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Di�usion-weighted magnetic resonance imaging provides invaluable

insights into in-vivo neurological pathways. However, accurate and robust

characterization of white matter fibers microstructure remains challenging.

Widely used spherical deconvolution algorithms retrieve the fiber Orientation

Distribution Function (ODF) by using an estimation of a response function,

i.e., the signal arising from individual fascicles within a voxel. In this paper, an

algorithm of blind spherical deconvolution is proposed, which only assumes the

axial symmetry of the response function instead of its exact knowledge. This

algorithm provides a method for estimating the peaks of the ODF in a voxel

without any explicit response function, as well as a method for estimating signals

associated with the peaks of the ODF, regardless of how those peaks were

obtained. The two stages of the algorithm are tested onMonte Carlo simulations,

as well as compared to state-of-the-art methods on real in-vivo data for the

orientation retrieval task. Although the proposed algorithm was shown to

attain lower angular errors than the state-of-the-art constrained spherical

deconvolution algorithm on synthetic data, it was outperformed by state-of-

the-art spherical deconvolution algorithms on in-vivo data. In conjunction with

state-of-the art methods for axon bundles direction estimation, the proposed

method showed its potential for the derivation of per-voxel per-direction

metrics on synthetic as well as in-vivo data.

KEYWORDS

di�usion MRI, spherical deconvolution, white matter, microstructure, multi-fascicle

models

1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) (Merboldt et al., 1985;
Taylor and Bushell, 1985) is widely used for the study of tissue microstructure and fiber
orientation. However, accurate in-vivo characterization of the complex and heterogeneous
composition of nervous tissue remains challenging. Diffusion tensor imaging (DTI)
(Basser et al., 1994) is one of the first and most commonly used diffusion model,
mainly due to its ease of implementation, which only requires the acquisition of six
DW-MRI images along with an additional non-weighted image. However, its underlying
assumptions, particularly the presumption of Gaussian diffusion, restrict its capacity
to characterize complex microstructures accurately. Following, more advanced models
have been developed, trying to overcome some of the limitations of DTI, such as high
angular resolution diffusion imaging (HARDI) together with Q-ball imaging (Tuch,
2004; Anderson, 2005). Q-ball imaging uses a reconstruction technique of the diffusion
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Orientation Distribution Function (dODF) based on the Funk-
Radon Transform. As another possibility, Spherical Deconvolution
(SD) (Healy et al., 1998; Tournier et al., 2004) uses a response kernel
estimated from the DW-MRI data to perform the reconstruction
of the ODF, later improved with a positivity constraint (Tournier
et al., 2007) as well as a generalization to multiple shells and tissues
(Jeurissen et al., 2014). A general formulation of the deconvolution
problem was presented in Jian and Vemuri (2007) together with a
comparison of various methods for solving it. Numerous additional
methods were proposed and compared in Canales-Rodrguez et al.
(2019). Especially, a sparse Bayesian learning framework, in which
sparsity of the reconstructed ODF is promoted by assigning
different variances to each entry of the function together with a zero
mean Gaussian prior, has been proposed (Pisharady et al., 2018). It
has the particularity of using a ball-and-stick based dictionary in
order to retrieve diffusivity parameters in addition to orientations.
More recently, ODF fingerprinting (Baete et al., 2019) as well as
deep learning techniques based on rotationally equivariant layers
were proposed (Elaldi et al., 2021, 2024) in order to improve the
separability power of SD. Although Elaldi et al. (2021) highlights
the formulation of the ODF reconstruction problem as blind

deconvolution, a single response function is still used to train the
deep neural networks in an unsupervised manner.

Consequently, SD algorithms have been somewhat limited
in extracting additional signal features useful for estimating
microstructural parameters such as diffusivity (in- or extra-axonal),
although the ODF amplitude does contain information about
parameters such as the fiber volume fraction (Raffelt et al.,
2012). In order to recover per-voxel impulse responses as well
as longitudinal and transverse diffusion coefficients, the Spherical
Means Technique (SMT) was introduced in Kaden et al. (2016b)
and generalized to multiple compartments in Kaden et al. (2016a).
It uses an analytical model of the diffusion signal arising from
an axon segment and leverages the invariance to the ODF of the
mean signal of a voxel, provided that the response function is
the same for all directions. Under similar assumptions, Anderson
(2005) estimated per-voxel impulse responses in a constrained
spherical deconvolution framework. It was later improved in
Schultz and Groeschel (2013) with an ℓ1/2 regularization and
better estimation of the mean diffusivity of the per-voxel impulse
responses. Comparably, other methods, either based on Monte-
Carlo simulations or on compartment models were proposed to
compute microstructural metrics or diffusion properties. Notable
contributions in this domain include works by Zhang et al. (2012),
Panagiotaki et al. (2014), Scherrer et al. (2016), Nedjati-Gilani
et al. (2017), Rensonnet et al. (2019), Palombo et al. (2020), and
De Almeida Martins et al. (2021).

In this paper, an algorithm of blind spherical deconvolution is
proposed, which does not need an explicit response function nor
a generative model of the signal arising from the white matter,
and retrieves information about both the orientations as well as
the per-voxel per-direction impulse responses of the axon bundles,
under the assumption that the observed DW-MRI signal is a sparse
sum of axially symmetric signals each with its own orientation.
This is performed by exploiting the relationships between Spherical
Harmonics (SH) and D-Wigner functions and reformulating the
deconvolution problem: the rotation of a signal axially symmetric

around a basis axis can be expressed as a convolution with a rotation
filter which is not dependent on the observed signal but only on
mathematical properties of the SHs and D-Wigner functions. First,
the theory underlying the proposed algorithm is explained. Then,
two experiences, one on synthetic data obtained with Monte Carlo
simulation, and the other on in-vivo data, are presented. Finally,
the results and contribution of this work to existing spherical
deconvolution algorithms are discussed.

2 Theory

For a complete definition of the notations and conventions
used in this work, see Appendix A. In this section, we derive a
reformulated deconvolution problem under a sparsity assumption
using SHs and D-Wigner functions. For this, we study the
relationship between a convolution operator on the sphere and
rotations of signals axisymmetric around Euz .

2.1 Convolution on the sphere

There is a conceptual difficulty in the definition of a
convolution operator on the sphere. Indeed, on the 2D plane
the value of the convolution at point M can be described as the
correlation of the flipped convolution kernel with the underlying
function values around M. In order to define a convolution on the
sphere, the straightforward analogy is to consider rotations as a
substitute for translations. Therefore, the result is defined over the
set of rotations SO(3), elements of which can be represented by the
three Euler angles, instead of the unit sphere S2. This conceptual
difficulty led to numerous convolution operators on the sphere
to be introduced in the literature, depending on the application
(McEwen et al., 2007; Kennedy et al., 2011; Wei et al., 2011; Roddy
and McEwen, 2021).

The convolution operator at the heart of the SD (Tournier
et al., 2004), CSD (Tournier et al., 2007) andMSMT-CSD (Jeurissen
et al., 2014) algorithms was introduced in Healy et al. (1998) and is
defined as :

∀h ∈ L2(SO(3)), ∀g ∈ L2(S2), ∀ω ∈ S2,

(h ∗ g)(ω) =
∫

u∈SO3
h(u)g(u−1ω)du.

In the above equation, SO(3) is the set of three dimensional
rotations and S2 the three dimensional 2-sphere {ω ∈ R

3; ||ω||2 =

1 }. L2(S2) and L2(SO(3)) are the set of square-integrable functions
respectively defined over S2 and SO(3).

A theorem similar to the classical convolution theorem holds
(Healy et al., 1998):

∀h ∈ L2(SO3), ∀g ∈ L2(S2), (h ∗ g)mn =

n
∑

j=−n

h
m,j
n g

j
n, (1)

where ∀n ∈ N, ∀m ∈ [| − n, n|], gmn are the coefficients of the
expansion of g over the SHs Ym

n and ∀n ∈ N, ∀m ∈ [| − n, n|], ∀j ∈
[| − n, n|], h

m,j
n are the coefficients of the expansion of h over the

D-Wigner functions D
m,j
n .
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2.2 Rotation of an axially symmetric signal

Let C a signal axisymmetric around Euz as well as antipodally
symmetric. C can be interpreted as the response function of a
parallel bundle of fibers, such as the response function of the CSD
algorithm. This implies that ∀m 6= 0, ∀n, n odd,Cm

n = 0. Therefore,
we have the SH expansion:

C(ω) =
∞
∑

n=0

C0
nY

0
n(ω).

A fundamental property of the SHs gives the expression of a
rotated SH as a linear combination of the SHs of the same degree,
where the coefficients of the combination can explicitly be derived
with the D-Wigner functions D

m,j
n (Healy et al., 1998):

∀n ∈ N, ∀j ∈ [| − n, n|], ∀u ∈ SO(3), ∀ω ∈ S2,

Y
j
n(u−1ω) =

∑n
m=−n D

m,j
n (u)Ym

n (ω).

Therefore, the rotation of C by u ∈ SO(3), noted Cu can be
computed as:

∀u ∈ SO(3), ∀ω ∈ S2,

Cu(ω) = C(u−1ω) =
∑∞

n=0

∑n
m=−n C

0
nD

m,0
n (u)Ym

n (ω). (2)

The SHs are related to the D-Wigner functions by Healy et al.
(1998)

Ym
n (ω) =

√

2n+ 1

4π
Dm,0
n (ω).

In the above equation, Dm,0
n (ω) denotes the complex conjugate

of the complex numberDm,0
n (ω). Although theDm,0

n are not defined
over the unit sphere, consider that theDm,0

n is not dependent on the
third Euler angle γ and that for a given u ∈ SO(3) represented by
(α,β , 0), u can be seen as a point of S2 with coordinates θ = β and
8 = α.

Thus, Equation 2 becomes:

∀u ∈ SO(3), ∀ω ∈ S2,C(u−1ω) =
∞
∑

n=0

C0
n

n
∑

m=−n

αnYm
n (u)Ym

n (ω),

where αn =

√

4π

2n+ 1
.

Consequently, Cu can be rewritten with the convolution
operator defined in Healy et al. (1998) (see Equation 1) as:

Cu = (Uu ∗ C),

where Uu is defined by ∀ω ∈ S2,Uu(ω) =
∑∞

n=0

∑n
m=−n αnYm

n (u)Ym
n (ω).

As in the foundational paper of Spherical Deconvolution
(Tournier et al., 2004), this relationship is better visualized by
regrouping coefficients of a same degree n in a vector:

Cn
u = Cn

0U
n
u , (3)

where both Cn
u and Un

u are vectors of length 2n + 1. It is to be
noted that Un

u can be explicitly computed given the rotation u:

this is a core idea that will allow us to perform Blind Spherical
Deconvolution, i.e. perform the retrieval of both Un

u and C0
n at

each voxel for each direction. This means that contrary to the
CSD algorithm, in this work a different impulse response will
be estimated for each axon bundle directions in every voxels.
Other methods, such as the Spherical Means Technique (SMT)
(Kaden et al., 2016b), have been proposed to estimate per-voxel
impulse responses.

2.3 Linear superposition

The linear superposition of signals arising from intertwined
axon bundles is assumed, as is common in DW-MRI (Tournier
et al., 2013; Rensonnet, 2019).

Therefore, the DW-MRI signal S at a given voxel is considered
to be a linear superposition of K signals Ck,uk , each being obtained
by rotation of a canonical signal Ck axially symmetric around Euz ,
i.e.:

S(ω) =
K

∑

k=1

νkCuk (ω) =
K

∑

k=1

νkCk(u
−1
k

ω),

where the νk are the mix coefficients and verify
∑K

k=1 νk = 1.
Equation 3 gives the SH expansion formulation:

Sn =

K
∑

k=1

νkC
0
k,nU

n
uk
. (4)

Equation 4 shows that at each degree n, the vector of coefficients
of the SH expansion of the observed signal is a linear mix of K
vectors Un

uk
. The per-direction responses are given by the νkC

0
k,n,

while the sparse ODF, with exactly K directions for which it is
non-zero, is given by the Un

uk
.

2.4 Summary of the proposed algorithm

The algorithm presented in this paper, and summarized in
Figure 1, is the retrieval of those vectors through a complex
Orthogonal Matching Pursuit (OMP) algorithm (Tropp and
Gilbert, 2007; Fan et al., 2012) for a chosen degree n0, and
then the retrieval of the coefficients C0

k,n for all degrees n using
the orientations found with the OMP. This approach will be
refered to as Sparse Blind Spherical Deconvolution (SBSD) in the
remainder of the work. The OMP retrieves a sparse representation
of Sn0 from prior knowledge of a precomputed dictionary

Dn0 =
(

U
n0
v1 U

n0
v2 ... Un0

vNR

)

∈ M2n0+1,NR (C),

of convolution filters associated with rotations V = {v1, v2, ..., vNR}

at degree n0. The OMPwas chosen because the correlation between
U

n0
v1 and U

n0
v2 quickly diminishes as the angular distance between

v1 and v2 grows. The latter can be performed given any estimation
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{vk}1≤k≤K of the orientations, such as the peaks of the MSMT-CSD
FOD, by solving

(νkC
0
k,n)k = argmin

x
||Sn−

K
∑

k=1

xkU
n
vk
||2+λ

(

n(n+ 1)
)2
||x||2. (5)

Equation 5 makes use of the regularization proposed in
Descoteaux et al. (2007), with the nth eigenvalue of the Laplace-
Beltrami operator −n(n + 1). The estimated coefficients are then
used to reconstruct the per-voxel per-direction impulse responses
Rk(ω) =

∑N
n=1 νkC

0
k,nY

0
n(ω). Note that for n = 0, the matrix

(

U0
v0

... U0
vK

)

is singular, due to the infinite possible combinations

for attributing mean values to the estimated impulses while exactly
reconstructing the observed signal. Therefore, the mean of the
diffusion signal is first subtracted from itself and this zero-
mean signal fitted with coefficients of degree > 0. Then, for
each estimated impulse, the coefficient of degree 0 is given the
value of the opposite of its minimum so that the response has
positive values.

3 Methods

3.1 Experience A: validation on Monte
Carlo simulations

A set C of 50 canonical signals was generated using Monte-
Carlo simulations with the open-source MC-DC simulator (Rafael-
Patino et al., 2020), using a substrate of cylinders oriented
along Euz with gamma distributed radii, with all possible
combinations of parameters values intra-axonal diffusivity Din ∈

{1.5, 2, 2.25, 2.5, 3} × 10−9 m2.s−1, extra-axonal diffusivity Dex ∈

{1, 1.5, 2, 2.5, 3} × 10−9 m2.s−1 and fiber volume fraction fvf ∈

{0.7, 0.8}. For all simulations, the gamma law was parametrized
with α = 1.5 µm and β = 0.5. The simulated acquisition schemes
have sampling of the sphere obtained with a Coulomb repulsion
algorithm , with 100, 120, 130, 150 or 300 directions on the sphere
for each b-value B ∈ {2 000, 3 000, 4 000, 5 000, 10 000} s.mm−2.

Then, for each Signal to Noise Ratio (SNR) ∈

{100, 50, 40, 30, 20, 10}, 20 000 samples were generated using
the following procedure, which is also summarized in Figure 2:

1. Two canonical signals ci1 and ci2 are chosen in C.
2. Two directions Eu1 and Eu2 are uniformly chosen, with a minimal

angle of 25◦ between them, and ci1 (resp. ci2 ) is rotated along Eu1
(resp. Eu2 ).

3. The synthetic signal is computed: y = ν1ci1 + (1− ν1)ci2 , where
ν1 is randomly selected in [0.5, 0.85] with uniform probability.

4. y is contaminated by noise following a Rice distribution (Rice,
1944; Gudbjartsson and Patz, 1995; Alexander, 2009) with the
given SNR.

As commonly done in DW-MRI (Canales-Rodrguez et al.,
2019), SNR was defined with respect to the signal value at B =

0 s.mm−2, i.e. SNR = s(B = 0)/σ . However, this means that
for higher b-values, for which the signal decreases, noise becomes
stronger compared to the noiseless signal.

The CSD algorithm was applied to the synthetic samples and
peaks were extracted from the reconstructed ODF. The response

function used was an average of the 50 simulated signals. The
estimations of the directions were also computed using SBSD
for n0 ∈ {4, 6, 8}. Moreover, estimation of the per-voxel per-
direction impulse responses was performed using ground truth
bundle orientations together with Equation 5, with λ = 10−4

for all settings explored. The results were then compared both to
the ground truth as well as an estimation obtained via a SMT
based algorithm. For the SMT algorithm, the per-voxel response
function was reconstructed from the estimated λ|| and λ⊥ using
R(B, z) = exp(−Bλ||z

2) exp(−Bλ⊥(1− z2)), which is the analytical
model hypothesized by SMT (Kaden et al., 2016b). Both parameters
(λ|| and λ⊥) were estimated by using all shells investigated in this
work, i.e. B ∈ {2 000, 3 000, 4 000, 5 000, 10 000} s.mm−2. For fair
comparison, the latter estimation (one per voxel) was weighted with
the ground truth mix coefficient νk for each axon bundle to obtain
per-direction impulse responses.

3.2 Experience B: application on Human
Connectome Project data

The Human Connectome Project (HCP) (Setsompop et al.,
2013; Van Essen et al., 2013) provides data with the aim of
improving the understanding of the human brain structure,
function and connectivity. In order to assess the behavior of SBSD
on real in-vivo data, the algorithm was run on 5 participants of
the HCP Young Adult diffusion preprocessed dataset (Feinberg
et al., 2010; Moeller et al., 2010; Setsompop et al., 2012; Xu et al.,
2012; Milchenko and Marcus, 2013; Sotiropoulos et al., 2013).
In order to ease the reproducibility of the results presented in
this paper, no additional preprocessing was performed compared
to the general (Jenkinson et al., 2002; Glasser et al., 2013) as
well as diffusion specific (Andersson et al., 2003; Fischl, 2012;
Jenkinson et al., 2012; Andersson and Sotiropoulos, 2015, 2016)
preprocessings proposed by the HCP. Results for the orientation
retrieval tasks were compared to results from the CSD and
MSMT-CSD algorithms. Moreover, estimation of the per-voxel
per-directions impulse responses were made using the MSMT-
CSD directions together with Equation 5 for the b-value B =

3 000 s.mm−2 with 64 directions on the sphere. The MSMT-CSD
directions were thresholded with a relative peak amplitude of 0.1.
Once the per-directions impulses are estimated, any method can
be used in order to estimate per-voxel per-directions descriptors.
In order to present an example of derivation of such properties
from the reconstructed impulses, a descriptor of the shape of
the reconstructed impulses was computed using the following
procedure: a diffusion tensor was fitted to the per-direction
impulse responses estimated using Equation 5 with λ = 10−4.
Then, similarly to the usual FA, an Anisotropy Index (AI) is
computed as

AIk =

√

√

√

√

3

2

(λk,1 − λ̂k)
2 + (λk,2 − λ̂k)

2 + (λk,3 − λ̂k)
2

λ2
k,1 + λ2

k,2 + λ2
k,3

for each direction k at each voxel, where λk,1, λk,2 and λk,3 are
the eigenvalues of the diffusion tensor fitted to the estimated
per-direction impulse for direction k and λ̂k their mean. The
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FIGURE 1

Graphical summary of the proposed algorithm, named Sparse Blind Spherical Deconvolution (SBSD). The first stage estimates the orientations of the

fiber bundles, and the second stage the SH expansion of each bundle. Both stages are independent, and any orientation estimate can be used as an

input of the second stage. The main outputs are highlighted in red and are the bundles orientations ({uk}1≤k≤K ) as well as their SHs expansion

({νkC
0
k,n} 1≤k≤K

0≤n≤nmax , n even

).

FIGURE 2

Graphical summary of the method used to generate synthetic data from Monte Carlo simulations computed with the open source MC-DC simulator.

First, two atoms i1 and i2 are randomly selected among 50 canonical signals simulated with MC-DC. They are rotated along two random directions

Eu1 and Eu2 with a minimal separation angle of 25◦. Finally, the synthetic sample is obtained by linearly mixing the two rotated atoms and adding noise.

resulting maps were compared to maps of standard FA. Along-
tract AI was computed for the corpus callosum and the frontal
aslant tract using the per-direction AI maps. This was then
compared to along-tract FA obtained from the conventional FA
map. The along-tract metrics were computed using the publicly
available UNRAVEL Python package (Delinte, 2023), which assigns
microstructural properties along a tract by examining the nearest
angular peaks (Delinte et al., 2023), similarly to earlier works such
as Chandio et al. (2020).

3.3 SH expansion computation

The SHs expansion of the signals were obtained via LSI with
the regularization proposed in Descoteaux et al. (2007) for all
experiences. The LSI was performed with a truncation including
SHs up to order 8 for b-values B ≤ 5 000 s.mm−2, and up to
order 10 for B = 10 000 s.mm−2 for SBSD and CSD with Dipy.
For the MSMT-CSD and CSD run with MRtrix3 at a b-value B =

5 000 s.mm−2 on in-vivo data, default parameters were used.

3.4 Algorithms implementations

The SBSD algorithm was implemented using Python 3.11 and
makes ample use of the Quaternionic (Boyle, 2023a) and Spherical

(Boyle, 2023b) packages. The SMT algorithm was performed
with the implementation publicly available at https://github.com/
ekaden/smt.

For applications on in-vivo data, the Python code was
parallelized using the dask package (Rocklin, 2015). The source
code of the implementation is available at https://github.
com/cfuchs2023/SBSD_public (https://doi.org/10.5281/zenodo.
10866169) together with the scripts used to generate the results
presented in this work.

For Experience A (on synthetic data), CSD and ODF peaks
extraction were realized with the Dipy package (Garyfallidis et al.,
2014), in order to compare SBSD to an implementation of CSD
in the same language. For Experience B (on in-vivo data), CSD,
MSMT-CSD and ODF peaks extraction were performed with
the C++ implementation available in MRtrix3 (Tournier et al.,
2019), and the CSD response function was obtained using the
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“Tournier” algorithm (Tournier et al., 2013) while the MSMT-
CSD response functions were computed using the “dHollander”
algorithm (Dhollander et al., 2016, 2019).

4 Results

As the algorithm comprises two stages (see Figure 1), the
performance of each stage is evaluated individually.

4.1 Experience A: validation on Monte
Carlo simulations

4.1.1 Fascicle orientation estimation
Figure 3 shows the proportion of fascicles for which an error

of less than 10◦ was achieved, which will be referred to as the
accuracy of the algorithm. Performing the orientation estimation
with n0 = 4 fails to achieve accuracy higher than 0.8 even for
b-value B = 10 000 s.mm−2, SNR = 100 and 300 directions.
However, it is also the choice most robust to noise, consistently
achieving accuracy greater than 0.7 for SNR ≥ 20. The highest
degree (n0 = 8) is the choice that attains the highest accuracy of
1, for settings of high SNR = 20 together with 250 directions at
b-value B = 10 000 s.mm−2. Although such acquisition schemes
are not usual in clinical settings, it is notable that the acquisition
scheme used by the Human Connectome Project (HCP) in the
MGH HCP Adult Diffusion dataset has a shell of 256 directions
at b-value B = 10 000 s.mm−2. However, the accuracy at n0 = 8
quickly diminishes at SNR 10, and reliably outperforms n0 = 6 only
for b-values B ≥ 4 000 s.mm−2. Degree 6 outperforms degree 8 at
SNR 10 for all number of directions, and for some directions at SNR
20 and 30. It also significantly outperforms degree 8 at clinically
usual b-value B = 3 000 s.mm−2, achieving accuracy between 0.8
at SNR 20 and 0.95 at SNR 30.

Figure 4 shows the average angular error over all fascicles for
various choices of n0 as well as values of SNR and number of
directions on the sphere. Less than 10◦ average error is consistently
achieved for n0 = 6, while the lowest average error is achieved
for n0 = 8 for combinations of sufficiently high SNR, b-value and
number of directions. Notably, n0 = 8 achieves significantly lower
average angular error than CSD in favorable settings, while n0 = 6
achieves a lower improvement over CSD but on a larger set of SNR,
b-values and number of directions. n0 = 4 achieves lower or similar
average angular error compared to CSD at b-values B = 3 000 and
2 000 s.mm−2.

In in-vivo data a deviation is expected from the formulation
given in Equation 4. Specifically, it is expected that the performance
will drop more significantly the higher the degree, since
they are more sensitive to noise and errors in the SH
expansion computation.

4.1.2 Reconstruction of per-voxel per-direction
impulse responses

Figure 5 show theMean Absolute Error (MAE) of the estimated
impulses using either Equation 5 or SMT compared to the
ground truth, while Figure 6 shows examples of estimated impulse

responses. It is notable that the proposed method outperforms
SMT on all settings of SNR and number of directions for b-values
B ∈ {2 000, 3 000, 4 000, 5 000} s.mm−2 in terms of MAE. Both
methods exhibit little sensitivity to the number of sampling points
of the signal in the range studied (from 100 to 300 sampling
points, i.e., from 50 to 150 acquisition gradients) for b-values
B ≤ 5 000 s.mm−2. as well as a breakdown of performance at
B = 10 000 s.mm−2. This might seem counter-intuitive and is
investigated thoroughly in the Discussion section. Figure 6 shows
that estimating the impulses using Equation 5 leads to ringing at
both ends of the estimation (i.e., close to the poles of the 2-sphere),
while SMT does not provide accurate estimation over the wide
range of b-values used.

4.2 Experience B: application to HCP data

4.2.1 Fascicle orientation estimation
The SBSD algorithm was run on five patients (1007, 1010 and

1016, 1019 and 1031) of theMGHHCPAdult Diffusion dataset and
results for the first three are presented on Figure 7 while Figure 8
shows additional details for the first two patients.

Figure 7 shows that on in-vivo data, SBSD is likely able to
estimate the orientation of single bundles for n0 ∈ {2, 4} : the
corpus callosum is red-colored and the cingulum green-colored.
Although the corpus callosum and corticospinal tract can still be
perceived for n0 = 6, the results are largely contaminated by noise.
For n0 = 8, the ventricles are still visible but even large structures
like the cingulum and corpus callosum are indistinguishable from
the gray matter. Figure 8 shows a zoom for the two first patients
(1007 and 1010) in the coronal view on a region containing parts of
the corpus callosum, cingulum, cerebro spinal tracts and arcuate
fasciculus. The results from the proposed SBSD algorithm are
compared to those obtained with CSD and MSMT-CSD. In regions
occupied by a single tract, such as in the corpus callosum or
cingulum, results of SBSD are broadly comparable to CSD and in
agreement with MSMT-CSD. However, SBSD often only estimates
one of the orientation correctly and fails to retrieve the other, such
as in the area where the arcuate fasciculus crosses projections from
the corpus callosum.

4.2.2 Reconstruction of per-voxel per-direction
impulse responses

Figure 9 shows examples of estimated impulse responses for
two patients of the HCP at different locations in the brain. Similarly
to the results on synthetic data, ringing is often observed at the
ends of the reconstructed impulses. Figure 10 shows the standard
FA computed from the diffusion signal, as well as per-directions
AI maps computed from the estimated per-direction impulses. The
per-directions AImaps exhibited at least one direction with high AI
in the regions where the arcuate fasciculus and corticospinal tract
cross projections from the corpus callosum, where the standard
FA drops significantly. Figure 11 shows along-tract FA using maps
of standard FA as well as along-tract AI using per-direction AI
maps. Similarly to Figure 10, the per-directions AI are generally
lower than the standard FA. Moreover, for the corpus callosum,
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FIGURE 3

Proportion of fascicles for which the angular error was less than 10◦, referred to as accuracy. The algorithm was run on the same synthetic data with

di�erent choices for n0, i.e., the degree of the coe�cients used for direction estimation. For each of this choice, the accuracy is plotted for di�erent

values of SNR and number of directions of the acquisition schemes.

the standard FA drops significantly near and within the crossing
with the frontal aslant tracts, while the per-direction AI remains
close to constant. Both metrics show a significant decrease when
approaching the gray matter, i.e. at the ends of the tract.

5 Discussion

5.1 Orientation retrieval on Monte Carlo
simulations derived data

The proposed algorithm was first tested on synthetic data
obtained with Monte Carlo simulations in Experience A. SBSD
achieved lower average angular errors for direction estimation in

a simplified synthetic setting at high SNR (≥20) compared to CSD,
as shown in Figures 3, 4. This was likely due to the use of a fine
grained dictionary in the SBSD algorithm, i.e., using a high angular
resolution sampling of the sphere, which was made possible thanks
to the low computational complexity of the OMP. However, the
relaxation of hypothesis about the response function also induced a
greater sensitivity to errors in the computation of the SH expansion
of the signal, mainly driven by noise and number of directions
on the sphere (Figures 3, 4). Recently, efforts have been made to
develop spherical Fourier transform algorithms dedicated to axially
symmetric signals (Bates et al., 2016) or methods more resistant
to noise for SH expansion computation (Tarar and Khalid, 2021),
but no clear state-of-the-art method significantly improving over
the least squares inversion proposed in Descoteaux et al. (2007)
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FIGURE 4

Average angular error (in degrees) over all fascicles plotted for various choices of n0 for the SBSD algorithm as well as CSD, for various values of SNR

and number of directions on the sphere.

has emerged yet. Overall, this experience validated the ability of
the SBSD algorithm to accurately estimate the directions of two
crossing fascicles of parallel fibers, provided that both the number
of directions on the shell and SNR are sufficiently high.

5.2 Impulse responses estimation on
Monte Carlo simulations derived data

As SMT hypothesizes that all axon bundles have the
same response regardless of their orientation, the statistical
independency of the diffusion properties of the two crossing
bundles in the synthetic data made it a challenging task for
SMT. Moreover, SMT uses an analytical model for the response
R of axon fascicles such that ln(R) is linearly dependent on

B. This is not the case in in-vivo data (Jensen et al., 2005)
nor in the Monte-Carlo simulated data used for Experience A,
which explains why SMT cannot accurately estimate the impulse
responses over a wide range of b-values, as well as its significant
drop in performance for B = 10 000 s.mm−2. Conversely, since
the proposed method does not need to assume a generative
model for the impulse response, it was able to recover per-
direction impulse responses accurately for all b-values B ≤

5 000 s.mm. Ringing was often observed (see Figure 6) at both
ends of the impulse responses estimated following Equation 5,
which is linked to core properties of the SHs. Indeed, SHs of
order 0 are proportional to Legendre polynomials. Therefore, the
estimations are in fact polynomials of the same degree as the
maximum degree used for SHs coefficients computation. However,
the ground truth is exponential in nature and peaked around z = 0.
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FIGURE 5

Mean Absolute Error (MAE) of the estimated impulse responses compared to the ground truth. For each synthetic voxel and each fascicle, the error

vivo normalized by the mean of the ground truth impulse response in order to compare results over a wide range of b-values, for which the signal

changes scale. As SMT only estimates one impulse response per voxel, it was weighted with the ground truth mix coe�cient associated with each

fascicle for a fair comparison with the ground truth impulse responses.

Consequently, the truncature at degree 8 or 10 induced ringing
in the reconstructed impulses. This is particularly challenging for
settings of high b-values, because the relative increase in noise
complicates the estimation of SHs expansion while the degree
needed to accurately represents the signal increases. It explains
the significant drop in performance observed for the b-value
B = 10 000 s.mm−2. Moreover, the estimations were found to
systematically undershoot the peak at z = 0. Depending on
the method used to link those impulses to diffusion properties,
this could lead to systemic bias in the estimation of parameters
such as longitudinal diffusivity. Overall, the proposed method for
estimating per-voxel per-direction impulse responses was found to
be robust and accurate on synthetic data generated following the
procedure described on Figure 2 and in Section 3.1., significantly

outperforming SMT in terms of MAE (Figure 5) for all settings of
SNR and number of directions for a clinically realistic range of
b-values B ∈ {2 000, 3 000, 4 000, 5 000} s.mm−2. However, one
should note that the ODF in the synthetic data were indeed sum of
Dirac impulses on the sphere, with one peak per direction.

5.3 Axon bundles orientation prediction on
in-vivo data

SBSD was then run on the reduced sampling of the HCP
Young Adult diffusion dataset comprising five patients (1007, 1010,
1016, 1019 and 1031) (Experience B) and results were shown for
the first three patients with more details being provided for the
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FIGURE 6

Examples of impulses estimated by using either Equation 5 (in green) or SMT (in blue) on synthetic data generated following the procedure described

on Figure 2 and in Section 3.1. The SMT response was weighted by the ground truth νk coe�cients to obtain per-direction impulse responses. The

Monte-Carlo simulated ground truth is shown in black. Below, the impulse response used by CSD, which is an average of all 50 canonical signals

used to generate the synthetic data, is shown in red.

first two. Visually, results of orientation estimation of SBSD were
broadly similar to those of CSD in regions where a single axon
bundle was present, with both methods agreeing with MSMT-
CSD (Figures 7, 8). Although SBSD, compared to CSD, exhibited
much smaller magnitude for peaks in regions where no fibers
were expected such as the ventricles, SBSD performed noticeably

worse in regions comprising multiple crossing fiber bundles, failing
to retrieve the expected orientations in a significant number
of such voxels. This was coherent with the findings of greater
noise sensitivity highlighted during Experience A. Moreover, it
is likely that deviations from the expected model summarized in
Equation 4, such as tortuosity of axon bundles which invalidates
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FIGURE 7

Results of the estimation of fibers orientation performed on three patients of the HCP at b-value B = 5, 000 s.mm−2 with 128 directions on the

sphere. The estimated directions are weighted by the modulus of the associated νkC
n0
k,0 (green highlight in Figure 1) estimated by SBSD. The results

are visualized with the usual RGB convention where red corresponds to the left-right axis, green to the anterior-posterior axis and blue to the

inferior-superior axis.

FIGURE 8

Zoom on an arbitrary brain region for the two first HCP patients shown on Figure 7, showing estimated fascicles orientations in an arbitrary region

including parts of the cingulum, corpus callosum, corticospinal tract and arcuate fasciculus. The estimated orientations are peaks of the ODF for CSD

and MSMT-CSD. The background is a fractional anisotropy map obtained with the DTI implementation available in Mrtrix3.

the hypothesis of axial symmetry of the signal, also played a
role, although CSD also hypothesizes the axial symmetry of its
response function.

5.4 Per-direction impulse responses
estimation

Since the estimation of the per-direction impulse responses
corresponding to axon bundles can be performed with any

orientations estimate (Equation 5), such an estimation was
computed using the peaks of the MSMT-CSD ODF. Although in-

vivo ODF are often assumed to be sparse and peaked (Canales-
Rodrguez et al., 2019), they are not sum of Dirac impulses
because the axons are not perfectly parallel and have tortuosity.
Therefore, the estimated impulses are likely flatter than the ground
truth because they need to account for the spread of the ODF
around the Dirac peaks modeled by the Un

vk
in Equation 5.

Both those factors mean that depending on the method used to
compute descriptors from the impulse responses, bias could be
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FIGURE 9

Examples of per-voxel per-directions estimated impulse responses using MSMT-CSD ODF peaks at a b-value B = 3, 000 s.mm−2 with 64 directions

on the sphere following Equation 5. Below or above each 1D plot, a 3D visualization of the estimated impulse response is shown. Together with the

impulses, the directions of the MSMT-CSD peaks projected in the plane of the slices are shown as crossing sticks. As the peaks were thresholded

according to their amplitudes, there can be one, two or three directions per voxel. These ℓ2 normalized directions were used to estimate the impulse

responses.

introduced by the proposed method. In Figure 11, the standard
FA decreases sharply in regions where multiple tracts crosses,
which is a well-known property of the DTI model which measures
the anisotropy of the diffusion signal on a voxel wise scale
without considering crossings of axon bundles. Conversely, for
the per-direction AI maps, at least one peak was associated with
a high AI value in those regions and the along-tract AI in
Figure 11 was close to constant for the corpus callosum, except
at the ends of the tracts where the white matter reaches the
gray matter. This is an argument showing that the proposed
method at least partially disentangles diffusion properties of
crossing axon bundles, although the estimated impulse responses
include information about the ODF. This also partially explains
the decreases of the per-direction AI close to the gray matter,
because the ODF becomes more spread out which flattens the
estimated impulse responses. This also means that linking the
estimated impulse responses to properties such as axonal density is
not straightforward.

5.5 Summary of the contribution

Given the results obtained on in-vivo data, the use of
SBSD for orientation estimation in clinical settings is not
recommended without further improvements. However, the work
presented in this paper could open the door to a new family of
spherical deconvolution algorithms, allowing for more detailed
characterization of axon bundles, and is of interest for people
developing methods for this particular problem. Indeed, although
blind or ℓ0 penalized methods for solving spherical deconvolution
problems have been proposed (Canales-Rodrguez et al., 2019),
our contribution is twofold. First, the blind framework proposed
does not need prior information about a generative model of
the white matter response, but only an assumption about its
axial symmetry. Second, our algorithm effectively leverages ℓ0

penalization in a fast and efficient way. Both of these contributions
arise from the theoretical formulation of Equation 4, which gives
a sparse representation of the SH expansion of the DW-MRI
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FIGURE 10

FA map obtained by running DTI with MRtrix on the di�usion signal (left column) as well as AI maps derived from impulse responses estimated using

Equation 5 together with the first (resp. second) peaks of the MSMT-CSD ODF (middle (resp. right) columns) at a b-value B = 3, 000 s.mm−2 with 64

directions on the sphere. For the latter two, no responses were estimated in voxels where no MSMT-CSD peaks exceeded the threshold, resulting in

an AI of 0 in those voxels.

signals using a dictionary of highly uncorrelated atoms which are
not dependent on the observations, but only on mathematical
properties of the SHs and D-Wigner functions. This equation
was derived under the explicit assumption that the observed
DW-MRI signal is a sparse sum of axially symmetric signals,
as is hypothesized in Daducci et al. (2014) or the NNLS-
BSS-EBIC method presented in Canales-Rodrguez et al. (2019).
Additionally, using the peaks of MSMT-CSD, maps of per-
direction AI were derived from the per-direction impulse responses
estimated using Equation 5, which showed resemblance to the
brain anatomy (Figures 10, 11). Therefore, the second stage of the
proposed algorithm (Figure 1) in conjunction with MSMT-CSD or
another robust direction estimation method could be of interest
to clinicians in order to study along-tract variation of metrics
between populations.

5.6 Future works

We believe SBSD to be the most straightforward approach
to exploit the core ideas exposed in the Theory section. This
means there is likely room for building upon the algorithm
exposed in this work; future works could include leveraging
information from multiple shells instead of one, and using SBSD
in a multi tissues framework. Moreover, as OMP uses a least
squares problem during its greedy reconstruction of the sparse
representation, it was natural to also solve a least squares problem
for SH expansion estimation. However, taking into account the
non-Gaussian nature of noise in magnitude reconstructed DW-
MRI images would lead to other formulations of the optimization
problem used to estimate the SH expansion associated with each
bundle (Alexander, 2009).

6 Conclusion

This work proposed an algorithm of blind spherical
deconvolution called Sparse Blind Spherical Deconvolution
(SBSD), which, instead of necessitating exact knowledge of a
response function, only assumes its axial symmetry. This relaxation
allows for the retrieval of the individual signals arising from
each bundle in addition to the orientations of the bundles. On
the orientation retrieval task, SBSD outperformed the CSD
algorithm in some settings of high SNR (≥20) in a synthetic
and simplified test case, but was more sensitive to noise and
errors in the computation of the SH expansion of the signal. On
real in-vivo data, SBSD performed similarly to CSD, in voxels
where one fiber population associated with a given orientation
was dominant. However, in voxels where roughly similar fiber
populations crossed, SBSD was found to be more prone to
errors or straight failures than CSD, which was likely caused by
SBSD’s greater sensitivity to noise and SH expansion computation
errors as well as deviation from the expected axial symmetry of
impulse responses due to axonal tortuosity and fiber fanning. Both
methods were outperformed by MSMT-CSD, which necessitates
multi-shell data. Since the retrieval of signals arising from each
bundle is agnostic to the method used to estimate the relevant
orientations, per-direction impulse responses were estimated
using peaks from the MSMT-CSD ODF. Maps of per-direction
metrics computed using an approach similar to the standard
fractional anisotropy derived from the estimated per-direction
impulse responses showed resemblance to brain anatomy and
remained close to constant in the studied regions of crossing
fascicles along the studied tracts. Therefore, this method proved its
potential for the derivation of per-voxel per-direction metrics, and
potential improvements to spherical deconvolution algorithms by
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FIGURE 11

Along-tract AI (first row of graphs) for the corpus callosum and frontal aslant tract for patient 1007, derived from impulse responses estimated

following Equation 5. The second row of graphs shows the results using the standard FA map.

removing the need for an explicit response function for the white
matter, thus enabling the retrieval of additional information about
axon bundles.
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Appendix A

Angles conventions

Spherical coordinates are defined according to the common
mathematical convention where θ is the colatitude [i.e. the oriented
angle ( EuZ , EOM)] and 8 the longitude [i.e., the oriented angle
( Eux, EOMz) where EOMz is the projection of EOM in the plane z = 0].
For Euler angles, the common zyz convention is used together
with the notations α,β , γ : γ is the first rotation, around Euz ,
then β around Euy and finally α around Euz . Consequently, the
rotation of a signal axysymmetric around Euz is only dependent on
α and β .

Spherical harmonics and D-Wigner
functions

Multiple conventions can be found in the literature for the
definition of spherical harmonics (SHs) or D-Wigner functions. In
this work, the following definition is used for spherical harmonics:

∀n ∈ N, ∀m ∈ [| − n, n|],

Ym
n (θ ,8) =

√

(2n+ 1)(n− |m|)!

4π(n+ |m|)
P
|m|
n (cos(θ))eim8,

where

Pmn (x) = (−1)m(1− x2)

m

2
dmPn(x)

dxm

are the associated Legendre polynomials and

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

the Legendre polynomials. SHs form an orthonormal basis of
the Hilbert space L2(S2) and therefore, any f ∈ L2(S2) can
be defined with its expansion over the SHs ∀ω ∈ S2, f (ω) =
∑∞

n=0

∑n
m=−n f

m
n Ym

n (ω). The coefficients fmn are defined by fmn =
∫

ω∈S2 f (ω)Y
m
n (ω)dω. Note that the antipodal symmetry of diffusion

signals implies that all fmn = 0 for n odd.
In this work, the following definition is used for D-Wigner

functions

∀n ∈ N, ∀m ∈ [| − n, n|], ∀q ∈ [| − n, n|],
D
m,q
n (α,β , γ ) = e−jmαd

m,q
n (β)e−jqγ ,

with the d-Wigner functions d
m,q
n

d
m,q
n (x) = jm−q sin(x)q−m(1+cos(x))m

2n((n+m)!(n−q)!)1/2

[

(n− q)!

(n+ q)!

]1/2

dn+q

dcos(x)n+q

[

(cos(x)− 1)n+m(cos(x)+ 1)n−m
]

.
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