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Abnormal β-amyloid (Aβ) accumulation in the brain is an early indicator of 
Alzheimer’s disease (AD) and is typically assessed through invasive procedures 
such as PET (positron emission tomography) or CSF (cerebrospinal fluid) assays. 
As new anti-Alzheimer’s treatments can now successfully target amyloid 
pathology, there is a growing interest in predicting Aβ positivity (Aβ+) from 
less invasive, more widely available types of brain scans, such as T1-weighted 
(T1w) MRI. Here we compare multiple approaches to infer Aβ  +  from standard 
anatomical MRI: (1) classical machine learning algorithms, including logistic 
regression, XGBoost, and shallow artificial neural networks, (2) deep learning 
models based on 2D and 3D convolutional neural networks (CNNs), (3) a hybrid 
ANN-CNN, combining the strengths of shallow and deep neural networks, (4) 
transfer learning models based on CNNs, and (5) 3D Vision Transformers. All 
models were trained on paired MRI/PET data from 1,847 elderly participants 
(mean age: 75.1  yrs. ± 7.6SD; 863 females/984 males; 661 healthy controls, 889 
with mild cognitive impairment (MCI), and 297 with Dementia), scanned as part 
of the Alzheimer’s Disease Neuroimaging Initiative. We evaluated each model’s 
balanced accuracy and F1 scores. While further tests on more diverse data are 
warranted, deep learning models trained on standard MRI showed promise for 
estimating Aβ  +  status, at least in people with MCI. This may offer a potential 
screening option before resorting to more invasive procedures.
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1 Introduction

According to the World Health Organization (2022), 
approximately 55 million individuals are now affected by 
dementia—a number expected to rise to 78 million by the year 2030. 
Alzheimer’s disease (AD)—the most prevalent type of dementia - 
accounts for around 60–70% of the overall number of cases (World 
Health Organization, 2022). The underlying cause of AD is linked 
to the abnormal accumulation of specific proteins in the brain, 
including beta-amyloid plaques (Jack et al., 2018). These plaques are 
insoluble and toxic to brain cells (Masters and Selkoe, 2012). 
Additionally, abnormal tau proteins aggregate within neurons, in the 
form of neurofibrillary tangles, disrupting molecular transport 
within cells (Johnson and Hartigan, 1999). To visualize the 
distribution of Aβ in the brain, positron emission tomography 
(PET) has been used, but radioactive tracers that are sensitive to 
amyloid and tau proteins must be injected into the bloodstream, and 
this is invasive. Amyloid-sensitive PET can map the spatial 
distribution of Aβ in the brain, revealing the extent of AD pathology. 
As amyloid, tau, and neurodegeneration (A/T/N) are all considered 
to be the defining biological characteristics of AD, a recent NIA-AA 
task force recommended (Jack et  al., 2018; Revised Again: 
Alzheimer’s Diagnostic Criteria Get Another Makeover | 
ALZFORUM, 2023) that future AD research studies should measure 
these processes.

In line with post mortem maps of pathology, PET scans show a 
distinctive trajectory of pathology in AD, usually starting in the 
entorhinal cortex, hippocampus, and medial temporal lobes, and then 
spreading throughout the brain as the disease advances. Early 
neuropathological work by Braak and colleagues pieced together the 
typical progression patterns for amyloid and tau in the brain (leading 
to the so-called ‘Braak staging’ system; Braak and Braak, 1991; Braak 
and Braak, 1997; Braak, 2000; Thompson et al., 2004; Braak et al., 
2006). This progression is associated with gradual clinical and 
cognitive decline. Although amyloid levels can be measured in living 
individuals using PET imaging with amyloid-sensitive ligands such as 
Pittsburgh compound B (PiB; Klunk et al., 2004) or florbetapir (Clark 
et  al., 2011), amyloid-PET is expensive, not widely available, and 
involves an invasive procedure, as it requires the injection of 
radioactive compounds into the participant. Ground truth measures 
can be  obtained by directly measuring amyloid levels in the 
cerebrospinal fluid (CSF) through a spinal tap or lumbar puncture. 
The efficiency of Aβ protein aggregate clearance can be assessed in 
cerebrospinal fluid (CSF; Tarasoff-Conway et al., 2015). CSF peptides, 
such as Aβ1-42, and hyperphosphorylated tau show correlations with 
amyloid plaques and neuronal tangles observed in brain autopsies 
(Nelson et al., 2007). These biomarkers are linked to cognitive decline, 
providing insights for early detection of AD. Despite providing 
accurate information, these procedures are highly invasive. Thus, there 
is a significant interest in developing a less invasive test for abnormal 
amyloid to screen individuals before resorting to more invasive testing 
methods. Standard anatomical MRI cannot directly detect amyloid, 
but the accumulation of Aβ leads to widespread brain cell loss, which 
manifests as atrophy on T1-weighted (T1w) MRI. This process is 
evident through the expansion of the ventricles and widening of the 
cortical sulci, and the pattern of Aβ accumulation closely matches the 
trajectory of cortical gray matter loss detectable on brain MRI 
(Thompson, 2007). As such, MRI markers may offer a potential 

avenue for less invasive screening of abnormal amyloid levels 
in individuals.

In Petrone and Casamitjana (2019), Petrone et al. conducted a 
study where they used neuroimaging to predict amyloid positivity in 
cerebrospinal fluid (CSF), using an established cutoff of >192 pg./
mL. They studied 403 elderly participants scanned with MRI and 
PET. Brain tissue loss rates were longitudinally mapped using the 
SPM12 (SPM12 software  - Statistical Parametric Mapping, 2014) 
software. A machine learning classifier was then applied to the 
Jacobian determinant maps, representing local rates of atrophy, to 
predict amyloid levels in cognitively unimpaired individuals. The 
longitudinal voxel-based classifier demonstrated a promising Area 
Under the Curve (AUC) of 0.87 (95% CI, 0.72–0.97). Even so, this 
prediction required longitudinal scans from the same individual, and 
was not applicable when a patient had only a baseline scan. The brain 
regions with the greatest discriminative power included the temporal 
lobes, basal forebrain, and lateral ventricles. In Pan et al. (2018), Pan 
et  al. developed a cycle-consistent generative adversarial network 
(Cycle-GAN) to generate synthetic 3D PET images from brain MRI 
(i.e., cross-modal image synthesis). Cycle-GANs build on the GAN 
concept introduced by Goodfellow et al. (2014) and perform a form 
of ‘neural style transfer’ by learning the statistical relationship between 
two imaging modalities. In related work (Jin et al., 2023), we developed 
a multimodal contrastive GAN to synthesize amyloid PET scans from 
T1w MRI and FLAIR scans. For more details on image-to-image 
translation and the underlying mathematics, readers are referred to 
Qu et al. (2021) and Wang et al. (2020). Cross-modal synthesis is an 
innovative use of deep learning to generate synthetic PET images, 
offering potential applications in cases where PET scans may 
be challenging or costly to obtain.

In Shan et al. (2021), Shan et al. used Monte Carlo simulations 
with k-fold cross validation to predict Aβ positivity using domain 
scores from cognitive tests, obtaining an accuracy of 0.90 and 0.86 on 
men and women, respectively, with subjective memory complaints. In 
Ezzati et al. (2020), Ezzati et al. used an ensemble linear discriminant 
model to predict Aβ positivity using demographic information, 
ApoE4 genotype (as this is the major risk gene for late onset AD), MRI 
volumetrics and CSF biomarkers, yielding AUCs between 0.89 and 
0.92 in participants with amnestic mild cognitive impairment (aMCI). 
In Kim S, et al. (2021), Kim et al. used a 2.5-D CNN (a convolutional 
neural network that operates on a set of 2D slices from a 3D volume) 
to predict Aβ positivity from [18F]-fluorodeoxyglucose (FDG) PET 
scans, with an accuracy of 0.75 and an AUC of 0.86. In Son et al. 
(2020), Son et al. used 2D CNNs to classify Aβ-PET images. They 
showed that in cases where scans present visual ambiguity, deep 
learning algorithms correlated better with ground truth measures than 
visual assessments. This underscores the potential of such algorithms 
for clinical diagnosis and prognostic assessment, particularly in 
scenarios where visual interpretation is challenging or uncertain. In 
Bae et al. (2023), Bae et al. used a deep learning based classification 
system (DLCS) to classify Aβ-positive AD patients vs. Aβ-negative 
controls using T1w brain MRI. and reported an AUC of 0.937. In 
Yasuno et al. (2017), Yasuno et al. conducted a correlation analysis 
between the T1w/T2w ratio and PiB-BPND values and found a 
significant positive relationship between the regional T1w/T2w ratio 
and Aβ accumulation. Their study concluded that the T1w/T2w ratio 
is a prospective, stable biological marker of early Aβ accumulation in 
cognitively normal individuals.
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In our current study, we aimed to assess the effectiveness of a 
diverse range of deep learning architectures for predicting 
Aβ + from 3D T1w structural MRI. 3D convolutional neural 
networks (CNNs) have demonstrated success in detecting 
Alzheimer’s disease and in ‘brain age’ estimation from brain MRI 
(Lam and Zhu, 2020; Lu et al., 2022). CNNs learn predictive features 
directly from raw images, eliminating the need for extensive 
pre-processing, or visual interpretation of images. As Aβ + is weakly 
associated with age and regional morphometric measures (such as 
the volume of the entorhinal cortex), we incorporated these features 
as predictors as well. To achieve this, we compared the performance 
of classical machine learning algorithms—logistic regression, 
XGBoost, and shallow artificial neural networks—for the amyloid 
prediction task. We also evaluated a hybrid network that combines 
a CNN with a shallow artificial neural network. This merges 
numeric features, often called ‘tabular data’, with entire images, 
weighting each input type in proportion to its added value for the 
prediction task.

In our tests, we separately report accuracy for Aβ + prediction in 
healthy people vs. those who already show signs of clinical impairment 
(MCI and AD), as Aβ + prediction may be  more challenging in 
controls. The now-standard biomarker model by Jack et al. (2018) 
posits that amyloid levels may begin to rise before neurodegeneration 
is apparent on MRI, although some researchers have challenged this 
sequence of events, noting that it may not be universal (Cho et al., 
2024), especially in populations of non-European ancestry.

As deep learning models are often enhanced by “pre-training” 
(first training networks on related tasks), we  evaluated the 
performance of the models when pre-training them to predict age and 
sex, using data from 19,839 subjects from the UK Biobank dataset 
(Sudlow et al., 2015). Transfer learning - an artificial intelligence/deep 
learning approach—has previously been shown to enhance MRI-based 
Alzheimer’s disease (AD) classification performance (Lu et al., 2022; 
Dhinagar and Thomopoulos, 2023). In transfer learning, network 
weights are first optimized on previous tasks and then some network 
layers have their weights ‘frozen’—held constant—while others are 
adjusted when training the network on the new task. There is a debate 
about when such pre-training techniques enhance performance on 
downstream tasks, especially when the tasks differ. Our study aimed 
to investigate whether these pre-training techniques help in predicting 
amyloid positivity. We examined whether the amount of data used for 
the pretraining task impacts the accuracy of the downstream task after 
fine-tuning. This evaluation assessed transfer learning for predicting 
Aβ + from structural MRI.

Finally, Vision Transformers (ViTs) have shown enormous success 
in computer vision, and more recently in medical imaging (Matsoukas, 
2021). Unlike CNNs, ViTs employ a self-attention mechanism to 
capture long-range spatial dependencies in an image, providing a 
more comprehensive global perspective (Li, 2022). This property can 
help in medical imaging tasks, where anatomical context and spatial 
patterns can be crucial. Even so, effective training of ViTs typically 
requires a very large number of MRI scans (Bi, 2022; Jang and Hwang, 
2022; Willemink et  al., 2022). In Dhinagar et  al. (2023), the ViT 
architecture was used to classify AD vs. healthy aging, achieving an 
AUC of 0.89. Building on this, our investigation aimed to assess the 
performance of the ViT architecture in predicting Aβ + from T1w 
MRI. We conducted a benchmark comparison with the commonly 
used CNNs, to compare these two architectures for Aβ + prediction.

With the advent of new anti-Alzheimer’s treatments effectively 
targeting amyloid pathology, there is increasing interest in predicting 
Aβ + using less invasive and more accessible brain imaging techniques, 
such as T1-weighted MRI. In this work, we compare multiple machine 
learning and deep learning architectures, including, (1) classical 
machine learning algorithms, such as logistic regression, XGBoost, 
and shallow artificial neural networks, (2) deep learning models based 
on 2D and 3D convolutional neural networks (CNNs), (3) a hybrid 
ANN-CNN, combining the strengths of shallow and deep neural 
networks, (4) transfer learning models based on CNNs, and (5) 3D 
Vision Transformers, to infer Aβ status from standard anatomical 
MRI. We hypothesize that methods (1), (3) and (5) will perform best.

2 Imaging data and preprocessing 
steps

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a 
comprehensive, multisite study initiated in 2004, at 58 locations across 
North America. It aims to collect and analyze neuroimaging, clinical, 
and genetic data to identify and better understand biomarkers 
associated with healthy aging and AD (Veitch et al., 2019). In our 
analysis, we  examined data from 1,847 ADNI participants with a 
mean age of 74.04 ± 7.40 years (863 females and 984 males). 
We included participants from all phases of ADNI (1, 2, GO and 3) 
who had both MRI and PET scans. The data was acquired across 58 
sites with (both 1.5 and 3 T) GE, Siemens or Philips scanners. Forty of 
these sites had a change in scanner manufacturer or model across the 
scanning time of our subset. The distribution of participants included 
661 cognitively normal (CN) individuals, 889 with mild cognitive 
impairment (MCI), and 297 with dementia. Overall, the dataset 
included 954 individuals classified as Aβ + (amyloid positive) and 893 
as Aβ- (amyloid negative). A detailed table with the subject 
demographic breakdown can be found in Table 1.

In ADNI1, participants initially underwent PiB scans instead of 
florbetapir scans (ADNI, n.d.). However, the protocol was amended 
before the study’s conclusion to transition to florbetapir scans due to 
processing time constraints. Consequently, PiB scans were only 
collected from ADNI1 participants. For participants in ADNI1 who 
transitioned into ADNIGO and then ADNI2, initial PET scans 
occurred 2 years from the date of the last successful florbetapir and 
FDG-PET scan conducted under ADNIGO. Additionally, in ADNI1, 
only a subset of participants received FDG scans. In ADNI2, subjects 
underwent up to 3 florbetapir scans and up to 2 FDG scans, with each 
scan acquired at 2-year intervals. These scans were conducted within 
a two-week window before or after the in-clinic assessments at 
Baseline and at 24 months after Baseline. In ADNI3, both Tau and 
Amyloid imaging were conducted on all participants during their 
initial ADNI3 visit. Amyloid PET imaging was carried out every 
2 years using florbetapir for participants continuing from ADNI2 or 
florbetaben for newly enrolled participants (ADNI, n.d.). ADNI does 
not perform partial volume correction for amyloid PET analysis. It 
also does not account for off-target binding.

Mild cognitive impairment (MCI) is an intermediate state 
between normal aging and AD (Petersen et  al., 1999), and is a 
significant focus in clinical trials, as many trials enroll individuals with 
MCI as they are assumed to be more likely to respond to therapy than 
people already diagnosed with AD. In the construction of the final 
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dataset, we excluded participants who lacked basic clinical information 
or had poor-quality imaging data, such as scans with severe motion, 
distortion, or ringing artifacts.

ADNI has more participants with MCI compared to those with 
AD or CN. This is partly due to the initiative’s focus on the early stages 
of cognitive decline and the progression to Alzheimer’s disease. From 
ADNI phase 1 onward, twice as many MCI subjects were enrolled 
than AD cases or controls, with a target enrolment ratio of 1:2:1 for 
controls:MCI:AD. This higher proportion of MCI participants aligns 
with ADNI’s objective to study factors that influence disease 
progression from MCI to AD, which is critical for early diagnosis 
and intervention.

Having a balanced number of participants in each diagnostic class 
and repeating the experiments could in principle lead to more reliable 
and generalizable models, reducing the bias toward the more prevalent 
class, MCI. But balancing the datasets can come with its own set of 
challenges. One issue might be the reduced amount of training data if 
undersampling is used to balance the classes, which can lead to loss of 
information, especially as the dataset is not large to begin with. 
Alternatively, oversampling/differential sampling methods such as 
SMOTE, or generative models such latent diffusion models, denoising 
diffusion probabilistic models (DDPMs), or VAEs might be used to 
generate synthetic data for the underrepresented classes, to augment 
the training set, but this might also introduce noise and overfitting.

T1w MRI scans were further processed using the automated 
segmentation software package FreeSurfer (Fisch, 2012), following the 
ENIGMA standardized protocol for brain segmentation and quality 
assurance (Van Erp and Hibar, 2016; van Erp et  al., 2018).1 The 
segmentations of subcortical regions (including lateralized 
hippocampus) and cortical regions [based on the Desikan-Killiany 
(DK) atlas regions (Desikan et al., 2006); including entorhinal cortex] 
were extracted and visually inspected for accuracy. The CSF, white and 
gray matter segmentations were extracted and visually inspected for 
each subject using FSL’s Fast function.2

For training the CNN architectures, we used part of this dataset, 
so that an independent subset of the data could be  reserved for 
testing. We focused on 3D T1w brain MRI scans (see Figure 1) from 
762 subjects, with a mean age of 75.1 ± 7.6 years (394 females, 368 
males). This subset included 459 cognitively normal controls, 67 
individuals with MCI, and 236 with AD. These participants were 
selected as they also had amyloid-sensitive PET scans collected close 
to the time of the T1w MRI acquisition, with a maximum interval 
between scans set to 180 days (We note that one could consider an 

1 http://enigma.ini.usc.edu/protocols/imaging-protocols/

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST

extension of the current problem, where the interval from the MRI to 
the amyloid assessment is considered as a variable, t, and used as 
input in the model, where t may be positive or negative). No repeated 
scans were used for the CNNs. The restriction on the time interval 
between scans was intended to help in estimating the relation between 
MRI features and amyloid positivity. As ViTs are more data intensive 
architectures, the whole dataset - with repeated scans - was used to 
train them. The test dataset in that case was designed to not have 
repeated scans, or scans from subjects in training or validation sets. 
Thus, the training dataset had 1,290 T1w MRI scans from 845 
individual subjects, the validation dataset had 276 T1w MRI scans, 
and the test dataset had 275 T1w MRI scans. For the transfer learning 
experiments, we used data from 19,839 subjects from the UK Biobank 
dataset (age: 64.6 ± 7.6 years) comprising 10,294 females and 
9,545 males.

As is customary when benchmarking deep learning methods, the 
3D T1w brain MRI scans underwent a series of pre-processing steps 
(Lam and Zhu, 2020). These steps included nonparametric intensity 
normalization using N4 bias field correction, ‘skull stripping’ for brain 
extraction, registration to a template using 6 degrees of freedom 
(rigid-body) registration, and isometric voxel resampling to 2 mm. 
The resulting pre-processed images were of size 91x109x91. 
Furthermore, the T1w images underwent min-max scaling so that all 
values ranged between 0 and 1. This normalization process is common 
in image processing (and is similar to batch or instance normalization 
in deep learning), allowing standardized and consistent representation 
of image intensity values, which may aid in subsequent analyses and 
model training. The preprocessing pipeline applied to the 3D T1w 
MRI images ensures that the background of the scans is 0 intensity, 
and due to the normalization of input before CNN model, ideally, the 
effect of the original background or intensity range of the scan on 
performance of convolution models is negligible. To ensure a direct 
correspondence with the patch sizes used for the ViT models, the T1w 
input scans were resized to dimensions of both 64x64x64 and 
128x128x128 for the ViT experiments. This resizing ensures 
compatibility between the image dimensions and the patch sizes 
employed in the ViT models, and allowed us to consistently integrate 
the T1w images into the analysis pipeline.

As is the convention in the ADNI dataset, two cut-off values were 
employed, providing alternative definitions of amyloid positivity, 
based on PET cortical standardized uptake value ratio (SUVR; denoted 
Αβ_1 by ADNI). For the 18F-florbetapir tracer, amyloid positivity was 
determined using mean 18F-florbetapir, with Aβ + defined as >1.11 for 
cutoff_1 and > 0.79 for cutoff_2. When florbetaben was used, Aβ + was 
defined as >1.20 for cutoff_1 and > 1.33 for cutoff_2. The SUVR values 
were normalized by using a whole cerebellum reference region 
(Hansson et al., 2018; Blennow et al., 2019). Each of these two cutoffs 
has been employed in the literature to define amyloid positivity, and 

TABLE 1 Demographic data of individual train, validation and test set.

Individual 
distribution

Total N Sex Mean 
age  ±  St. 

Dev.

Amyloid classification Diagnosis

M F +ve -ve CN MCI Dem

Train 1,292 680 612 73.99 ± 7.43 662 630 465 630 197

Validation 278 154 124 74.12 ± 6.95 146 132 105 126 47

Test 277 150 127 74.20 ± 7.74 146 131 91 133 53
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to establish eligibility criteria for anti-amyloid drug treatments (van 
Dyck et al., 2023).

3 Models and experiments

3.1 Classical machine learning algorithms

As the first set of methods to evaluate for predicting Aβ + from 
anatomical MRI, we employed the following three classical machine 
learning algorithms: logistic regression, XGBoost, and a fully-
connected artificial neural network (ANN) with 7 hidden layers. The 
ANN incorporated a Rectified Linear Unit (ReLU) activation function 
between layers. As predictors, we used measures that have previously 
been associated with amyloid levels in the literature: age, sex, clinical 
diagnosis, ApoE4 genotype values (2 for two copies of the ApoE4 allele 
and 1 for one E4 allele, 0 otherwise), overall volumes of cerebrospinal 
fluid (CSF), gray and white matter (all estimated from the brain MRI 
scan), as well as the left and right hippocampal and entorhinal cortex 
volumes. Regional volumes were extracted from the T1w MRI using 
FreeSurfer and were available for the entire brain. Previous studies like 
Kai et al. (Hu et al., 2019) and Thompson et al. (2004) show that 
hippocampal and entorhinal cortex volumes are among the most 
consistently affected in Alzheimer’s disease, and as a result we focused 
on those two regional volumes in our study. The dataset was 
partitioned into independent training, validation, and testing sets, 
approximately in the ratio of 70:20:10. Standard performance metrics 
for the three algorithms (balanced accuracy and F1 Score on the test 
dataset), were computed to assess their effectiveness in predicting 
amyloid positivity.

3.2 2D CNN architecture

We implemented the 2D CNN architecture that we proposed in 
Gupta et al. (2021). In this model, 3D scans are used as the input, 
but each slice is encoded using a 2D CNN encoder (see Figure 2), 
which makes the training faster, requires less RAM, and allows 
pre-training using foundation models trained on large datasets of 
2D photographic images, such as ImageNet. The encoded slices are 
then combined through an aggregation module that employs 

permutation-invariant layers, ultimately producing a single 
embedding for the entire scan. This embedding was then passed 
through feed-forward layers to predict whether the individual was 
amyloid positive or negative. This architecture allows for effective 
representation learning from 3D scans, and the aggregation module 
captures information from individual slices to predict 
amyloid status.

The 2D CNN encoder processes a single 2D slice as input and 
generates a d-dimensional embedding for each slice. The number of 
filters in the last layer of the architecture is d, determined by the 
dimension of the output from the aggregation module. The 
aggregation module incorporates permutation-invariant layers, 
ensuring that the output remains independent of the slice order. 
Specifically, the element-wise mean of all slice encodings is computed 
and used as the permutation-invariant layer. The value of d is fixed at 
32, and a feed-forward layer with one hidden layer containing 64 
activations is used. The slices in this context are sagittal. This model 
was trained for 100 epochs using the Adam optimizer (Kingma and 
Ba, 2015), a weight decay of 1×10−4, a learning rate of 1×10−4, and a 
batch size of 8. Mean squared error loss was employed as the 
optimization function during training. Model performance was 
measured using balanced accuracy.

3.3 3D CNN architecture

The 3D CNN was composed of four 3D Convolution layers with 
a filter size of 3 × 3, followed by one 3D Convolution layer with a 1 × 
1 filter, and a final Dense layer with a sigmoid activation function (see 
Figure 3). A ReLU activation function and Instance normalization 
were applied to all layers. Dropout layers (with a dropout rate of 0.5) 
and a 3D Average Pooling layer with a 2 × 2 filter size were introduced 
into the 2nd, 3rd, and 4th layers. During training, models were 
optimized with a learning rate of 1×10−4. Test performance was 
evaluated using balanced accuracy and F1 Score. To address 
overfitting, both L1 and L2 regularizers were employed, along with 
dropouts between layers and early stopping. Youden’s J index (Youden, 
1950) was used to determine the threshold for binary classification of 
Aβ + during testing, allowing comparison with the true cutoff values. 
Hyperparameter tuning was conducted through k-fold cross-
validation to optimize model performance.

FIGURE 1

MRI scans of three amyloid positive participants: (A) a cognitively normal control, and participants diagnosed with (B) MCI, and (C) dementia.
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3.4 Hybrid CNN architecture

The hybrid model (Figure 4) combines a 3D CNN using T1w 
images as input with an ANN that takes discrete, tabular data (which 
consists of simple values that are numeric or categorical) including 
age, sex, diagnosis, APOE4 values (2 for two copies of E4, 1 for one E4, 
and 0 for none), overall volumes of CSF, white and gray matter, and 
left and right hippocampal and entorhinal cortex volumes. The 3D 
images and the derived discrete data were fed into individual models, 
separately. After passing through flattening layers in the 3D CNN, the 
layers from the ANN are stacked with the tensors from the 3D 
CNN. Subsequently, the combined data passes through further Dense 
layers to predict Aβ+. The learning rate was set to 0.001, and the Adam 
Optimizer was used, with a batch size of 2. The model was trained for 
200 epochs. The 3D CNN model consisted of 3 convolution blocks 
with increasing filter sizes (32, 64, 128, and 256) along with Batch 
Normalization and Max Pooling. The final convolution layer, before 
concatenation, had a filter size of 256 and used average pooling. The 
ANN had three layers with hidden layer sizes of 1,024, 512, and 64, 
along with instance normalization and the ReLU activation function.

This hybrid model was executed separately for both entorhinal 
cortex and hippocampus volumes, as well as in combination. In the 
combined case, we also considered the case where APOE genotype 
values were excluded from the discrete features input. Performance 
was evaluated using balanced accuracy and F1 Score, to compare the 
four models.

3.5 Vision transformers

We trained two variations of the ViT architecture: (i) the 
neuroimage transformer (NiT) and (ii) the multiple instance NiT 
(MINiT; Singla et  al., 2022), as illustrated in Figure  5. These 
architectures involve several key steps. Initially, the input image is 
split into fixed-sized patch embeddings. These patches are then 
combined with learnable position embeddings and a class token. 
The resulting sequence of vectors is fed into a transformer encoder, 
consisting of alternating layers of multi-head attention and a multi-
layer perceptron (MLP; top right, Figure 5). This architecture has 
been adapted to accommodate patches (cubes) from 3D scans. The 
NiT model was configured with a patch size of 8x8x8, without any 
overlap, a hidden dimension size of 256, six transformer encoder 
layers, and between 2 and 12 self-attention heads, with a dropout 
rate of 0.3.

Based on MiNiT (Singla et  al., 2022), the input image, 
represented as M ∈ RL × W × H, is transformed into a sequence of 
flattened blocks. If (B,B,B) denotes the shape of each block, the 
number of blocks is LWH/B3. Non-overlapping cubiform patches 
are extracted from the input volume and flattened. These patches 
are then projected to D dimensions, the inner dimension of the 
transformer layers, using a learned linear projection. The generated 
sequence of input patches is augmented with learned positional 
embeddings for positional information and a learned classification 
token. Subsequently, this sequence is fed into a transformer encoder 

FIGURE 2

Model architecture with mean-based aggregation. The two pink blocks include trainable parameters; the purple block is a deterministic operation.

FIGURE 3

3D CNN model architecture.
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comprising L transformer layers. Each layer consists of a multi-head 
self-attention block and a multi-layer perceptron (MLP) block, 
which incorporates two linear projections, with a Gaussian Error 
Gated Linear Unit (GEGLU) nonlinearity applied between them. 
Layer normalization is applied before - and residual connections are 
added after - every block in each transformer layer. Finally, a layer 
normalization and an MLP head consisting of a single D × C linear 
layer project the classification token to RC, where C represents the 
number of classes (Singla et al., 2022).

The NiT architecture served as the primary model in our 
experiments, and we fine-tuned the default values for the number 
of transformer encoder layers and attention heads. In the case of 
MINiT, as well as incorporating a learned positional embedding 
on the training data to patches and adding a learned classification 
token to their sequence, a learned block embedding was also 
introduced (Singla et al., 2022). This embedding was included to 
retain the positional information of the block within the 
neuroimage of each patch. MINiT adopted similar parameters to 
those described for NiT.

We also performed hyperparameter selection for both models 
through a random search within specified upper and lower bounds. 
These parameters included the learning rate (chosen from a uniform 
distribution between 0.00001 to 0.001), weight decay (selected from 
a uniform distribution between 0.00001 to 0.001), the number of 
warm-up epochs (options included 1, 5, 16), the number of attention 
heads (options included 2, 4, 8, and 12), and the number of encoder 
layers (choices were 3, 4, and 6). These hyperparameters were defined 
based on the bounds typically used in ViT architectures (Bi, 2022; 
Jang and Hwang, 2022). We used the Adam optimizer (Kingma and 
Ba, 2015).

After training, we tested the model on the hold-out test dataset. 
We evaluated model performance with several metrics including the 
receiver-operator characteristic curve-area under the curve 

(ROC-AUC), accuracy, and F1-score. We determined the threshold 
for these metrics was accomplished through Youden’s Index 
(Youden, 1950).

4 Results

In the comparison of classical machine learning models for 
predicting amyloid positivity, the best results were achieved with the 
artificial neural network (ANN), yielding a balanced accuracy of 0.771 
and an F1 score of 0.771. The balanced accuracy values for the classical 
models ranged from 0.69 to 0.77, indicating predominantly similar 
classification performances across these models (Table 2).

The 2D CNN performed worse than the classical machine 
learning algorithms. Across an average of three runs, the model 
achieved a test accuracy of 0.543. In contrast, the 3D CNN architecture 
performed better, as indicated in Table 3. The Youden’s J Index, used 
to determine the threshold for classifying Aβ + as 0/1 based on MRI 
scans, varied across different subject groups. Specifically, it was found 
to be 0.605 when considering only MCI and AD participants, 0.509 
for cognitively unimpaired controls (CN), and 0.494 when considering 
all subjects. A balanced accuracy score of 0.760 was achieved for 
classification when all subjects were included. The accuracy increased 
to 0.850 when classifying individuals with only MCI or AD. In the case 
of CN, the balanced accuracy was 0.631. This observation aligns with 
expectations, as classifying Aβ + is more challenging in the earlier 
stages of the disease. According to the now-accepted Jack et al. model 
of the sequence of biomarker elevation in AD (Jack et  al., 2018), 
abnormal amyloid accumulation typically precedes extensive brain 
atrophy, although individuals may vary in the order and relative 
intensities of these processes.

The hybrid model performed better than the 3D CNN model 
(Table 4). The hybrid model gave the best balanced accuracy of 0.815, 

FIGURE 4

Hybrid 3D CNN model architecture.
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when using hippocampal volume in the predictor set. Considering the 
CN, MCI and AD subjects in the test set separately for this model, the 
balanced accuracies are 0.616, 0.75 and 0.85 respectively, while the F1 
Scores are 0.4, 0.969 and 0.863, respectively. This observation aligns 
with expectations, as classifying Aβ + is more challenging at the earlier 
stages of the disease.

The results comparing various hyperparameters for both NiT and 
MINiT model architectures are summarized in Table 5. Four different 
hyperparameter tunings were evaluated for both image sizes. In 
contrast, the NiT architecture performed more poorly, with 
classification accuracies close to chance (ranging between 0.5 to 0.6) 
across different hyperparameters and two image sizes. The MINiT 
architecture outperformed the NiT architectures, particularly for the 
image size of 64x64x64, with a test accuracy of 0.791 and a test 
ROC-AUC of 0.857. Therefore, the MINiT architecture improved 
upon the NiT architecture.

Hyperparameter tuning of attention heads, learning rate, encoder 
layer, and weight decay all enhanced model performance. Notably, 

the performance for the downscaled image of size 64x64x64 was 
superior to that for the upsampled image of size 128x128x128, in 
our experiments.

5 Discussion

This work, and several more recent amyloid-PET studies, 
show that the pattern of Aβ accumulation closely matches the 
anatomical trajectory of cortical gray matter loss detectable on 
brain MRI, a process that is also evident through the widening of 
the cortical sulci over time. Although the now widely accepted 
biomarker model by Jack et al. (2013) suggests that amyloid levels 
become statistically abnormal earlier than MRI measures of 
atrophy, all the processes occurring, to some extent, 
simultaneously. The order in which we detect them with imaging 
also depends, to some extent, on the sensitivity of our 
measurement techniques. Magnetic resonance imaging (MRI) 

FIGURE 5

Overview of the vision transformer architecture, : reproduced from Singla et al. (2022).
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measures of atrophy may not be as sensitive as amyloid positron 
emission tomography (PET) in detecting early changes, as amyloid 
levels typically become statistically abnormal earlier than 
structural atrophy becomes abnormal on MRI. The sensitivity of 
the imaging modality used plays a role in determining the order 
in which the pathological changes are observed, in addition to the 
temporal ordering of the underlying biological processes. There 
have been successful attempts to predict amyloid positivity in 
patients with MCI using radiomics and structural MRI (Petrone 
and Casamitjana, 2019; Kim J P, et al., 2021). To the best of our 
knowledge, we are the first to focus on predicting brain amyloid 
using deep learning architectures and T1-weighted structural 
MRIs. We know from work on related diseases (Kochunov et al., 
2022) that even linear multivariate measures pick up disease 
effects with greater effect sizes than univariate measures, so a deep 
learning model could in theory produce a biomarker of atrophy 
that becomes abnormal or offers earlier anomaly detection and 
greater group differentiation than univariate measures such as 
hippocampal volume. As the amyloid accumulation and atrophy 
co-occur in the brain, it is plausible that our deep learning models 
could pick up on these signals to predict Aβ+. Thus, in early-stage 
patients who are Aβ+, the models attempt to detect any MRI-based 
anomalies that might separate them from healthy Aβ- subjects and 
combine them into a more accurate discriminator.

One potential issue with using amyloid and tau PET for molecular 
characterization of AD is off-target binding. While this may be  a 
greater issue for tau PET than amyloid PET (Young et al., 2021), it is 
still an area of active research (Lemoine et al., 2018), because off-target 
binding may increase with age, affecting the SUVR metrics.

From our experiments, we can see that both deep and shallow 
neural networks, along with traditional classical machine learning 
models, showed promise in predicting amyloid positivity from 
standard structural brain MRI. Classical machine learning models, 
including XGBoost, logistic regression, and ANNs, exhibited 
promising balanced accuracy and F1 scores: best scores reached 
around 0.77. There is potential for further improvement with larger 
training samples and additional data modalities like Diffusion Tensor 
Images, which have shown significant associations with amyloid 
(Chattopadhyay and Singh, 2023a; Nir et al., 2023). Deep learning 
models, such as the 3D CNN tested, showed slightly better 
performance than classical machine learning models. The 2D CNN, 
while inferior to the 3D CNN architecture, may perform better with 
pre-training.

In the Alzheimer’s disease (AD) progression model proposed by 
Jack et al. (2013), brain amyloid typically accumulates before pervasive 
brain atrophy is visible on MRI. As such, predicting Aβ + may be more 
challenging in controls than in individuals with mild cognitive 
impairment (MCI) and AD, where abnormalities are already evident 
on both PET and MRI scans. The hybrid model achieved the highest 
balanced accuracy of 0.815 when incorporating hippocampal volume 
in the predictor set. Further enhancements may be  possible by 
increasing the size and diversity of the training data. and incorporating 
data from additional cohorts. The now-standard biomarker model of 
Alzheimer’s disease, proposed by Jack et  al. (2013), notes that 
structural MRI is typically one of the last biomarkers to show 
detectable changes - after CSF Abeta42, Amyloid PET, and CSF Tau. 
Because of this sequence, it is reasonable that an amyloid classifier 
based on T1w may not work as well in the very early stages of AD, and 
may work better when all of the biomarkers are somewhat elevated.

The MINiT architecture performed better than the other 
architecture considered—NiT. The results are promising. The 
performance we obtained may even improve with more training data, 
as the model has a large number of parameters; increasing the training 
dataset size may enhance model accuracy. In conclusion, the best 
performing models for the experiments are as summarized in Table 6.

A key goal of deep learning methods applied to neuroimaging 
data is that their performance remains robust even if the scanning 
protocol changes. In ADNI, the MRI scanning protocols do allow 
different scanner vendors (Siemens, Philips, and GE), but a long 
preparatory phase by the ADNI MRI Core was undertaken in 2004, 
to optimize the scan protocols for tracking of dementia, and to align 
the pulse sequences to the maximum possible extent across vendors. 
As such the training data from ADNI was from diverse scanners 
across the U.S., and included multiple vendors, and although the 
ADNI protocol was later adopted by many large scale imaging 

TABLE 2 Balanced accuracy (BA) and F1 scores for classical machine 
learning models.

XGBoost Logistic 
regression

ANN

BA / F1 score BA / F1 score
BA / F1 
score

Data except 

for EC volume
0.742 / 0.678 0.770 / 0.734 0.711 / 0.696

Data except 

for HP volume
0.742 / 0.689 0.770 / 0.734 0.711 / 0.696

Data except 

for GM, WM 

and CSF 

volumes

0.697 / 0.656 0.770 / 0.734 0.771 / 0.771

Data with all 

features
0.756 / 0.701 0.770 / 0.734 0.725 / 0.716

The best performance was obtained with the ANN where all data except GM, WM and CSF 
volumes are considered, giving a balanced accuracy of 0.771.

TABLE 3 3D CNN results for all subjects, and with CN and MCI/AD groups 
considered separately.

All subjects CN MCI and 
AD

Balanced accuracy 0.760 0.631 0.850

F1 score 0.746 0.480 0.824

TABLE 4 Balanced accuracy and F1 score for the hybrid model 
architecture.

Entorhinal 
cortex 
volume

Hippocampus 
volume

Entorhinal 
cortex and 

hippocampus 
volume

Balanced 

accuracy
0.759 0.815 0.787

F1 score 0.746 0.793 0.769
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TABLE 6 Best performing models for amyloid classification.

Model Balanced 
accuracy

F1 score

Hybrid Model using 

Hippocampus Volume in 

Predictor Set

0.815 0.793

MINiT with image size 

(64)3, 6 Transformer Layers 

and 12 Attention Heads

0.791 0.793

The performance can improve by increasing the amount of training data.

initiatives, there was still somewhat less heterogeneity in the protocols 
than would be seen in general. Future work will examine the use of 
post-hoc methods for MRI harmonization (Liu, 2021; Zuo et al., 2021; 
Komandur, 2023), to test whether this improves performance on data 
from new scanners and other scanning protocols.

The current biological categorization of Alzheimer’s disease 
commonly relies on other data sources such as amyloid- or tau-sensitive 
PET scans or cerebrospinal fluid (CSF) biomarkers, all of which are 
more invasive than structural brain MRI. While a T1w MRI-based 
model may benefit from the incorporation of other data sources, it 
offers a promising tool for benchmarking. T1w MRIs are more widely 
available and cost-effective than amyloid PET. Therefore, classifying 
amyloid positivity from T1w MRIs may help to identify participants, 
particularly those with MCI, for further, more intensive testing using 
other modalities. Prior works (Grill et al., 2019) show that the selection 
of biomarker criteria should be guided by the objective of enrolling 
individuals who are most likely to use and benefit from the intervention 
being studied in a specific context. As a result, our work shows the 
potential of ML/DL methods in MCI participants for detection of 
amyloid positivity before going for further more intensive testing using 
other modalities such as PET scans.

5.1 Limitations and future work

This study has limitations - notably the restricted testing on the 
ADNI dataset. Performance may improve with an increase in the size 
and diversity of the training data, by including multimodal brain MRI 
(Chattopadhyay and Singh, 2023a, 2023b) and by adding data from 
supplementary cohorts. Future work will include individuals of more 
diverse ancestries (John et al., 2023; Chattopadhyay and Joshy, 2024) 
and with various comorbidities such as vascular disease, 
frontotemporal dementia, and other degenerative diseases. Moreover, 
the sensitivity of the approach to different MRI scanning protocols 
and PET tracers should be examined. In the context of multisite data, 
harmonization methods  - such as using centiloids for PET and 
generative adversarial networks (GANs) for MRIs - may be needed for 
domain adaptation. These steps may help in evaluating amyloid 
prediction accuracy across varied scenarios and populations. There 
are efforts to develop cheaper ways to measure amyloid from blood 
(AD Blood Tests Are Here. Now, Let’s Grapple With How to Use Them 
| ALZFORUM, 2024), but so far tau has been easier to measure 
accurately (pTau217). As these methods are developed, we hope to 
incorporate them into multimodal setups.

Author’s note

Data used in preparing this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu/). As such, many investigators within the ADNI 
contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this 
report. A complete listing of ADNI investigators can be  found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf.

TABLE 5 Experimental results for NiT and MINiT models.

Arch. Image 
size

Hyperparameters of transformer architectures Test 
ROC-
AUC

Test 
balanced 
accuracy

Test F1 
score

Transformer 
layers

Attention 
heads

Dimension MLP 
dimension

NiT

(64)3

512 3 12 175 0.494 0.541 0.614

256 6 8 64 0.579 0.592 0.609

256 4 8 234 0.485 0.516 0.221

(128)3

512 3 12 175 0.569 0.581 0.600

256 6 8 64 0.692 0.590 0.584

256 4 8 234 0.692 0.468 0.495

MINiT

(64)3

6 12 256 309 0.857 0.791 0.793

6 8 256 309 0.755 0.697 0.674

6 8 128 128 0.585 0.599 0.686

6 12 258 128 0.794 0.776 0.782

(128)3

6 12 256 309 0.503 0.534 0.557

6 8 256 309 0.668 0.649 0.688

6 8 128 128 0.799 0.747 0.766

6 12 258 128 0.476 0.527 0.584

Columns 3 to 6 show the hyperparameters of the transformer architectures, namely Transformer Layers, No. of Attention Heads, Dimension and MLP Dimension. The experiments are 
compared using test ROC-AUC, accuracy and F1 Score. Bold numbers indicate the best results.
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