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Decoding time-resolved neural 
representations of orientation 
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The visual system can compute summary statistics of several visual elements 
at a glance. Numerous studies have shown that an ensemble of different visual 
features can be perceived over 50–200  ms; however, the time point at which 
the visual system forms an accurate ensemble representation associated 
with an individual’s perception remains unclear. This is mainly because most 
previous studies have not fully addressed time-resolved neural representations 
that occur during ensemble perception, particularly lacking quantification 
of the representational strength of ensembles and their correlation with 
behavior. Here, we  conducted orientation ensemble discrimination tasks and 
electroencephalogram (EEG) recordings to decode orientation representations 
over time while human observers discriminated an average of multiple 
orientations. We modeled EEG signals as a linear sum of hypothetical orientation 
channel responses and inverted this model to quantify the representational 
strength of orientation ensemble. Our analysis using this inverted encoding 
model revealed stronger representations of the average orientation over 400–
700  ms. We  also correlated the orientation representation estimated from 
EEG signals with the perceived average orientation reported in the ensemble 
discrimination task with adjustment methods. We  found that the estimated 
orientation at approximately 600–700  ms significantly correlated with the 
individual differences in perceived average orientation. These results suggest 
that although ensembles can be  quickly and roughly computed, the visual 
system may gradually compute an orientation ensemble over several hundred 
milliseconds to achieve a more accurate ensemble representation.
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1 Introduction

The visual system possesses remarkable abilities to rapidly extract the information required 
for specific situations from a myriad of inputs from the environment, including outlier 
detection among similar items and gist perception of a briefly presented picture. Ensemble 
perception, an ability to extract summary statistics of multiple elements (Whitney and 
Yamanashi Leib, 2018), is one of these rapid and implicit visual phenomena, which occurs in 
different dimensions from low (Parkes et al., 2001; Bauer, 2009; Solomon, 2010) to high-level 
features (Haberman et al., 2009; Yamanashi Leib et al., 2016). This notion is supported by 
psychophysical experiments in which humans accurately judge the mean feature of multiple 
elements even with a stimulus duration of approximately 50 ms (Chong and Treisman, 2003; 
Robitaille and Harris, 2011; Yamanashi Leib et  al., 2016), which is comparable to and 
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sometimes beyond the temporal resolution of individual item 
recognition. Indeed, human observers who successfully perceive an 
ensemble of a stimulus set fail to report changes in the appearance of 
individual elements in that set (Ariely, 2001; Haberman and Whitney, 
2011). Consistent with these studies, recent neuroimaging studies 
have successfully discriminated between two different stimulus groups 
by applying multivariate pattern analyses to EEG evoked signals at 
approximately 100 ms post-stimulus, earlier than the emergence of the 
neural representation of individual items in the group (Roberts et al., 
2019; Epstein and Emmanouil, 2021).

However, such rapid processing does not suffice for accurate 
ensemble perception achieved by a human observer. Ensemble 
representation could be gradually refined over time due to iterative 
feedforward and feedback processing along the hierarchy of multiple 
areas in the brain (Hochstein and Ahissar, 2002). Notably, some 
studies have supported this hypothesis as the accuracy of ensemble 
discrimination increases with the increasing duration of the stimulus 
(Li et al., 2016; Epstein et al., 2020). The enhanced accuracy may 
be achieved by computing a weighted average of multiple elements, 
potentially discounting the effect of outliers that impair accurate 
ensemble computation (Haberman and Whitney, 2010; de Gardelle 
and Summerfield, 2011; Li et al., 2017; Lau and Brady, 2018; Epstein 
et al., 2020; Pascucci et al., 2021; Tiurina et al., 2024). This is plausible 
given that the visual system is sensitive to outliers in multiple objects 
immediately after stimulus onset (Cant and Xu, 2020).

Therefore, although the visual system can quickly estimate an 
ensemble through a feedforward sweep from low to high visual areas, 
it is reasonable to assume that such crude ensemble representation 
evolves into a more refined ensemble representation (corresponding 
to observers’ perception) by processing multiple visual elements 
through feedforward-feedback loops over a longer period. This idea 
raises the following questions: when is ensemble perception fully 
formed in the brain? How does visual representation change over 
time, leading to the refined ensemble representation?

Crucially, previous studies did not fully address these questions. 
Most studies on ensemble perception have used only behavioral 
measurements or neural signals with limited temporal resolution 
(Cant and Xu, 2012; Im et al., 2017; Tark et al., 2021); therefore, the 
temporal dynamics of the neural representation during ensemble 
perception remains unclear. On the other hand, some studies 
employed EEG multivariate pattern analyses and discussed the timing 
of ensemble perception based on a time point at which different 
stimulus sets were significantly classified from EEG patterns (Roberts 
et  al., 2019; Epstein and Emmanouil, 2021). However, successful 
binary classification of different stimulus sets at one-time point does 
not necessarily mean that ensemble representation is fully formed at 
that time. More specifically, it is possible that non-ensemble 
processing, such as sampling of different individual elements within 
each set, may result in the difference in overall EEG patterns across 
these stimulus sets, thereby leading to significant binary classification. 
Therefore, we argue that another approach is needed to address the 
questions mentioned earlier: (1) estimating temporal changes in the 
representational strength of individual elements and ensembles from 
EEG signals during ensemble perception of those elements, and (2) 
understanding when the representation corresponding to an 
observer’s ensemble perception strongly emerges.

In this study, we  combined EEG recording with an ensemble 
judgment task using a set of orientation stimuli that are decoded from 

EEG/MEG signals (Cichy et al., 2015; Pantazis et al., 2018; Hajonides 
et al., 2021). Specifically, we decoded the representational strength of 
individual and ensemble orientations over time by constructing 
encoding models within a single orientation discrimination task and 
inverting these models to apply to EEG signals during an orientation 
ensemble discrimination task (i.e., inverted encoding model) 
(Brouwer and Heeger, 2009, 2011; Sprague et  al., 2015; Oh et  al., 
2019). Additionally, we  identified time points when correlation 
became high between the orientation representation estimated from 
the inverted encoding model and the perceived ensemble orientation 
measured with adjustment methods. This analysis allowed us to 
precisely understand the timing of the representation corresponding 
to an observer’s ensemble perception. We  found that the strong 
representation of orientation ensembles emerged over 400–700 ms 
after stimulus onset. Furthermore, the orientation estimated from 
inverted encoding models correlated with individual differences in 
perceived average orientation at approximately 600–700 ms. These 
results suggest that although ensembles can be quickly and roughly 
estimated, the visual system may gradually compute an orientation 
ensemble over several hundred milliseconds to achieve a refined 
ensemble representation.

2 Methods

2.1 Participants

Fifteen paid volunteers were initially recruited for three 
experiments. The sample size was selected to match that of previous 
studies with similar methods (Roberts et al., 2019). One participant 
declined to participate in one of the three experiments and was 
excluded from the study. Analysis of the data from the remaining 
fourteen participants showed that three participants did not 
achieve above-chance orientation decoding accuracy at any time 
point, making a cross-decoding analysis (see below for more 
details)  infeasible for these participants. Consequently, these 
four  participants were excluded from the study and the results 
for  the remaining eleven participants is presented (age: 
mean ± SD = 25.0 ± 3.84 years) [Similar individual differences in EEG 
decoding accuracy have also been reported in previous studies 
(Simanova et al., 2010)]. All participants had normal or corrected-
to-normal vision. All experiments were approved by the Ethics 
Committee of the University of Tokyo and conducted in accordance 
with the guidelines of the Declaration of Helsinki. Written informed 
consent was obtained from all participants.

2.2 Visual stimuli

Six Gabor patterns with a diameter of 4.8 deg. (spatial frequency: 
2.0 c/deg.; Michelson contrast: 0.99) were presented against a gray 
background with an average luminance of 109.1 cd/m2 (Figure 1). The 
orientation of the Gabor patterns was determined according to the 
aim of each experiment, as explained in the following section, and 
each Gabor had a random phase on each trial. The center of the six 
Gabor patterns was located at a circle 5.8 deg away from the fixation 
point. The stimulus was presented on a 24-inch LCD monitor (BenQ 
GW2480B) at a viewing distance of 100 cm.
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2.3 Experimental design

Two types of experiments (Experiments 1 and 2) were 
conducted. Experiment 1 comprised of an EEG experiment with 
Gabor patterns of a single uniform orientation. Participants were 
presented with six Gabor patterns for 500 ms (Figure 1, left panel, 
Experiment 1). After a blank period of 500–800 ms, the participants 
were asked to judge whether the patterns were tilted clockwise or 
counterclockwise relative to the vertical by pressing one of two 
buttons. The next trial was initiated 1,500 ms after the response. All 
six patterns had the same orientation, which was randomly 
determined in each trial from six orientations ranging between 
−75° to 75° in 30° increments, with 0° corresponding to the 
vertical. The response keys were randomly alternated between 
blocks. Participants completed 8 blocks of 120 trials, apart from 
one participant who only completed 6 blocks due to 
time constraints.

Experiment 2 consisted of EEG and behavioral experiments 
(Experiments 2A and 2B, respectively) with Gabor patterns with 
multiple orientations. In both Experiments 2A and 2B, participants 

were presented with a stimulus set of six Gabor patterns with different 
orientations (Figure  1, top center and right panels, Table  1: four 
stimulus sets used in the experiment). Two stimulus sets had an 
average orientation of 45° while the others possessed an orientation 
of −45°. As we were interested in how the decoding of the average 
orientation (45° or −45°) is affected by the presence of 45° or −45° 
patterns in the set, we created stimulus sets with and without elements 
corresponding to the average (w and w/o, respectively) for each 
average orientation. In each trial, participants were randomly 
presented with one of the sets for 500 ms. The position of each element 
in the set varied randomly between trials.

In Experiment 2A, the participants’ task was to indicate with a 
button whether the average orientation of the set was tilted clockwise 
or counterclockwise relative to the vertical (Figure 1, center panel). 
Note that in both Experiments 1 and 2, we instructed participants not 
to attend to only a subset of the six patterns but to the entire display 
to ensure that participants did not explicitly change their strategy 
depending on the task. Moreover, the two EEG experiments 
(Experiments 1 and 2A) were conducted on the same day. These facts 
ensure the validity of our cross-decoding analysis (see below).

In Experiment 2B, participants were asked to report perceived 
average orientation by adjusting a white rotating bar presented at the 
center of the monitor (Figure  1, right panel) instead of a binary 
response. Note that participants were instructed to accurately report the 
average orientation they initially perceived and not to change it while 
rotating the bar. There was no response time limit; however, the mean 
response time was 3,627 ± 813 (mean ± SD) ms across participants, 
indicating that participants responded quickly based on our instruction, 
given the time needed to align the bar with their perceived average 
orientation. Also, we used four additional stimulus sets that served as 
dummy stimuli as well as the ones listed in Table 1: stimulus set to 

FIGURE 1

Schematic of the psychophysical experiments. In all three experiments, six Gabor patterns presented in a circle were used. The task was to report the 
tilt of the patterns (Experiment 1) and the average orientation (Experiment 2A and 2B). In Experiment 2B, the perceived average orientation was directly 
measured using adjustment methods rather than the 2AFC task.

TABLE 1 Four stimulus sets used in Experiment 2.

Name Components

Average 45° w 15°, 15°, 45°, 45°, 75°, 75°

Average 45° w/o 15°, 15°, 15°, 75°, 75°, 75°

Average −45° w −15°, −15°, −45°, −45°, −75°, −75°

Average −45° w/o −15°, −15°, −15°, −75°, −75°, −75°

The key difference between w and w/o is whether the set contained the average orientation 
itself or not.
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prevent participants from being aware that they were always presented 
with only a few stimulus sets and reporting almost the same orientation 
on all trials. The components of the dummy stimuli are as follows: (−5°, 
−5°, −35°, −35°, −65°, −65°), (5°, 5°, 35°, 35°, 65°, 65°), (30°, 30°, 45°, 
45°, 60°, 60°), and (−30°, −30°, −45°, −45°, −60°, −60°). The trials in 
which the dummy stimuli were presented, or the sign of the response 
was opposite to that of the true average (e.g., a trial with a response of 
−20° when the set had an average of 45°) were excluded from the 
following analyses. Experiment 2B was conducted on an average of 
21 days after the EEG experiments. Participants completed 4 blocks of 
120 trials in Experiments 2A and 2B, except for one participant who 
only completed 2 blocks in Experiment 2A due to time constraints.

2.4 EEG recording and preprocessing

In Experiments 1 and 2A, the EEG signals were recorded at a 
sampling rate of 1,000 Hz from 32 electrodes (BrainVision Recorder, 
BrainAmp Amplifier, EasyCap, BrainProducts) located at FP1, FP2, 
F3, F4, F7, F8, Fz, T7, T8, C3, C4, Cz, FC1, FC2, FC5, FC6, P3, P4, P7, 
P8, Pz, TP9, TP10, CP1, CP2, CP5, CP6, PO3, PO4, O1, O2 and Oz. 
An electrode located between Fz and Cz served as a reference. The 
impedance of all electrodes was kept below 5 kΩ throughout 
the experiments.

We preprocessed the raw EEG signals with the EEGLAB toolbox 
for MATLAB. The raw EEG signals were downsampled to 500 Hz, 
band-pass filtered between 1 and 80 Hz, and epoched from 1,000 ms 
before to 1,500 ms after stimulus onset. The epochs were visually 
inspected to remove trials containing transient muscular activity and 
electrodes with persistent noise. Epochs with incorrect responses were 
also removed. Next, independent component analysis (ICA) was 
performed and the ICLabel plugin (Pion-Tonachini et al., 2019) was 
used to automatically obtain estimated labels for each component. 
Components with an estimated probability of more than 50% being 
artifacts (i.e., a label of eye, muscle, heart, line noise, or channel noise) 
were removed, resulting in an average of 21 ± 2.5 (mean ± SD) 
components across all participants and experiments. Epochs were 
baseline corrected with respect to the pre-stimulus period from −300 
to 0 ms. This procedure resulted in 922 ± 136 (mean ± SD, Experiment 
1) and 444 ± 150 (mean ± SD, Experiment 2A) trials for 
further analyses.

2.5 Decoding orientations with linear 
classification

To test if orientation could be decoded from EEG signals for our 
stimulus setting, orientation decoders were constructed in a time-
resolved manner for each participant using potentials within a 
100 ms time window and from ten occipital and parietal electrodes 
(P3, P4, P7, P8, Pz, PO3, PO4, O1, O2, Oz) recorded in Experiment 
1 (Figure 2). These ten electrodes were selected in accordance with 
a previous study (Roberts et al., 2019). We trained two linear SVM 
classifiers (with a regularization parameter C of 1) for each 
participant to discriminate between three orientations included in 
each stimulus set of Experiment 2 (i.e., 75°/45°/15° classifier or 
−75°/−45°/−15° classifier). Specifically, the number of trials were 

first matched for each orientation in Experiment 1 through 
undersampling. The spatiotemporal EEG patterns for each 
orientation were then divided into 5 sets and the patterns within 
each set were averaged for each orientation to increase the signal-to-
noise ratio, thus decoding accuracy (Grootswagers et al., 2017). Four 
sets were used as training data while the remaining set was used as 
test data. The averaged signal within each set was z-scored using the 
mean and standard deviation of the training data over −300 ms to 
900 ms relative to stimulus onset, in accordance with the procedure 
used in a previous study (Hermann et al., 2022). Subsequently, a 
linear multiclass support vector machine (SVM) classifier was 
trained on the training data (12 samples = 4 sets × 3 orientations) and 
tested on the remaining 3 samples (1 set × 3 orientations). This 
procedure was repeated 5 times until all sets had served as test data 
(5-fold cross-validation). The entire procedure was repeated 20 
times with samples randomly assigned to each set. This resulted in 
100 decoding accuracies, averaged together to obtain a single 
decoding accuracy for a single time window. The 100 ms time 
window was shifted by a time step of 2 ms and the same training and 
testing procedure was performed, resulting in time courses of 3-class 
orientation decoding accuracy over −300 ms to 900 ms relative to 
stimulus onset (Figures 2, 3A).

We also computed three posterior probabilities of the three 
orientations (75°/45°/15° or −75°/−45°/−15°) from each decoder to 
confirm whether all six orientations were decodable. We defined SVM 
decision function values (obtained from sklearn.svm.LinearSVC.
decision) passed through a softmax function as posterior probabilities 
for the test data. This procedure was again performed 100 times 
(5-fold cross-validation × 20 times) to generate 300 (=3 
orientations × 100 repetitions) probabilities, which were averaged over 
100 repetitions to obtain three posterior probabilities for each 
orientation. Time courses of posterior probabilities were obtained for 
three orientations by shifting the time window and repeating the same 
procedure. For further analyses, all 32 electrodes and different types 
of classifiers were used to construct decoders, and similar results were 
obtained (Supplementary Figures S1, S2).

2.6 Decoding ensemble representation 
with inverted encoding models

After we  confirmed that EEG signals contained orientation 
information, we  adopted a reasonable computational model to 
estimate when ensemble representations emerge during an ensemble 
judgment task based on previous studies (Oh et al., 2019). Specifically, 
we constructed inverted encoding models (Brouwer and Heeger, 2009, 
2011; Sprague et al., 2015) to decode orientation representations at 
each time point.

This model is based on a biologically plausible assumption that 
EEG signals can be modeled as a linear weighted sum of population 
responses of multiple orientation-selective neurons in the brain. 
Following previous studies (Oh et  al., 2019; Tark et  al., 2021), 
we assumed an equal number of orientation channels as orientations 
used in the experiments, each tuned to a specific orientation (i.e., 75°, 
45°, 15°, −75°, −45°, −15°). The response of each channel is 
described as:
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R = −( )cos max

7 θ θ
 

(1)

where θ is an orientation presented to the channel and θmax  
is an optimal orientation that maximizes the response of each 
channel. Next, we modeled EEG signals at each electrode as a 
linear weighted sum of the six hypothetical orientation channel 
responses. Let m  be the number of electrodes, n  be the number 
of experimental conditions (stimulus sets), and k  be the number 
of hypothetical orientation channels (six, in our case). The matrix 
of EEG signals to each stimulus set B m n∈( )× is equal to the 
multiplication of a weight matrix W m k∈( )×  and the matrix of 
hypothetical orientation channel responses C k n∈[ ]( )×

01,  
(Figure 4A, top):

 B WC=  (2)

The response matrix C has response values (defined in Eq. 1) 
corresponding to the presented orientation in each column 
(Figure 4B). First, we estimated the weight matrix W using EEG data 
from Experiment 1 and the channel response matrix C. We then 
applied the estimated weight matrix to the EEG data from 
Experiment 2A to compute the channel response matrix for stimulus 
set w and w/o (Figure 4A bottom). This enabled us to investigate 
whether and when representations corresponding to the average 
orientation (i.e., 45°/−45°) emerge in the brain during orientation 
ensemble perception.

We performed 5-fold cross-validation as in the first decoding 
analysis to estimate the weight matrix W  for our EEG data (see 
Decoding orientations with linear classification). The training data B1  
from Experiment 1 (EEG signals averaging within the 100 ms time 
window) and the response matrix C1  were used to compute the least-
squares estimate of a weight matrix:

FIGURE 2

Procedure for the decoding analyses. The raw EEG data from Experiment 1 was divided into five sets for each orientation (i.e., 75°, 45°, 15° or −75°, −45°, 
−15°) and averaged within each set (up to 40 trials) to increase the signal-to-noise ratio. Using the four sets of averaged EEG patterns for each orientation 
within a 100 ms time window for each orientation, we trained a linear SVM classifier, which was tested on the held-out one set of averaged EEG patterns 
(one for each orientation) from Experiment 1 to obtain accuracy for decoding the 3-class orientation. Multiple decoders were constructed independently 
for each time window. The time course of decoding accuracy was obtained after repeating this procedure for the five cross-validation splits and with 20 
different assignments of the raw EEG data to the five sets. All these analyses were performed individually for each participant.

FIGURE 3

(A) Accuracy of orientation decoding. Orientation was reliably decoded from 174 to 828  ms after stimulus onset. The chance level (33%) is shown as a 
dashed line. The shaded area shows the standard error across participants. The horizontal line below the graph indicates time points that achieve 
significant decoding accuracy (revealed by a cluster-based permutation test with cluster-defining threshold p  <  0.05 and cluster threshold p  <  0.05). 
(B) Posterior probabilities of the presented orientations in Experiment 1. These values were computed by using the output of the decoders (see 
Methods for more details). Each panel shows the time course of the probability for each stimulus set with uniform orientations (shown above the 
panel). The solid lines correspond to the results for the presented orientation. The probabilities for the other two orientations (e.g., 45° and 15° when 
75° was presented) are shown as thin lines. The probability of the presented orientation was higher for all stimulus sets after stimulus onset. This 
confirms that all presented orientations were reliably decoded.
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W B C C C = ( )−1 1 1 1

1
T T

 
(3)

The estimated weight matrix W  was then applied to the test EEG 
data B2  from Experiment 2A to estimate six orientation 
channel responses.

 

C W W W B2
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(4)

This procedure was repeated 100 times with random data partition 
for each participant, and the estimated response matrices were 
averaged across all folds and repetitions. As the estimated response 
matrix reveals the response strength for each hypothetical channel to 
each stimulus set, we  can use this matrix to quantify the 
representational strength of each orientation, especially the average 
orientation. Repeating this procedure for all time points yields the 
time courses of the representational strength of each orientation for 
each stimulus set.

To quantify the strength of representations corresponding to the 
average orientation, we extracted a representative value, referred to as 
orientation sensitivity, from the estimated responses of each channel, 
following the approach adopted in previous studies (Oh et al., 2019; 
Sutterer et  al., 2019). Specifically, we  first circularly shifted the 
responses of orientation channels along the rows such that the 

responses of the channel tuned to the average orientation aligned at 
the center (fourth row of the matrix). Subsequently, we averaged the 
response of orientation channels along the columns (within the 
stimulus set), which yielded two vectors of six elements for each 
stimulus set type (w and w/o). Each vector had the central (fourth) 
value representing the strength of the representation corresponding 
to the average orientation of the stimulus set and the adjacent values 
representing the strength of representations corresponding to 
orientations ±30°, ±60°, and −90° away from the average orientation. 
Furthermore, we performed linear regression on these six channel 
response values, disregarding the sign of orientation (fitting a line to 
the response values for −90°, −60°, −60°, −30°, −30°, 0°). We defined 
the slope of the fitted line as orientation sensitivity. Positive orientation 
sensitivity indicates the presence of a peak in the channel responses, 
suggesting strong representations corresponding to the average 
orientation for Experiment 2; in contrast, zero sensitivity indicates no 
representations corresponding to the average orientation.

2.7 Estimating the timing of full formation 
of orientation ensemble representation 
corresponding to the behavior

To gain further insights into when orientation representations 
corresponding to the participants’ perceived average orientation 
emerge in the brain, we used the estimated channel responses to 
decode orientation continuously at each time point using the same 
approach as a previous study (Brouwer and Heeger, 2009). This 

FIGURE 4

Inverted encoding model analysis. (A) The encoding model assumed that the EEG signals at a given time point can be modeled as a linear weighted 
sum of hypothetical orientation channel responses to the six orientations used in Experiment 1. The matrices to be estimated are shown in red. We first 
computed a least-squares estimate of the weight matrix (top row). Importantly, this matrix was applied to the EEG data in Experiment 2A (orientation 
ensemble discrimination task) to estimate the channel response matrix (bottom row), which corresponds to the representational strength of the six 
orientations while participants perceived an ensemble of the four stimulus sets in Experiment 2A (shown in Figure 5A). (B) The channel response matrix 
is illustrated as a grayscale map in the dashed box. Each column has response values of the channels to the stimulus set (single orientation). These 
response values are determined by the response functions of the channels (top) that were set based on the response property of orientation-selective 
neurons in the visual cortex.
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analysis included computing six channel responses (R in Eq. 1) to 180 
orientations ranging from −89° to 90°, correlating these responses 
with the estimated responses in the cross-decoding analysis, and 
choosing the orientation that showed the highest correlation among 
those with the same sign as the average orientation of the stimulus set. 
Subsequently, these decoded orientations were tested to assess the 
correlation with participants’ perceived average orientations in 
Experiment 2B. A higher correlation at one time point makes it more 
likely that the ensemble perception was fully formed in the brain at 
that time point. Note that the correlations for stimulus sets w and w/o 
were calculated by collapsing the data over the true average 
orientation (45° or −45°). Specifically, the true average orientation 
was subtracted from both the estimated orientation and the perceived 
average orientation. Then, the correlation between these two values 
was computed for each time point, resulting in two-time courses of 
correlation for stimulus sets w and w/o.

2.8 Statistical tests

We assessed the statistical significance of orientation decoding 
accuracy using a cluster-based permutation test. The orientation labels 
for the EEG data were permuted and the orientation decoding 
accuracy was recalculated according to the procedure described 
above. After repeating this procedure 1,000 times, null distributions 
of decoding accuracy were generated for each time window, from 
which the p-values for the actual decoding accuracy were calculated. 
The original decoding accuracy curve was thus transformed into a 
time course of p-values. Clusters were defined as neighboring time 
points at which all p-values were below a significance level, and 
deemed significant if their size exceeded the calculated threshold from 
a null distribution of cluster size. The same procedure was used to 
assess the statistical significance of sensitivity in the estimated 
orientation channel responses.

Regarding the correlation coefficients between the perceived 
average orientation and the estimated orientation representation, 
we  again permuted the orientation labels for the EEG data and 
constructed inverted encoding models to estimate the weight matrices 
for each participant. These matrices allowed us to obtain orientation 
channel responses and estimated orientation at each time window as 
described above. We computed the correlation coefficient between the 
estimated orientations and perceived average orientations that 
participants reported. Repeating this procedure 1,000 times resulted in 
null distributions of the correlation coefficients for each time window. 
We again performed a cluster-based permutation test to assess the 
statistical significance of the observed correlation coefficients for each 
stimulus set.

3 Results

We aimed to estimate the time when accurate ensemble 
representations were formed in the brain. To this end, we conducted 
EEG recordings and psychophysical experiments to decode the 
dynamics in the representational strength of multiple orientations 
while human observers judged their average orientation. Figure 1 
shows an overview of our psychophysical experiments. Eleven adults 
participated in all experiments in which six Gabor patterns were 

presented around a fixation point for 500 ms. We  recorded EEG 
signals while participants discriminated Gabor patterns comprising 
uniform orientations (Experiment 1) and discriminated the average 
orientation of Gabor patterns with different orientations (Experiment 
2A). We  also asked participants to report the perceived average 
orientation on a continuous scale by rotating a bar in another 
experiment (Experiment 2B).

3.1 Orientation decoding

We first tested whether the uniform orientation of six Gabor 
patterns could be reliably decoded from EEG signals. Specifically, 
orientation decoders were trained and tested using EEG signals (from 
ten occipital and parietal electrodes) elicited by six Gabor patterns 
with identical orientations (Figure  1, left panel). Participants 
successfully discriminated the orientation of the patterns (clockwise 
or counterclockwise inclined relative to the vertical) in most trials 
with a mean accuracy of 98.4% (SD = 0.02%). An orientation decoder 
was constructed using EEG signals within a 100 ms time window that 
was shifted in 2 ms steps, resulting in a time course of orientation 
decoding accuracy (Figure 2). Note that two types of decoders were 
constructed, each discriminating orientations contained in the 
stimulus set used in Experiment 2 (i.e., 75°/45°/15° decoders or 
−75°/−45°/−15° decoders). Figure 3A shows that decoding accuracy 
reached significance at 174 ms and remained above chance until 
828 ms after stimulus onset (cluster-based permutation test; p < 0.05 
cluster-defining threshold; p < 0.05 cluster-threshold).

To test whether all six orientations were reliably decodable, the 
posterior probabilities of each orientation were calculated for each 
stimulus set by using the output of the decoder (see Methods). As can 
be seen in Figure 3B, for each stimulus set, we obtained the highest 
probability for the presented orientation throughout the stimulus 
presentation (e.g., the probability of 75° was higher than that of 45° 
and 15° when 75° was presented), ensuring that all six orientations 
were reliably decoded.

3.2 Decoding ensemble representations 
with inverted encoding models

The results of Experiment 1 showed that the orientation 
information was reliably decoded from the EEG signals. Next, 
we  constructed an encoding model that predicts EEG signals by 
assuming biologically plausible orientation channels to examine when 
ensemble representation is formed in the brain during ensemble 
perception. This model was then inverted to decode the temporal 
evolution of the representational strength of multiple orientations 
(inverted encoding models) (Brouwer and Heeger, 2009, 2011; 
Sprague et al., 2015; Oh et al., 2019; Sutterer et al., 2019) from EEG 
signals in Experiment 2. In this experiment, we utilized six Gabor 
patterns with two or three different orientations and an average of 45° 
or −45° (Table 1). For each average orientation, two stimulus sets, 
with and without elements corresponding to the average (w and w/o), 
were created to see whether the temporal dynamics of the 
representational strength of each orientation were affected by the 
presence of the average orientation pattern in the set. Participants 
were asked to indicate whether the average orientation was tilted 
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clockwise or counterclockwise relative to the vertical with a 
binary response.

The critical idea of inverted encoding models is to assume multiple 
orientation channels (derived from populations of multiple orientation-
selective neurons in the brain) and model EEG signals at each electrode 
and time point as a linear weighted sum of the channel responses 
(Figure 4B). This analysis is explained in detail in the Methods and briefly 
summarized as follows: we first divided the EEG data into training and 
test datasets, consistent with our initial decoding analysis. We 
then estimated a weight matrix for six hypothetical orientation channels 
corresponding to the six orientations used in Experiment 1 (Figure 4A, 
top). This weight matrix was subsequently applied to the EEG data from 
Experiment 2A to estimate the responses of the hypothetical orientation 
channels during ensemble perception (Figure 4A, bottom). Importantly, 
these responses can be considered as the representational strength of each 
orientation at a given time point. We repeated this procedure for all time 
points and participants to investigate how orientation representation 
evolves over time during orientation ensemble perception. 
We hypothesized that if ensemble representation is explicitly formed in 
the brain at a specific time point, a significantly high response of the 
hypothetical orientation channel tuned to the average orientation (45° or 
−45°) would be observed at that time, allowing us to estimate the exact 
time the ensemble perception was formed.

We estimated the hypothetical orientation channel responses for the 
EEG data from Experiment 2A, wherein EEG signals were recorded 
while participants discriminated the average orientation of the set 
(2AFC discrimination task, Figure  1, right panel; behavioral 
performance averaged 92.6%, SD = 0.10%). Note that participants were 
instructed to attend to the entire display during the task to minimize the 

possibility that they merely attended to only one element to achieve such 
high accuracy. The color maps in Figure  5A show the estimated 
responses of hypothetical orientation channels for each time point. The 
central row of the map represents the responses of the channel tuned to 
the true average orientation (45°, −45°), indicating the representational 
strength of the true average orientation in EEG signals. We found that 
for both sets w and w/o, the representation of the true average 
orientation was high between 400 and 700 ms after stimulus onset. To 
quantitatively evaluate the strength of the representation of the true 
average orientation (the degree of the peak in the channel response 
profile), we  collapsed the response values across the signs of the 
orientations and fitted a line to them to estimate its slope, which we refer 
to as orientation sensitivity (Oh et  al., 2019; Sutterer et  al., 2019). 
Figure  5B shows that significantly high orientation sensitivity was 
observed in 376–474 ms and 592–732 ms for set w, and 374–442 ms and 
512–672 ms for set w/o, indicating the emergence of ensemble 
representation at later time points. These findings reveal that ensemble 
representation emerges at 400–500 ms during the perception of 
orientation ensembles and is sustained till approximately 700 ms after 
stimulus onset, regardless of the presence of the average orientation in 
the stimulus set.

3.3 Estimating the timing of orientation 
ensemble representation corresponding to 
the behavior

To more precisely estimate the time at which ensemble 
representation is fully formed in the brain, we computed the neural 

FIGURE 5

(A) Estimated channel responses in the inverted encoding models over time for Experiment 2A. The channel responses were circularly shifted such that 
the channel response to the average orientation of each set aligned at the center in the ordinate. For illustrative purposes, we have duplicated the top 
row of the color map and added it as the seventh row. The red center cells and the blue neighboring cells at approximately 400–700  ms indicate a 
clear peak in the channel response profile; that is, the representational strength of the average orientation of the stimulus set was higher than that of 
the other orientations. (B) A value referred to as sensitivity was computed from the channel response profile at each time point to quantitatively assess 
the representational strength of the average orientation relative to the other orientations. The shaded area shows the standard error across 
participants. The horizontal lines below the plots indicate time points that achieve significant sensitivity (significantly higher representational strength of 
the average orientation), revealed by a permutation test with cluster-defining threshold p  <  0.05 and cluster threshold p  <  0.05.
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correlate of the participants’ perceived average orientation. This is 
based on our idea that a high correlation between the decoded 
orientation representation and the perceived average orientation at 
a specific time point indicates the complete formation of ensemble 
representation corresponding to an individual’s perception. 
Therefore, to precisely measure the average orientation perceived by 
each participant, we conducted another psychophysical experiment 
using adjustment methods in which participants indicated the 
perceived average orientation on a continuous scale by rotating a bar 
stimulus (Experiment 2B; Figure 1, right panel). Figure 6 shows the 
perceived average orientations for each participant and stimulus set. 
The perceived orientations varied from participant to participant; 
however, they were mostly close to the true average, indicating that 
participants perceived the average orientation quite well.

Furthermore, we  computed the correlation between the 
participants’ average orientations in Experiment 2B and orientation 
decoded from the estimated hypothetical channel responses at each 
time point (see Methods for further details). Figure 7 shows the time 
courses of the correlations. Despite unstable correlation coefficients 
observed in the earlier period, which are likely due to the relatively 
small number of participants, a cluster-based permutation test 
revealed significant correlations at 568–668 ms for set w and slightly 
later time points (640–698 and 722–766 ms) for set w/o. These results 
suggest that ensemble representation corresponding to the individual 
perception is fully formed at 600–700 ms after stimulus onset.

4 Discussion

We investigated the temporal dynamics of orientation ensemble 
perception using psychophysical experiments and time-resolved 
orientation decoding analysis from EEG signals. One of the keys was 
using inverted encoding models for each time point across the 
experiments (single and ensemble orientation discrimination task; 
Experiment 1 and 2A) to quantify the representational strength of 
individual and ensemble orientations. Another key was that the neural 
orientation representations predicted from the inverted encoding 
models were directly correlated with the perceived average 
orientations in the task with adjustment methods. The time course of 
the correlation allowed us to accurately estimate when ensemble 
representations associated with individual perception are fully formed 
in the brain, which would otherwise not have been possible for 
behavioral paradigms with discrete responses used in most studies of 
ensemble perception (member identification task or 2AFC task).

The time courses of the sensitivity of the channel response profile 
(Figure  5B) have shown that the representation of orientation 
ensembles emerges at approximately 400 ms and remains strong until 
approximately 700 ms. Additionally, our correlation analysis (Figure 7) 
has revealed significant correlations between the perceived average 
orientation and the orientation decoded from the estimated channel 
response at approximately 600–700 ms after stimulus onset. Taken 
together, ensemble perception could be formed over several hundred 

FIGURE 6

Perceived average orientations in Experiment 2B. The left bars show the mean perceived orientation of the participants. Each circle in the right panels 
represents the perceived orientation for each participant. The error bars indicate the standard error across all trials. The true average is shown as a 
dashed line. Most participants perceived the average orientation correctly, with errors mostly within ±10°.
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milliseconds. However, previous behavioral studies have suggested a 
much shorter timescale (50–200 ms) for computing ensembles based 
on the invariant performance of ensemble discrimination to stimulus 
duration (Chong and Treisman, 2003; Robitaille and Harris, 2011; 
Yamanashi Leib et al., 2016). These results can be reconciled as follows. 
A crucial problem with previous behavioral studies (Chong and 
Treisman, 2003; Robitaille and Harris, 2011) is that they used 
unmasked visual stimuli that allowed observers to access stimulus 
information beyond the actual stimulus duration, potentially affecting 
behavioral performance. Indeed, some studies using backward 
masking have shown that ensemble perception performance improves 
with a stimulus duration of 50 to 500 ms (Epstein et  al., 2020). 
Therefore, it is reasonable to assume that the brain does not fully form 
an ensemble representation within 50–200 ms, which may explain the 
absence of the orientation ensemble (45°/−45°) representation in the 
early periods of our data. Moreover, reaction times for ensemble 
judgments are typically 600–1,000 ms (Robitaille and Harris, 2011; Li 
et  al., 2016), consistent with the present results given the delay 
associated with the motor response. Considering these facts, 
ensembles can be roughly extracted within 50–200 ms; however, the 
visual system could gradually form ensemble perception over several 
hundred milliseconds to achieve a more accurate 
ensemble representation.

Despite this seemingly reasonable conclusion, there is still a 
small but critical discrepancy between our results and previous 
neuroimaging studies regarding the timing of ensemble 
representation. One EEG study employed working memory tasks 

in which human participants recalled the orientation of a cued 
stimulus among multiple stimuli. Although participants were not 
explicitly required to perceive an ensemble of these stimuli, 
inverted encoding models decoded ensemble representations at 
approximately 300 ms after stimulus onset (Oh et  al., 2019), 
slightly earlier than our findings suggest (400 ms). We speculate 
that this difference in the timing of ensemble representations can 
be attributed to the variation in task types and stimulus settings. 
The previous study placed an array of orientations closer to the 
fovea, whereas orientations were more peripherally presented in 
our study. Consequently, ensemble representations emerged later 
in our study, as visual information is processed more slowly with 
increasing distance from the fovea (Lueschow et  al., 1994; 
Carrasco et al., 1995). The stimulus duration also differed between 
these two studies (100 ms and 500 ms in the previous study and 
our study, respectively), which may allow participants in our study 
to spend more time sampling orientation information to form an 
orientation ensemble representation. Therefore, future studies 
need to use stimuli with various settings and from different 
domains, such as color, size, and facial expression, to gain a more 
comprehensive understanding of the temporal dynamics of 
ensemble perception.

Although inverted encoding models build upon biologically 
plausible assumptions given the response-tuning function of feature-
selective neurons in the brain (Brouwer and Heeger, 2009, 2011; 
Sprague et al., 2015), there are several caveats for interpreting the 
results. Previous studies have shown that inverted encoding models 
are suitable for understanding population-level stimulus 
representation but not for understanding single-unit response 
property (Sprague et  al., 2018). Therefore, our results do not 
necessarily mean that neurons tuned to the average orientation 
(45°/−45° in our case) are firing while humans perceive an ensemble 
of multiple orientations. However, the results revealed by our inverted 
encoding model are still noteworthy because we aimed to estimate the 
temporal evolution of the overall representation of individual and 
ensemble orientations in a multivariate pattern of EEG signals. The 
estimated channel responses (Figure  5) indicate that perceiving 
physically presented orientations of 45°/−45° shares common neural 
representations with perceiving an ensemble of orientations whose 
average is 45°/−45°, especially at later time points.

Another concern regarding the use of inverted encoding models is 
that what can be obtained from these models is the response of multiple 
channels, which experimenters arbitrarily choose from infinite 
possibilities, rather than a stimulus itself presented in an experiment 
(Gardner and Liu, 2019; Sprague et al., 2019). This led us to wonder if 
the decoded ensemble representation is spuriously observed as a natural 
consequence of the model irrespective of signals in EEG data. Notably, 
our additional analysis without arbitrary assumptions of channel 
response (where we  simply applied the linear SVM classifiers in 
Experiment 1 to EEG data in Experiment 2A to obtain a posterior 
probability of each orientation as a measure of the representational 
strength of orientations) did not show significantly strong ensemble 
representations at any time point (Supplementary Figure S3). 
Nevertheless, we argue that our results from inverted encoding models 
are valid because we ensured through cluster-based permutation tests 
that if EEG data were associated with random orientation labels, the 
strong representation of the true average would not be observed even 
under the same model assumption. More specifically, the expected value 
of the null distribution of orientation sensitivity in the permutation test 

FIGURE 7

Correlations between the perceived average orientation in 
Experiment 2B and orientation decoded from the estimated 
orientation channel responses. The horizontal lines below the plots 
indicate time points that achieve significant correlation. Although the 
time courses show transient fluctuations (presumably due to the 
relatively small sample size), a cluster-based permutation test 
revealed that correlations remained significant in the time range of 
568–668  ms for set w, and 640–698 and 722–766  ms for set w/o 
(cluster-defining threshold p  <  0.1 and cluster threshold p  <  0.1), 
suggesting that orientation ensemble representation corresponding 
to the individual ensemble perception emerged over 600–700  ms 
after stimulus onset.
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was nearly zero (no bias) for all time points. Therefore, this fact rules out 
the possibility that the observed ensemble representation is an artifact 
due to systematic biases introduced by the inverted encoding model (in 
Supplementary material, we provide additional discussion regarding 
why the different pattern of results was observed between the 
two analyses).

As stimulus displays varied across experiments (uniform and 
non-uniform orientations), they might have been processed differently 
by participants, potentially affecting the validity of using the same 
inverted encoding model across the tasks (cross-decoding analysis). 
For instance, participants may have attended to one orientation at a 
specific location for uniform orientations in Experiment 1, whereas 
they attended to the whole stimulus display in Experiment 
2A. Although we cannot preclude the possibility that this difference 
in strategy affected our results, we  argue that this possibility is 
minimized because we explicitly instructed participants to attend all 
orientations in Experiments 1 and 2. However, one might still argue 
that conducting decoding analysis within each experiment is 
preferable to cross-decoding. We  had originally considered 
performing a simple classification of different stimulus sets within 
Experiment 2A, similar to previous studies (Roberts et  al., 2019; 
Epstein and Emmanouil, 2021). However, such a binary classification 
would not be  sufficient to distinguish between ensemble and 
non-ensemble processing. Specifically, processing a subset of elements 
instead of forming an ensemble representation from all the elements 
could potentially lead to significant classification accuracy for the two 
sets. Therefore, we argue that conducting cross-decoding analysis and 
correlating the estimated orientation representations with perceived 
average orientations are essential to determining the exact timing of 
ensemble perception.

Two main factors potentially affect our results: the low signal-to-
noise ratio in EEG data and a relatively small number of participants 
for the correlation analysis. These factors may have spuriously delayed 
the decoding of ensemble representation even though the brain 
represents an ensemble at earlier time points. However, we employed 
some strategies and rigorous statistical tests to minimize biases 
introduced by these factors to our results. These strategies included 
averaging the EEG data across several trials and using multiple data 
points within each time window as features for the decoder to 
maximize the signal-to-noise ratio (Grootswagers et  al., 2017). 
Regarding the correlation analysis with a relatively small number of 
participants, we  performed a cluster-based permutation test to 
rigorously assess the significance of correlation coefficients, given the 
inherent temporal dependencies in EEG data. The timing of the high 
correlation is consistent with that of the highest response of the 
channel tuned to the average orientation of approximately 500–700 ms 
(Figures 5, 7). Therefore, these facts support the finding that ensemble 
representation corresponding to the individual perception emerges 
several hundred milliseconds after stimulus onset. However, further 
studies with other neural recording techniques will be necessary to 
conclude the robustness of our results. For instance, similar MEG 
experiments and analyses, which capture the similar neural 
representations to EEG but uniquely contain information represented 
in lower visual cortices (Cichy and Pantazis, 2017), would effectively 
corroborate the gradual emergence of accurate ensemble 
representation associated with ensemble perception.

Overall, our results are consistent with the notion of slower 
computation of orientation ensembles for a refined ensemble 

representation, although ensembles can be computed quickly and 
coarsely. By aligning our results with findings from previous studies 
(Myczek and Simons, 2008; Solomon et al., 2011; Allik et al., 2013), 
we infer computational mechanisms of ensemble perception: serial 
and focused-attention processing might underlie slow ensemble 
computation. However, this does not completely exclude the 
possibility that parallel processing is also involved in the computation 
of an ensemble. A combination of parallel and serial processing may 
underlie ensemble perception (Whitney and Yamanashi Leib, 2018; 
Baek and Chong, 2020). For example, some elements may 
be  processed in parallel, with unequal weights assigned to each 
element, which may occur serially across different sets of elements 
over time. Alternatively, a single element can be sampled serially, 
followed by a one-off ensemble computation. Further studies will 
be necessary to investigate these possibilities and to describe the 
computational mechanisms of ensemble perception in more detail. 
A comparison of fMRI and EEG/MEG using dissimilarity matrices 
(Cichy et al., 2014; Hebart et al., 2018) could take advantage of high 
spatial and temporal resolution, contributing to a deeper 
understanding of how and when ensemble representations are 
formed in the brain. Also, since covert attention directed to specific 
elements or distributed across space is inherently involved in 
ensemble extraction (Chong and Treisman, 2005; Emmanouil and 
Treisman, 2008; Brand et  al., 2012), decoding covertly attended 
visual stimuli (Noah et al., 2020) will facilitate further investigation 
of the temporal dynamics and computational mechanisms of 
ensemble perception.
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