov et al.,

2016; Häberling et al., 2016; Corballis, 2019). Previous work has

observed abnormalities of hemispheric specialization in DMN

(Jiang et al., 2019; Ding et al., 2021). Our results extended

this knowledge that MDD-related alterations in DMN manifest

as a mixed reconfiguration composed of several independent

hemispheric hierarchies (e.g., G1_intra, G3_intra, and G2_inter).

Given the critical role of DMN in information transmission

and functional integration (Vatansever et al., 2015; Wens et al.,

2019; Lanzoni et al., 2020), abnormalities in DMN may induce

extensive disruption of polysynaptic signaling along many key

communication pathways and ultimately influence different global

functional hierarchical patterns. Our observation of multi-

dimensional alterations, combined with previously reported altered

functional connectivity and functional activation (Yan et al.,

2019; Scalabrini et al., 2020), collectively confirmed that aberrant

hemispheric specialization in DMN plays an important role

in MDD. Furthermore, we found that MDD elicited multiple

specialized alterations in DMN across different functional gradients

(e.g., left-to-right shift for G1_intra, increased leftward for

G3_intra, and left-to-right shift for G2_inter), which may provide

an alternative account for inconsistent results of previous work.

MDD is likely a mixed consequence of heterogenous lateralized

alterations along distinct axes of hierarchy; different analysis

strategies and sample populations may bias the observation in

favor of a specific pattern of disrupted hemispheric asymmetry.

Thus, future investigations of the heterogeneity and complexity of

MDD could be extended to multiple dimensions to cover various

and complementary information on the underlying neurobiological

mechanisms. In addition, we found that both intra-hemispheric

and inter-hemispheric asymmetry features were affected by MDD

and predictive of depressive traits, implying that MDD-related

alterations involve not only hemispheric localized organization

that underlies separated operations, but also cross-hemispheric

information transfer that mediates bilateral coordination. This is in

line with previous work suggesting MDD-related decreases in both

intra-hemispheric and inter-hemispheric functional connectivity

(Jiang et al., 2019). Moreover, despite the overall spatial similarity,

focal alterations of intra- and inter-hemispheric asymmetry

exhibited subtle differences in brain regions, which may be due

to discrepancy between intra- and inter-hemispheric patterns

in terms of their communication characteristics and functional

implications. That is, intra-hemispheric organization may reflect

localized processing and hemispheric specialization whereas inter-

hemispheric organization may reflect information transmission

across both hemispheres (Gazzaniga, 2000; Hartwigsen et al., 2021).

These two patterns are dissociable from but also intertwined with

each other in a flexible manner to conserve a balance of diverse

domain-specific and domain-general processes (Genç et al., 2011;

Westerhausen et al., 2011; Davis and Cabeza, 2015). The alterations

of intra- and inter-hemispheric gradient asymmetry observed here

may reflect a reconfiguration of this balance in MDD patients,

which deserves further investigation in future work.

There are a few limitations in our study. First, our findings were

made by the SRPBS Multi-disorder MRI Dataset where fMRI data

were collected from four acquisition sites. Although the Combat
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harmonization was conducted to correct for the multi-site effects,

the current findings need to be validated by large homogenized data

collection from one site. Meanwhile, we constrained our analyzes

to right-handed adults; future work could include left-handed

participants and children to explore the influence of handedness

and development. In addition, we only included functional data in

our analyzes; further investigation could incorporate multimodal

data (e.g., gene expression, cytoarchitecture, myelination, and

structural/functional connectivity) to enrich our understanding of

MDD pathology.
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