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Existing statistical data indicates that an increasing number of people now

require rehabilitation to restore compromised physical mobility. During the

rehabilitation process, physical therapists evaluate and guide the movements

of patients, aiding them in a more e�ective recovery of rehabilitation and

preventing secondary injuries. However, the immutability of mobility and the

expensive price of rehabilitation training hinder some patients from timely access

to rehabilitation. Utilizing virtual reality for rehabilitation training might o�er a

potential alleviation to these issues. However, prevalent pose reconstruction

algorithms in rehabilitation primarily rely on images, limiting their applicability

to virtual reality. Furthermore, existing pose evaluation and correction methods

in the field of rehabilitation focus on providing clinical metrics for doctors,

and failed to o�er patients e�cient movement guidance. In this paper, a

virtual reality-based rehabilitation training method is proposed. The sparse

motion signals from virtual reality devices, specifically head-mounted displays

hand controllers, is used to reconstruct full body poses. Subsequently, the

reconstructed poses and the standard poses are fed into a natural language

processing model, which contrasts the di�erence between the two poses

and provides e�ective pose correction guidance in the form of natural

language. Quantitative and qualitative results indicate that the proposed method

can accurately reconstruct full body poses from sparse motion signals in

real-time. By referencing standard poses, the model generates professional

motion correction guidance text. This approach facilitates virtual reality-based

rehabilitation training, reducing the cost of rehabilitation training and enhancing

the e�ciency of self-rehabilitation training.

KEYWORDS

rehabilitation training, virtual reality, full-body pose reconstruction, deep learning,

Multilayer Perceptron (MLP)

1 Introduction

Existing statistical data indicate that an increasing number of people are now
experiencing mobility impairments due to accidents, illness, or aging, thereby demanding
the need for rehabilitation (Postolache et al., 2020). Rehabilitation training encompasses
a series of intervention exercises aimed at aiding in the recovery of compromised motor
functions. A pivotal aspect of this process involves tailored movement exercises conducted
by a doctor or physical therapist. Early and intensive rehabilitation training proves
more efficacious in facilitating the recovery of patients’ motor abilities (Postolache et al.,
2020). However, the demand for patients to attend hospitals or rehabilitation centers
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for rehabilitation training presents additional challenges for
those already grappling with mobility difficulties. Furthermore,
the high cost associated with rehabilitation training becomes
a financial impediment for certain patients. In this context,
the emergence of virtual reality-based rehabilitation methods
becomes apparent. These methods allow patients to engage in a
more convenient and economical rehabilitation option through
personalized virtual reality devices. By offering real-time user
pose reconstruction and employing immersive interactivemethods,
virtual reality technology can provide patients with increased
sensory stimulation and a more immersive environment during
rehabilitation training (Adamovich et al., 2009). Existing research
has shown that compared to conventional physical therapy, virtual
reality-based rehabilitation training is more effective in promoting
gait recovery in patients with Parkinson’s disease (Feng et al., 2019).

However, common virtual reality devices can only accurately
reconstruct the poses of user’s head and hands through head-
mounted displays and handheld controllers. This limitation
is insufficient for full body rehabilitation training. Therefore,
virtual reality-based rehabilitation methods often require
additional wearable body measurement sensors to capture patients’
movements (Huang et al., 2018; Jiang Y. et al., 2022), such as
motion sensors for the legs and waist, gait detection devices, and
more. Unfortunately, for patients, this not only represents an
additional expense, but wearing extra sensors may also lead to
physical discomfort. Moreover, patients’ unprofessional handling
of these sensors can result in tracking inaccuracies and affecting the
effectiveness of the rehabilitation training. Hence, the studies that
leverage the most prevalent virtual reality devices, using the sparse
motion signals from the head and hands to reconstruct full body
poses, demonstrate an effective solution for virtual reality-based
rehabilitation training methods.

In addition, regardless of the form of rehabilitation, the
quality assessment and precise guidance of patients’ recovery
movements are crucial (Qiu et al., 2022). This directly influences
the effectiveness of patient’s recovery. When patients participate
in rehabilitation training at hospitals or rehabilitation facilities,
doctors can assist by correcting their inaccurate movements,
ensuring that their movements fall within the normal range
to achieve the desired rehabilitation effects. This correction
helps prevent secondary injuries resulting from incorrect
movements. However, in virtual reality-based rehabilitation, there
is currently no universally recognized solution to reasonably
evaluate the quality of patients’ rehabilitation movements (Qiu
et al., 2022). Furthermore, there is no method to authentically
simulate a doctor’s supervision to aid patients in correcting
rehabilitation movements. Therefore, proposing effective methods
for correcting rehabilitation movements and providing appropriate
movement guidance is crucial to advancing research in virtual
reality-based rehabilitation.

To address the aforementioned issues, we propose a virtual
reality-based rehabilitation method. As shown in Figure 1, this
method utilizes commonly available virtual reality hardware
devices to reconstruct full-body poses of patients. Then, a pose
correction module based on a natural language model is employed
to assess patients’ movements, which generates specific movement
correction guidance text by referencing standard movements.
Specifically, to meet the requirement of accuracy, real-time

performance and smoothness in full-body poses reconstruction,
a deep learning-based model is introduced, comprising a multi-
scale temporal feature switch module and a stacked MLP Blocks.
The multi-scale temporal feature switch module expands the
model’s temporal receptive field, improving the accuracy and the
smoothness of full-body poses reconstruction while ensuring real-
time performance and model light-weighting. Subsequently, the
reconstructed poses and the reference standard poses are input into
the poss correction module, which assesses the reconstructed poses
and outputs the movement correction guidance text by utilizing
a natural language model. Comprehensive experimental results
demonstrate that the proposed method can provide more accurate
full-body poses reconstruction and more intelligent movement
guidance for virtual reality-based rehabilitation training.

2 Related works

2.1 Full-body pose reconstruction from
sparse motion signals

In recent years, the reconstruction of full-body poses using
sparse motion signals from virtual reality devices, specifically head-
mounted displays and handheld controllers, has become a focal
point in research within the realms of virtual reality and the
metaverse. Ahuja et al. introduced a convolutional neural network
to extract features from sparse motion signals and utilized a K-
nearest neighbors (KNN)—basedmethod, employing interpolation
algorithms to reconstruct the full-body poses from a limited
motion database (Ahuja et al., 2021). However, this method heavily
relies on the motion database, exhibiting poor generalization
capabilities. In subsequent studies, novel deep learningmodels such
as variational autoencoders (Pavlakos et al., 2019), long short-term
memory networks (Yu et al., 2019), and transformers (Jiang J. et al.,
2022; Luo et al., 2022; Zhang X. et al., 2023) have been applied to
extract motion features from sparse motion signals, significantly
enhancing the accuracy of full-body poses reconstruction. In recent
studies, based on Multilayer Perceptron (MLP), a diffusion model
has been employed to further optimize the reconstructed motion
sequences, effectively alleviating the phenomenon of joint jitter (Du
et al., 2023). However, the adoption of the diffusion model has
substantially increased the computational demands and inference
time of the model.

2.2 Pose evaluation for healthcare
application

With the development of electronic information and
computing technology, studies focusing on health applications,
particularly the evaluation of human body poses during
rehabilitation training, has been recently explored. Martınez
et al. utilized depth cameras to capture the ground-truth human
rehabilitation postures and quantitatively evaluated the accuracy
of commonly used pose reconstruction algorithms (Martınez,
2019) in reconstructing rehabilitation postures (Hernández et al.,
2021). Kidziński et al. (2020) introduced a neural network to
quantitatively evaluate clinically relevant motion parameters from
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FIGURE 1

The pipeline of the proposed virtual reality-based rehabilitation training method.

patients’ motion videos. Xu et al. (2022) employed multi-view
videos for the evaluation of musculoskeletal patients’ motion
poses. Liao et al. (2020) combining the Long Short-Term Memory
(LSTM), feature pyramids, and other deep learningmethods, which
designed the first rehabilitation posture quality evaluation method
based on deep learning. Tang (2020) introduced a segmentation
module to the posture evaluation network, significantly enhancing
the accuracy of scores in evaluating the quality of rehabilitation
postures. Bruce et al. employed graph convolutional networks
to assess the severity of Alzheimer’s disease in patients through
motion videos (Bruce et al., 2021). However, the quantitative
evaluation metrics of these methods are exclusive to proficient
medical professionals for clinical evaluations, limiting their
applicability for patients to comprehend the status of their
rehabilitation training and make corrections.

To address the aforementioned issues, Qiu et al. (2022) devised
a pose matching network, which achieves alignment and correction
of poses between the trainers’ pose and the standard poses,
providing trainers with visualized movement guidance through
Class Activation Maps (CAM). Despite having a certain foundation
in research, the majority of these methods heavily rely on computer
vision and are impractical for virtual reality-based rehabilitation.
Moreover, there remains a dearth of intuitive and effective guidance
for patients in evaluating their poses, such as the guidance provided
by medical professional.

2.3 3D human poses and natural language
models

In recent years, Transformer-based natural language processing
models have achieved remarkable success in various fields. The
following will introduce datasets that combine human poses with
natural language processing models and showcase astonishing
applications. The AMASS dataset (Mahmood et al., 2019) has
collected motion data for numerous 3D human poses in the form
of SMPL (Loper et al., 2023). Then, BABEL (Punnakkal et al., 2021)
and HumanML3D (Guo et al., 2022), building on the AMASS

dataset, provide free-from textual descriptions for its sequence data.
These datasets focusmore on describing the entire action sequences
rather than the semantic information of each single-frame pose.
Consequently, they are more suitable for tasks for generating
action sequences (Zhang J. et al., 2023) or describing motions
from videos. To address the gap in independent human pose
semantic descriptions, PoseScript (Delmas et al., 2022) provides
descriptions for each single-frame human poses from some subsets
of the AMASS dataset. In further research, FixMyPose (Kim
et al., 2021) and PoseFix (Delmas et al., 2023) can connect
two different poses and generate textural information for pose
correction. Unlike FixMyPose, which generates textual annotations
from rendering 2D images, the PoseFix directly generates text
explanations based on the 3D human pose data. This proves to be a
more suitable andmore potent solution for the virtual reality-based
rehabilitation training.

3 Methods

3.1 Overview

Reconstructing full-body movements from sparse motion
inputs is quite challenging. Sparse motion signals from the upper
body cannot effectively constrain the movements of the lower body.
As a result, the reconstruction of lower body poses may inevitably
exhibit anomalies such as joint jitter and floor penetration,
significantly affecting the user’s experience in virtual reality. In
previous studies (Du et al., 2023), one-dimensional convolution
with temporal awareness-based diffusion models was employed to
reduce joint jitter, noticeably enhancing the quality and fluency
of full-body posture reconstruction. However, the diffusion model
requires multiple inference steps, leading to longer model inference
times that do not meet the real-time requirements of virtual
reality applications. Moreover, when using only its MLP backbone
network, joint jitter phenomena remain unresolved.

Therefore, as shown in Figure 2, a full-body pose
reconstruction network based on a multi-scale temporal switch
module is proposed. The sparse motion signals are input to anMLP
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FIGURE 2

The detailed structure of proposed full-body pose reconstruct module and temporal switch module.

layer for feature embedding and then input into the multi-scale
temporal switch module for aggregation of features across different
time scales. Subsequently, the original features are fed into a
stacked MLP module and the features aggregated at different time
scales are fed into a MLP layer. Finally, the depth features from
different scales are aggregated, fused with the original features, and
input into an MLP layer for the reconstruction of full-body poses.

3.2 Full-body pose reconstruct module

3.2.1 Data preparation
To reconstruct the full body’s poses, sparse motion signals

are acquired from the Inertial Measurement Unit (IMU) devices
on the virtual reality headset and handheld controllers. Each
signal at every position includes global positional information
p1×3 and rotational information θ1×3 about the three axes. For a
more refined reconstruction outcome, predicting the human body’s
motion posture at time t poses from a certain time interval T before
time t is aggregated and jointly fed into the network. Therefore, the
full-body joint pose U

joints
full is obtained by applying the mapping

function 8 to the set of sparse inputs {pi, θi}1 :T , as shown in
Equation 1:

U
joints
full = 8

(

n
⋃

i=1

{pi, θi}1 :T

)

(1)

where n represents the number of sparse inputs, h is the quantity
of full-body joints, and T is the count of continuous motion frames
observed from the past.

To enable the model to comprehensively learn features from
sparse motion signals, the following preprocessing steps are
employed. The backward finite difference method is employed
to initiate the calculation of linear velocity v1×3, as shown in
Equation 2:

vt = pt − pt−1 (2)

Subsequently, the angular velocity �1×6
t is defined by

considering the orientation matrices R of the sparse input (Jiang
J. et al., 2022), as shown in Equation 3:

�t = R
−1
t−1Rt (3)

These matrices are initially derived from the θ1×3

representation, which are converted to the rotation matrix
R
3×3 using the conversion as previous studies (Zhou et al., 2019;

Jiang J. et al., 2022). Following this, the last row of R is disregarded
to yield the 6D rotation representation w1×6

t .
Consequently, each input at time frame ti comprises four

vectors: pi, vi, �i, and wi. This input feature is structured as
Equation 4:

xt =
[

p1t , v
1
t ,w

1
t ,�

1
t , p

2
t , v

2
t ,w

2
t ,�

2
t , p

3
t , v

3
t ,w

3
t ,�

3
t

]

(4)

As a result, all independent signals xt within the time interval T
are concatenated along the temporal dimension to form the input
signal X, as shown in Equation 5:

X = [x1, x2, x3, . . . , xT] ,X ∈ R
B×T×F (5)

where B represent the batch size, T signifies the length of
the temporal sequences, and F denotes the feature dimension.
Therefore, the feature dimension F of the input tensor X amounts
to 54.

3.2.2 Multi-scale temporal switch module
In previous research (Du et al., 2023), networks equipped

with one-dimensional temporal convolutions are employed to
enhance the model’s temporal awareness, aiming for improving
reconstruction of full-body poses. Additionally, the powerful
generative ability of diffusion model is utilized to further optimize
the reconstructed pose sequences, significantly reducing the
occurrence of joint jitter. However, despite the application of
Denoising Diffusion Implicit Model (DDIM) technology (Ho et al.,
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2020), the diffusion model still necessitates five repeated inference
steps to obtain the final predictions, which fails to meet the real-
time requirements of virtual reality-based rehabilitation training.

To address these issues, a multi-scale temporal switch module
based on two-dimensional time sequences is devised. This module
comprises multiple branches at different temporal scales, aiding
the model in capturing subtle temporal features within the sparse
motion signals.

Initially, the preprocessed sparse motion signals X are fed into
a Linear Layer for preliminary feature embedding, as shown in
Equation 6:

F = LinearEmbedding(X) (6)

where the LinearEmbedding is a linear layer with an input
dimension of 54 and an output dimension of 256. As shown in
Figure 2, the module comprises K branches representing different
temporal switch scale. For each time slice T = t alone the temporal
dimension, the feature Ft is partitioned into three segments along
the feature dimensions, such as f t1 , f

t
2 , and f t3 . Here, as shown in

Equation 7, the f t1 and f t3 are the first N features and the last N
features alone the feature dimension, respectively:

Ft = (f t1 , f
t
2 , f

t
3 ) (7)

where F
t ∈ R

B×1×F , f t1 ∈ R
B×1×F/8, f t2 ∈ R

B×1×3F/4, and f t3 ∈

R
B×1×F/8.
Inspired by previous study (Zheng et al., 2022), we conduct

K forward feature exchange modules alone the temporal direction
for each feature slice F

t . In the branch where K = k, we
exchange the features f t1 and f t3 in the feature slice F

t with the
corresponding features f t+k

1 and f t+k
3 in the feature slice Ft+k, where

F
t+k represents the feature slice at a temporal distance of k frames,

as shown in Equation 8:

Ftk = (f t+k
1 , f t2 , f

t+k
3 ) (8)

After the exchange of features slice for all time frames T = t,
we concatenate all the time slices along the temporal dimension
to obtain the output Fk of the feature exchange module K = k in
Equation 9:

Fk = {F1k , F
2
k , . . . , F

t
k} (9)

Finally, features from different branches are input into an MLP
layer for feature fusion, as shown in Equation 10:

Fswitched = OutPutLinear{F1 ⊙ F2 ⊙ . . . ⊙ Fk} (10)

where ⊙ represents the concatenate operation and Fswitched ∈

R
B × T × F, and the OutPutLinear is a linear layer with an input

dimension of K ∗ F and an output dimension of F and the SiLu

activative function.
The difference between previous study and ours is that our

approach solely employs forward switch along the temporal
direction, refraining from bidirectional switch. Our rationale lies
in the fact that bidirectional switch necessitates a greater number
of feature switch operations for a limited enhancement. Given the
constrained computational capacity of the virtual reality devices
and the stringent demands for real-time processing, we opt for
unidirectional propagation.

3.2.3 MLP based blocks
In the recent research (Du et al., 2023; Guo et al., 2023), the

potential of MLP-based networks in full-body poses reconstruction
tasks has been demonstrated. The MLP-based networks can
effectively learn complex non-linear mapping relationships of
input features, facilitating efficient feature learning and data
representation (Guo et al., 2023). Additionally, the MLP networks
possess the advantage of lightweight design, meeting the real-
time requirements of our tasks. Considering the demands for both
real-time processing and accuracy of the reconstructed poses, our
model only employs several commonly used and effective modules
in the field of deep learning, including fully connected layers,
Silu activation function, one-dimensional convolution alone the
temporal dimension with a size of 1, and the layer normalization.
Specifically, the one-dimensional convolution layer is utilized to
aggregate the temporal features from the entire pose sequence,
while the other modules operate on the feature dimension to
help the network alleviate gradient vanishing and overfitting
phenomena. The structure of the MLP-based blocks is shown in
Figure 3. To better extract features from sparse motion signals, the
MLP-based blocks are stacked in M layers as in the study by Du
et al. (2023).

As the proposed temporal switch module affects the spatial
information of the original motion signals, the original feature f is
preserved and fed into the aforementioned MLP-based Blocks for
feature extraction in Equation 11:

F0 = MLPBlocks(f ) (11)

where F0 ∈ R
B × T × F.

Finally, the output feature F0 and the temporal switched feature
Fswitched are aggregated and input into the output MLP Layer to
reconstruct the poses of 22 joints (excluding the joints of the palms)
in the SMLP human pose model, achieving the reconstruction from
sparse motion signals to full body poses, as shown in Equation 12:

Foutput = Linear(F0 ⊕ Fswitched) (12)

where the ⊕ represents tensor addition operation and Foutput ∈

R
B × T × 132.

3.3 NLP-based pose correction module

In this section, the state-of-the-art pose evaluation method,
PoseFix (Delmas et al., 2023), is employed to compare the
reconstructed full body poses and the standard poses, and generate
professional motion correction guidance text. We will briefly
elucidate how the reconstructed pose PoseA of the patient is
matched to the target pose PoseB and modeled as correction
guidance text. As shown in Figure 4, the rotation angles of
the root joint of PoseA are aligned with the corresponding
rotation angles of PoseB. Subsequently, a Transformer-based
auto encoder (Kingma and Welling, 2013) is utilized to extract
independent 32-dimensional embedded features from PoseA and
PoseB. It is noteworthy that the PoseA and PoseB share the weights
of the auto encoder. Next, the TIRG network (Vo et al., 2019), a
widely applied module for compositional learning, is used to merge
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FIGURE 3

The components of the MLP based blocks.

FIGURE 4

The structure of the pose correction module, which outputs pose correction guidance text for the users by contrasting the reconstructed pose with

the standard reference pose.

latent features from the embedded features of PoseA and PoseB.
The TIRG (Vo et al., 2019) network comprises a gate network
consisting of two MLP layers and two learnable weights, which
is designed to retain the primary motion features and introduce
additional improvement through residual connections. As shown
in Equation 13:

Fprompt = wf FCf ([a,m])⊙ a+ wgFCg([a,m]) (13)

where FCf and FCg are MLP layers, and their weights are balanced
by learnable parameters wf and wg .

Finally, the fused features Fprompt are fed into a Transformer-
based auto-regressive model, serving as a prompt to guide the

natural language processingmodel in generatingmotion correction
guidance text. In the decoding process of the Transformer-based
auto-regressive model, the input feature Fprompt is concatenated
with a vector Fcaption, composed entirely of ones, serving as
additional positional encoding. This combined input is then fed
into the Transformer model. Leveraging the attention mechanism
of the Transformer, the prompt is decoded into a probability
distribution of text embeddings, and the first text result T1

is obtained through the softmax function. Subsequently, T1 is
integrated into Fcaption, concatenated again with the input feature
Fprompt , and fed into the Transformer model to obtain the second
text result T2 with the highest probability. This iterative process
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TABLE 1 Comparison of our approach with state-of-the-art methods on the subsets of AMASS.

Method MPJPE MPJRE MPJVE Jitter Parameters (M)

AGRoL-MLP 3.93 2.69 22.85 13.01 3.73

AGRoL-Diffusion 3.71 2.66 18.59 7.26 7.48

Ours 3.79 2.69 20.94 11.53 4.52

FIGURE 5

Partial results of the virtual reality-based rehabilitation training method indicate that users can correct their poses with guidance from the pose

correction text.

continues, employing the method of iterative greedy decoding,
until the entire sequence is decoded.

4 Experiments

4.1 Training details

To train the full-body pose reconstruction model based on

sparse motion signals, three subsets of the AMASS dataset—
CMU (Carnegie Mellon University), MPI-HDM05 (Max Planck

Institute Human Motion Database 2005; Müller et al., 2007),
and BioMotionLab-NTroje (Troje, 2002) are employed for

model training and test. Specifically, we obtain 2,074, 215, and
3,061 motion sequences from these three subsets, covering
commonly used actions in virtual reality such as walking,
running, jumping, dancing, kicking, tool manipulation, and
social behaviors and interpersonal interactions. Out of 5,350
motion sequences, 536 are randomly selected for model
validation, with the remaining 4,814 used for model training.
These motion sequences are stored in the format of SMPL

model parameters, encompassing 156-dimensional joint motion
parameters.

To emulate the hardware configuration of virtual reality
devices, we extract the motion parameters of the head joint
and wrists of both hands, inputting them into the model, and
reconstruct the motion parameters of 22 body joints (excluding the
joints of the palms). To ensure a fair comparison with previous
methods, consistent experimental parameters are employed: the
stacking layers of the MLP module M are set to 12, and the
feature dimension F was set to 512. Both training and testing
were conducted on an NVIDIA 4090 GPU using the PyTorch
framework (Paszke et al., 2019).

For the natural language processing model-based pose
correction module, we make no modifications and training to
the PoseFix model. In PoseFix, a pipeline based on PoseScript is
employed to compare the distance variations between multiple 3D
keypoints for 135 k pairs of different actions. The resulting data are
organized in structural order, forming the 135 k action correction
guidance text dataset. This dataset is utilized for training the
pose correction model. Additionally, the frozen DistillBERT (Sanh
et al., 2019) is employed for word embedding. Instead, we directly
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utilize publicly available model weights, as experimental results
have already demonstrated that this method accurately evaluates
differences between two poses and generates precise correction
guidance text.

4.2 Evaluation metrics

To validate the effectiveness of the proposed method, the
following evaluation metrics are employed to assess the model’s
performance and compare it with previous state-of-the-art
methods (Du et al., 2023): Mean Per Joint Rotation Error (degrees;
MPJRE) and Mean Per Joint Position Error (cm; MPJPE) measures
the average relative rotation error and position error for each joints,
which indicated the absolute errors of the model predictions. While
the Mean Per Joint Velocity Error (cm/s; MPJVE) measures the
average velocity error for the joints’ positions, the Jitter (Yi et al.,
2022) evaluates the mean jerk (change in acceleration over time; Du
et al., 2023) of the joints in global space. These metrics can measure
the smoothness of reconstructed poses, which directly relates to
the user’s overall experience. Specifically, jitter delineates the rate
of change of acceleration in joint positions, serving as an indicator
of the degree to which abrupt changes occur in joint positioning.
Consequently, it proves valuable in characterizing and analyzing
the dynamic aspects of motion, facilitating an evaluation metric of
the smoothness of reconstructed poses (Flash and Hogan, 1985).
The jitter is calculated as Equation 14:

Jitter =
d2p

dt2
(14)

where p represents the joint position and t denotes the time. By
computing the second derivative of each joint position with respect
to time, jitter can be derived.

4.3 Evaluation results

In Table 1, we present the quantitative comparison results
between our proposed model and the state-of-the-art method
AGRoL (Du et al., 2023). As shown in Table 1, our approach
demonstrates improvements across various metrics compared
with the AGRoL’s MLP-based backbone method. Moreover, the
phenomenon of joint jitter has been noticeably mitigated. In
comparison to AGRoL’s diffusion model method, we maintain
a comparable prediction accuracy, albeit with less pronounced
joint jitter. However, our method requires only 60.4% of the
model’s parameters compared with this method, enhancing its
practical applicability.

In Figure 5, we showcase comprehensive applications of virtual
reality-based rehabilitation and partial action guidance. As shown
in the figure, the reconstructed poses and target poses can be
accurately evaluated by the PoseFix network, yielding intuitive,
detailed, and precise action guidance.

5 Conclusion

Current rehabilitation training requires patients, who already
face mobility challenges, to visit rehabilitation centers for treatment
by physical therapists. This proves to be difficult and costly for
patients. To enable patients to undergo precise, efficient, and cost-
effective rehabilitation training in the comfort of their homes using
their virtual reality devices, this study introduces a novel approach
that utilizes sparse motion signals from VR devices, specifically
head-mounted displays and hand controllers, to reconstruct full-
body poses. Unlike existing methods that focus on clinical metrics
for doctors, our method employs a natural language processing
model to contrast reconstructed poses with standard poses. This
process provides efficient pose correction guidance in the form
of natural language, offering a more accessible and personalized
approach to movement guidance for patients.

The quantitative and qualitative results demonstrate the
effectiveness of the proposed method in real-time reconstruction of
accurate full-body poses. By referencing standard poses, the model
generates professional motion correction guidance text, facilitating
virtual reality-based rehabilitation training. This approach not only
reduces the cost of rehabilitation training but also enhances the
efficiency of self-rehabilitation training, addressing the challenges
faced by patients seeking timely and accessible rehabilitation.
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