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Introduction: The Human Connectome Project (HCP) has become a keystone

dataset in human neuroscience, with a plethora of important applications in

advancing brain imaging methods and an understanding of the human brain.

We focused on tractometry of HCP di�usion-weighted MRI (dMRI) data.

Methods: We used an open-source software library (pyAFQ; https://yeatmanlab.

github.io/pyAFQ) to perform probabilistic tractography and delineate the major

whitematter pathways in theHCP subjects that have a complete dMRI acquisition

(n = 1,041). We used di�usion kurtosis imaging (DKI) to model white matter

microstructure in each voxel of the white matter, and extracted tract profiles

of DKI-derived tissue properties along the length of the tracts. We explored the

empirical properties of the data: first, we assessed the heritability of DKI tissue

properties using the known genetic linkage of the large number of twin pairs

sampled in HCP. Second, we tested the ability of tractometry to serve as the basis

for predictive models of individual characteristics (e.g., age, crystallized/fluid

intelligence, reading ability, etc.), compared to local connectome features. To

facilitate the exploration of the dataset we created a newweb-based visualization

tool and use this tool to visualize the data in the HCP tractometry dataset. Finally,

we used the HCP dataset as a test-bed for a new technological innovation: the

TRX file-format for representation of dMRI-based streamlines.

Results: We released the processing outputs and tract profiles as a publicly

available data resource through the AWS Open Data program’s Open Neurodata

repository. We found heritability as high as 0.9 for DKI-based metrics in

some brain pathways. We also found that tractometry extracts as much

useful information about individual di�erences as the local connectome

method. We released a new web-based visualization tool for tractometry—

“Tractoscope” (https://nrdg.github.io/tractoscope). We found that the TRX files

require considerably less disk space-a crucial attribute for large datasets like HCP.

In addition, TRX incorporates a specification for grouping streamlines, further

simplifying tractometry analysis.
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1 Introduction

The long-range connections between different brain areas that

form the human macro-scale connectome are essential to the

distribution and integration of information in the brain (Bassett

and Sporns, 2017). Healthy brain connections are also important

for mental and neurological health (Bassett and Bullmore, 2009).

The Human Connectome Project (HCP) is a pioneering effort

to study the structure and function of the brain macro-scale

connectome. The WU-Minn-Ox consortium of the HCP pursued

this effort by collecting a large dataset of 1,200 young adult

twin and non-twin siblings that included extensive measurements

of structural (T1-weighted and T2-weighted), functional (both

with a task and without one—i.e., at “rest”) and diffusion-

weighted MRI (dMRI), in addition to genotype information

and behavioral testing. Some of the subjects also underwent

additional electrophysiological measurements and additional MRI

measurements at 7T.1 Rather than relying on the state of the art

of MRI measurements at the time that the project was initiated,

the HCP advanced the field forward, developing a large number of

novel techniques for data acquisition, data processing and analysis,

and created novel ways to organize and disseminate the data.

This effort has generated a dataset that even now, more than a

decade after the project started, stands out in its high quality

and uniformity of measurement, and in the large value that the

research community has drawn from it. Thus, the HCP has become

a keystone dataset in human neuroscience, with more than 1,500

papers that acknowledge using the data, as of 2021 (Elam et al.,

2021). Its approach serves as a source of inspiration to a large

number of HCP-style follow-up studies (Glasser et al., 2016),

including studies targeting life-span development (Bookheimer

et al., 2019; Howell et al., 2019), and several different projects

targeting specific clinical populations (e.g., Demro et al., 2021).

Measurements of dMRI in the HCP dataset leveraged several

technical innovations. These included use of specialized hardware,

and particularly of a strong and fast set of gradients, with a

maximal gradient strength of 100 mT/m, and effective slew rate of

91 mT/m/s. Parallel imaging techniques that use multi-slice and

multi-band excitation were used to accelerate the acquisition of

each volume (Setsompop et al., 2012). This enabled measurements

in a large number of different directions, with multiple different

non-zero b-values (distributed in three shells of b ≈ 1, 000s/mm2,

b ≈ 2, 000s/mm2, b ≈ 3, 000s/mm2), and with a high spatial

resolution of 1.25× 1.25× 1.25mm3. In addition to these advanced

acquisition techniques, HCP developed novel processing methods

to address artifacts due to motion and eddy currents, and to

address geometric distortions due to susceptibility. Thus, the HCP

produced data that far exceeds, in terms of spatial and angular

resolution, what is possible in most clinical settings, even a decade

later. Therefore, these dMRI data provide unique views of the

human white matter connectome.

1 This consortium was based on a collaboration between groups at

WashingtonUniversity, the University ofMinnesota, andOxfordUniversity; for

brevity, we will refer to this consortium as “HCP” henceforth, acknowledging

that another important consortium, the MGH-UCLA consortium, pursued a

di�erent and also important approach (McNab et al., 2013).

Tractometry analysis of dMRI data focuses on the physical

properties of major white matter pathways. It uses computational

tractography and anatomical constraints to delineate the locations

of known anatomical tracts in dMRI data, and extracts brain white

matter tissue properties along the length of each tract (Yeatman

et al., 2012). Tractometry provides important information about

brain tissue properties and individual differences, but for large

and important datasets, such as the HCP, applying cutting-edge

tractometry methods requires specialized expertise, and is also very

computationally demanding. The present work enables the study

of brain connections in the HCP dataset by providing tractometry

results in 1,041 subjects in HCP that have completed a full set

of dMRI measurements and by building a set of insights and

resources based on this data. In each subject in the dataset, 24

major white matter pathways were identified using the pyAFQ

software (https://yeatmanlab.github.io/pyAFQ) (Table 1). We used

probabilistic tractography to delineate the tracts and diffusion

kurtosis imaging (DKI) (Jensen et al., 2005) as implemented in the

open-source software DIPY (https://dipy.org) (Garyfallidis et al.,

2014; Henriques et al., 2021) to describe white matter tissue

properties along their lengths. DKI was used because it extends

diffusion tensor imaging (DTI) (Basser et al., 1994), providing a

more complete assessment of diffusion by measuring the deviation

of the diffusion patterns from a Gaussian distribution. In addition,

in previous work, we have also shown that DKI describes the HCP

dMRI data more accurately and more reliably than DTI (Henriques

et al., 2021). Here, we also used an extension of DKI that models

biophysical white matter tissue properties (Fieremans et al., 2011)

to provide additional information about the axonal white matter

fraction along the length of the major white matter pathways. The

results of this processing are all provided openly through the AWS

Open Data program in the Open Neurodata repository (Vogelstein

et al., 2018), and we provide an example of how to access this data.

We used this open dataset as a platform to examine several

different aspects of the data. First, we characterized the overall

distribution of tissue properties along the length of the white

matter pathways that we delineated. We also used the presence

of a large number of monozygotic and dizygotic twins in the

sample to characterize the heritability of DKI tissue properties

along the length of the tracts. Finally, we compared the predictive

ability of tract profiles to other diffusion processing methods. Tract

profiles of tissue properties can be used to compare different subject

groups or in order to understand individual differences (Jones et al.,

2005; Colby et al., 2012; Yeatman et al., 2012; Dayan et al., 2016;

Richie-Halford et al., 2021). However, high-dimensional data with

limited observations can challenge the accuracy of out-of-sample

predictions, providing motivation to understand if there is any

loss of predictive information with the dimensionality reduction

provided by tract profiles. In a previous study (Rasero et al.,

2021), brain-behavior correlations were assessed using the local

connectome (LC) method (Yeh et al., 2016), which calculates a q-

space normalized map of the density of spins between neighboring

locations along tracts. The resulting feature sets from each method

differ in their dimensionality—tract profiles for every standard

tract results in several thousand features, while LC results in

hundreds of thousands of features. In the present study, we

compared the information provided by LC to the much more

concise information provided in tractometry tract profiles. Open

access to a standard HCP tractometry dataset will facilitate future
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TABLE 1 Abbreviations used for the tracts saved in both the TRK and TRX

format.

Tract abbreviation Formal tract name

ATR_L Left anterior thalamic

ATR_R Right anterior thalamic

CST_L Left corticospinal

CST_R Right corticospinal

CGC_L Left cingulum cingulate

CGC_R Right cingulum cingulate

FP Forceps major

FA Forceps minor

IFO_L Left inferior fronto-occipital

IFO_R Right inferior fronto-occipital

ILF_L Left inferior longitudinal

ILF_R Right inferior longitudinal

SLF_L Left superior longitudinal

SLF_R Right superior longitudinal

UNC_L Left uncinate

UNC_R Right uncinate

ARC_L Left arcuate

ARC_R Right arcuate

Orbital Orbital corpus callosum

AntFrontal Anterior frontal callosum

SupFrontal Superior frontal callosum

Motor Motor corpus callosum

SupParietal Superior parietal corpus callosum

PostParietal Posterior parietal corpus callosum

Occipital Occipital corpus callosum

Temporal Temporal Corpus Callosum

research aimed at comparing additional methods for analysis of

brain behavior correlations.

Following the long-standing tradition of the HCP, our

development of HCP tractometry results provides a platform

for developing and advancing new technologies. We used HCP

tractometry as a platform to test TRX, a recently-proposed

community-based file format that incorporates the benefits of

several previously-developed file formats for tractography, and

that advances several new innovative features (Rheault et al.,

2022). In the present work, we used HCP tractometry to test

the computational efficiency of TRX and its potential to conserve

storage space, while retaining important information about tract

profile features. Finally, interactive web-based visualization tools

for exploring large datasets lower the barrier for fruitful interaction

with these datasets, and serve as a point of entry for researchers

who are considering how to use the data (Keshavan and Poline,

2019). In previous work, we developed AFQ-Browser (https://

yeatmanlab.github.io/AFQ-Browser), an application that enables

exploration of tractometry datasets (Yeatman et al., 2018), but the

previously presented tool was limited in terms of its ability to

explore the anatomical structure of each individual subject in the

dataset. The recent development of the NiiVue software library

enables muchmore facile visualization of anatomical data (Hanayik

et al., 2024), including both volumetric and tractography datasets

and their combination. Here, we present Tractoscope (https://nrdg.

github.io/tractoscope), as the next generation of web-based tools

for sharing and exploring tractometry results.

2 Methods

2.1 Data

Diffusion MRI data was collected by the Human Connectome

Project (HCP), as previously described in detail (Sotiropoulos

et al., 2013). Briefly, data was acquired on a 3T Siemens Skyra

MRI system equipped with a 32-channel coil that was modified

to accommodate gradients with Gmax = 100 mT/m (ultimately,

acquisition was conducted with a Gmax = 97.4mT/m after

optimization for gradient duty cycle). Multislice echo planar

imaging with mulitband excitation was acquired with a TR of 5.5

s and TE of 89 ms. Three diffusion-weighted shells were acquired:

b ≈ 1, 000s/mm2, b ≈ 2, 000s/mm2, b ≈ 3, 000s/mm2 and

the same TR/TE was used in each. In each shell, 90 non-colinear

directions were selected, to optimize coverage within and across

shells (Caruyer et al., 2013), resulting in the acquisition of 190 data

points in each shell, corresponding to measurements in inverse

phase encoding direction (LR and LR directions) and five non-

diffusion weighted acquisitions. The spatial resolution of the data

was 1.25× 1.25× 1.25mm3.

We used data provided byHCP that had already been processed

using the HCP minimal preprocessing pipelines, as previously

described (Glasser et al., 2013). Briefly, intensity normalization

was performed across the six acquisition series based on the non

diffusion-weighted images (b0). These b0 images were also used

to estimate and correct EPI distortions using the FSL “topup”

tool (Andersson et al., 2003). The FSL “eddy” tool was used to

correct artifacts due to eddy currents and motion (Andersson

and Sotiropoulos, 2016). Gradient spatial non-linearities were

computed (Bammer et al., 2003). A spatial transformwas calculated

between the average b0 image and the T1-weighted data using

FreeSurfer’s “BBRegister” algorithm (Greve and Fischl, 2009).

The eddy-corrected data were transformed according to both the

gradient nonlinearity correction and T1w registration into 1.25mm

structural volume space in a single step.

We analyzed data from 1,041 subjects from the HCP who had

complete measurements of dMRI (i.e., where these measurements

passed the HCP quality control process, and also included all 270

diffusion MRI volumes). Among these subjects, the average age

was 28.7 years ± 3.7 years (standard deviation); 479/562 were

male/female.

2.2 Tractometry analysis

We applied the pyAFQ pipeline to perform advanced

tractometry analysis (Kruper et al., 2021). We used data provided

by HCP that had already been pre-processed (Glasser et al.,

2013; Sotiropoulos et al., 2013). Using pyAFQ, we fit constrained

spherical deconvolution (CSD) and used it as the fiber orientation

distribution function for probabilistic tractography implemented
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in DIPY (Tournier et al., 2008; Garyfallidis et al., 2014). We used

symmetric normalization (SyN) (Avants et al., 2008) diffeomorphic

non-linear registration to register subjects to the Montreal

Neurological Institute (MNI) template (Fonov et al., 2011). We

calculated the non-linear registration because the linear registration

to the T1w volume that was already applied in preprocessing

does not take into account more subtle local differences in brain

anatomy that need to be taken into account in defining the

trajectory of major white matter pathways. Twenty-four different

white matter tracts were defined in template space based on a

combination of inclusion and exclusion regions of interest (ROI).

Sixteen are from the original AFQ templates (Wakana et al., 2007;

Yeatman et al., 2012), and eight are callosal tracts (Dougherty

et al., 2007). The tracts are enumerated in Table 1. The ROIs are

primarily planar “inclusion” ROIs, where streamlines transecting

the ROIs are assigned to be part of the bundle. However, some

of the ROIs are “endpoint” ROIs, where streamlines must either

start or end in the ROI, and some are “exclusion” ROIs, where

streamlines cannot transect the ROI, to be assigned. The ROIs for

each tract were transformed into the individual subject anatomical

coordinates using the inverse of the transformation defined by SyN

from the subject to the template space. Streamlines were selected

from the whole-brain tractography based on whether they passed

through inclusion ROIs and did not pass through exclusion ROIs

for each tract. After initial selection was conducted, individual

streamlines may additionally have been excluded based on whether

they were extreme outliers. Streamlines were considered outliers

if their Mahalanobis distance to other streamlines is greater than

three standard deviations or if their length was more than five

standard deviations from the mean length. This outlier exclusion

was conducted over five rounds, similar to the original AFQ

procedure (Yeatman et al., 2012). The diffusion kurtosis imaging

(DKI) model was fit using the DIPY implementation to create

the following maps of microstructural tissue properties: fractional

anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK)

(Henriques et al., 2021), as well as axonal water fraction (AWF)

from the White Matter Tract Integrity (WMTI) model (Fieremans

et al., 2011). In each tract, every streamline was resampled to

100 nodes, and tract profiles were generated by sampling the FA,

MD, MK, AWF maps using these positions. The contributions of

each streamline to the tract profile at each position was inversely

weighted by the distance of that node from the median of the

streamline positions for that node (Yeatman et al., 2012).

2.3 Evaluating heritability of tract profiles

The collection of data from both monozygotic (MZ) and

dizygotic (DZ) twins in the HCP dataset enables an assessment

of the genetic linkage, or heritability, of traits measured in

the data with Haseman-Elston regression (Haseman and Elston,

1972). In this method, identity by descent in each twin pair is

regressed against the square of the difference between twins in

the tissue property tract profiles at every position along each tract

(Equation 1):

(Yijk1 − Yijk2)
2
= α + βπi, (1)

where i is an index of the twin pair, Yij1 − Yij2 is the difference

between the two members of this twin pair in the tissue property

value at position j (1-100) along tract k (1-24; Table 1). The genetic

linkage πi is assessed through the degree of identity by descent (i.e.,

πi = 1.0 for MZ and πi = 0.5 for DZ twins). Heritability of

the tissue properties for position/tract jk, h2
jk
is then estimated as

(Equation 2):

h2jk = −β/(2σ 2
jk), (2)

where σ 2
jk
is the variance of the squared difference (Yijk1−Yijk2)

2

across i.

2.4 Evaluating brain-behavior correlations
in tractometry data

We used tractometry-generated tract profiles for every tract

as input features to a regularized predictive model to investigate

the brain-behavior correlations of tractometry and a variety of

cognitive and non-cognitive phenotypes. Each phenotype was

predicted individually using a LASSO regularized linear model

where the input features were the 100 node-level FA, MD, MK

and AWFmeasurements from each of 24 tracts. LASSO regularized

linear models remove unimportant features by shrinking the model

weights of coefficients to zero (Tibshirani, 1996). In addition to the

LASSO regularized models, the inherent grouping of tract profiles

into tracts and tissue properties provides an opportunity to use

models that exploit such groupings, such as Sparse Group LASSO

(SGL) (Simon et al., 2013; Richie-Halford et al., 2021). In addition

to the shrinking of individual features, SGL shrinks entire groups

toward zero, eliminating both uninformative features and groups.

As a comparison, we also created LASSO models using a different

tissue property description, the local connectome (Yeh et al., 2016).

This approach calculates a q-space normalized map of the density

of spins between neighboring locations along tracts, producing a

much larger number of features (128,894 features for each subject

in LC, compared to 9,600 tract profile features). These features

were also used as input features to a LASSO regularized model. A

nested 5-fold cross-validation procedure was used to determine the

level of regularization that was used, for fitting and for evaluation.

To evaluate the reliability of our models, each model was ran 100

times, using different splits for cross validation (CV). Because the

dataset contains familial relationships, cross-validation was done

with respect to family, such that individuals within the same family

were always assigned to the same fold. Models were evaluated

on their predictive ability using the out-of-sample coefficient of

determination R2 and on reliability using 95% confidence intervals

of their model weights across the different CV splits.

2.5 TRX and TRK comparison

By default, pyAFQ generates outputs using the popular

TrackVis file format (TRK) (Wang et al., 2007). However, this

format does have limitations for our application. First of all, the

format can not represent multiple tracts in a single file, requiring
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FIGURE 1

Some of the tracts recognized in a randomly chosen HCP subject (subject ID: 550439). On the left, in (A, B), we see the 8 callosal tracts visualized. In

(C), we see the left inferior frontal occipital fasciculus in brown, and the right arcuate and superior longitudinal fasciculus in blue and white,

respectively. In (D), the cortiscopinal tract is shown in orange, the cingulum is shown in green, the uncinate is shown in yellow, and the inferior

longitudinal fasciculus is shown in pink. For this panel, all shown tracts are from the left hemisphere. In all panels, the subject T1 is used as the

background.

many files to represent all tracts. Second, TRK files are large and

slow to read, both of which impact online data visualization and

analyses. Therefore, to test the new TRX format and compare it to

TRK performance, the full and segmented tractograms generated

during processing by pyAFQ were converted from TRK format

to TRX format (Rheault et al., 2022). The data for both formats

have been made available on the Open NeuroData AWS bucket.

The TRX format allows users to set the data type of tractogram

coordinates/vertices, and we chose to save the tractograms as half

floats. We also used TRX’s built-in zip compression option. We re-

calculated tract profiles from the TRK and TRX files while profiling

for time andmemory usage, in order to compare their performance.

2.6 Tractoscope

We developed a web-based application to visualize individual

subject data from the HCP. The application was built using the

Vue JavaScript framework and the NiiVue package (Hanayik et al.,

2024). The application connects directly to the AWS bucket and

uses the REST API provided by AWS buckets to query for the

presence of expected files and to render the files into the browser

window. The application leverages the Pinia datastore library

(https://pinia.vuejs.org/) to encapsulate and manage the large

amounts of data that the application needs to operate. The source

code is managed on an open-source GitHub repository (https://

github.com/nrdg/tractoscope) and the application is deployed

using npm running on the netlify continuous delivery platform to

the GitHub Pages web service.

3 Results

3.1 Openly available pyAFQ HCP
derivatives

All of the derivatives generated by pyAFQ to perform each of

the steps in processing have been made available through the AWS

Open Data programs’ Open Neurodata bucket (Vogelstein et al.,

2018). The results of tract recognition on a single randomly selected

subject (subject ID: 550439) is shown in Figure 1. The average tract

profiles from all subjects for all tracts and tissue properties are

shown in Figures 2, 3.

The results can be accessed using the Amazon

Web Services Command Line Interface (AWS CLI;
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FIGURE 2

Average profiles from the 16 standard non-callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the given bundle, discretized

into 100 positions per bundle. The thin lines that tightly hug the average profile indicate the 95% confidence interval, and they are often hard to see

as they closely follow the mean, due to the large sample size. The thinner lines indicate the interquartile range. Di�erent rows correspond to di�erent

tracts, with color showing the hemisphere. The di�erent columns show di�erent tissue properties, from left to right: axonal water fraction, fractional

anisotropy, mean di�usivity, and mean kurtosis.
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FIGURE 3

Average tract profiles from the eight absence of any commercial or financial relationships callosal pyAFQ tracts for all HCP subjects. The x-axis

encodes position along the given bundle, discretized into 100 positions per bundle. The thin lines that tightly hug the average profile indicate the 95%

confidence interval, and they are often hard to see as they closely follow the mean, due to the large sample size. The thinner lines indicate the

interquartile range. Di�erent rows and colors correspond to di�erent subdivisions of the callosal tracts. The di�erent columns show di�erent tissue

properties, from left to right: axonal water fraction, fractional anisotropy, mean di�usivity, and mean kurtosis.
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https://aws.amazon.com/cli/) at the following S3 address:

s3://open-neurodata/rokem/hcp1200/. The dataset

is organized using principles adapted from the Brain Imaging

Data Structure (BIDS), a standard for organizing and describing

neuroimaging data (Gorgolewski et al., 2016), to facilitate easy

access and exploration of the data, and interoperability with

other datasets. Detailed examples of data access using the

AWS CLI and the boto3 Python library are provided in the

Supplementary material.

3.2 Heritability of tract profiles of tissue
properties

The heritability of tract profiles varies between tissue properties,

tracts, and within each tract (Figures 4, 5). Averaging across

all tracts and positions along the tracts, the heritability of the

different tissue properties is: FA: h2 = 0.33 ± 0.17, MD:

h2 = 0.29 ± 0.15, MK: h2 = 0.42 ± 0.25, AWF: h2 =

0.47 ± 0.2 (standard deviations across tracts and positions are

reported). In most cases, we observe some symmetry across the

midline, mirroring the laterality of tissue properties observed

in Figures 2, 3, although this symmetry is less clear than with

the tissue properties themselves. A notable exception to this

symmetry is in the heritability of MK in the arcuate fasciculus,

which is substantially lower in the left hemisphere than in the

right hemisphere.

3.3 Accuracy and reliability of
brain-phenotype models based on tract
profile features

Regularized regression models were used to assess brain-

phenotype correlations (Figure 6). Variance explained (R2) was

assessed as a measure of the accuracy of the correlations, using

cross-validation to mitigate the potential for overfitting within the

data used for fitting. Variablility of this estimate was assessed using

bootstrapping. For both tractometry and LC features, accuracy

across a range of phenotypes varies between almost no predictive

accuracy for all models (e.g., Attention - LC: R2 = 0.0064 95% CI

[0.00010, 0.030], SGL: 0.0044 [0.00011, 0.013], LASSO:R2 = 0.0033

[0.00012, 0.010]) and moderate predictive accuracy (e.g., Age - LC:

R2 = 0.18 [0.10, 0.26], SGL: R2 = 0.31 [0.21, 0.42], LASSO: R2 =

0.30 [0.19, 0.39]). Though there are nominal differences between

LC and tract profile predictions in some phenotypes (e.g., Age and

Reading Ability), we found no significant differences in accuracy or

reliability of models that used the two methods to derive features

for predictive modeling.

While model accuracy did not vary significantly by model

choice (Table 2, the reliability of the model weights for LASSO and

SGL models did) (Table 3). Across phenotypes, LASSO tended to

assign high model weights to individual nodes, with large variances

across bootstraps. In contrast, SGL assigned smaller model weights

to adjacent nodes within tracts, with much smaller variances in

model weights across bootstraps (Figure 7). This pattern occurs

across all phenotypes (Supplementary Figures S1–S4).

3.4 TRX provides a storage-e�cient file
format for tractometry data

To assess the performance of the TRX file format, we calculated

tract profiles from each of the tracts using the data that was

stored in the TRX file format, and calculated the ratio of the

elapsed time for TRX/TRK. Performance did not susbstantially

differ between the file formats (Figure 8A), except in some cases

where calculation of profiles from TRX was substantially faster

than with TRK. Similarly, memory usage of TRK and TRX are

very similar (Figure 8B). A similar ratio was computed for the FA

along the length of the tracts (Figure 8C). Despite the decreased

numerical precision, and the large substantial decrease in the file

sizes on disk, which often exceed a factor of 0.5X (Figure 8D), all

differences in the tract profiles were smaller than 0.1%.

3.5 A browser-based application for
exploring the HCP tractometry results

Evaluating tractometry results and viewing them without

downloading any data is possible using the Tractoscope web

app. Tractoscope was implemented to work with both TRK and

TRX file formats, allowing users to easily explore and visualize

tractography files in the HCP dataset, as well as other datasets

that comply with a similar BIDS-inspired data layout. The tool

is available publicly (https://github.com/nrdg/tractoscope). Any

pyAFQ-compliant dataset hosted on AWS S3 buckets can be

connected to the existing application with minimal configuration

changes, by adding an entry to a datasets.json file. Once

the AWS S3 bucket is configured to be publicly available and

has HTTPS enabled, Tractoscope will be able to connect to

it and visualize the dataset. The application currently enables

visualizations of both the HCP dataset described here (Figure 9),

as well as another dataset: the HBN-POD2 dataset, previously

described in Richie-Halford et al. (2022).

4 Discussion

The open availability of datasets like HCP promotes

collaborative studies and enhances methodological approaches.

This tractometry analysis of HCP diffusion MRI data using pyAFQ

and its visualization through Tractoscope exemplifies the practical

benefits of accessible data. This approach facilitates a broad range

of research possibilities, where different groups can use the tissue

properties we share to get a more detailed understanding of white

matter pathways, which are crucial for studies on neurological

disorders, brain development, and cognitive functions. Some of

the potential uses of the resources that we have created include:

(i) as a normative sample, to be compared to various patient

populations, (ii) integration with the other data that was collected

by HCP in the same subjects (e.g., functional MRI measurements),

(iii) further exploration of the relationships between white matter

tissue properties and other phenotypic measurements, and (iv) as

an educational resource for learning about the structure of human

brain white matter.
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FIGURE 4

Heritability profiles from the 16 standard non-callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the bundle. Thin lines

indicate 95% confidence interval. Di�erent rows correspond to di�erent tracts, with color showing the hemisphere. The di�erent columns show

di�erent tissue properties, from left to right: axonal water fraction, fractional anisotropy, mean di�usivity, mean kurtosis.
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FIGURE 5

Heritability profiles from the eight callosal pyAFQ tracts for all HCP subjects. The x-axis encodes position along the bundle. Thin lines show the 95%

confidence interval. Di�erent rows and colors correspond to di�erent subdivisions of the callosal tracts. The di�erent columns show di�erent tissue

properties, from left to right: axonal water fraction, fractional anisotropy, mean di�usivity, mean kurtosis.
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FIGURE 6

Predictive model performance by phenotype. Box and whisker plots show the distribution model accuracies by model type and input feature. Boxes

show the middle 50% of accuracy values (quantified by using out of sample R
2), and each point is one model run.

The granular approach of tractometry potentially enables

a more nuanced understanding of white matter variation.

Additionally, by focusing on known tracts, the results of

tractometry have been shown to be reliable across scans and

robust to choice of model (Kruper et al., 2021). To improve

interoperability between this dataset and others, we used the

BIDS standard as inspiration for organizing and describing the

data (Gorgolewski et al., 2016). BIDS is structured to improve

the accessibility, organization, and ease of sharing complex brain

imaging datasets. It employs a consistent naming scheme and

directory structure, making it easier for researchers to store,

analyze, and share their data with others in the field.

Analysis methods focus on various aspects of dMRI data.

For example, many analysis approaches focus on generating

connectivity matrices, or graphs. Connectivity results from the

HCP dataset have already been published (Kiar et al., 2018).

We provide a complement here, using tractometry, which allows

for the evaluation of diffusion characteristics along the lengths

of known tracts. Similar, tractometry-based analysis results for a

subset of HCP subjects have been published as a part of larger

data releases containing subjects from multiple datasets (Avesani

et al., 2019; Lerma-Usabiaga et al., 2020; Hayashi et al., 2023).

Here, we provide tractometry results for all subjects in HCP

that have a complete dMRI acquisition. We also provide an

initial characterization of population-level tract profiles in Figure 2.

This characterization replicates previously known properties of

human brain tract profiles. For example, there is a substantial

lateralization of tissue properties in the arcuate fasciculus

compared to other tracts, which is known feature of this tract

(Bain et al., 2019).

4.1 The heritability of tract profiles

Brain structure and function has a substantial genetic

component. Heritability assesses the amount of variance within
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TABLE 2 Variances of SGL and LASSO model weights for each phenotype

across tracts.

SGL LASSO

Age 5.7e-03 1.5e-02

Crystalized intelligence 8.5e-03 3.0e-02

Fluid intelligence 7.4e-03 2.4e-02

Global intelligence 1.2e-02 3.6e-02

Impulsivity 5.4e-05 1.8e-04

Endurance 7.4e-03 2.8e-02

Verbal memory 8.1e-04 3.4e-03

Reading ability 9.1e-03 2.6e-02

Attention 3.5e-06 2.6e-05

Spatial orientation 3.4e-03 1.1e-02

a studied trait that can be explained by genetic differences.

Because of their known shared genetic background, twin pairs

are often studied to assess heritability. The HCP was designed

with this in mind, recruiting 149 MZ and 94 DZ twin pairs

(138 MZ pairs and 75 DZ pairs were included in our heritability

analysis, because of missingness of DWI data in some participants).

Previous research has already demonstrated that DTI-derived

tissue properties are heritable at the level of tract averages

both in the HCP (Kochunov et al., 2015; Gao et al., 2021),

as well as in other datasets (Gustavson et al., 2019). In a few

cases, heritability of DTI metrics was also assessed along the

length of tracts (Lee et al., 2015). In line with these previous

findings, we also found that DKI metrics can have substantial

heritability up to approximately h2 = 0.9 for the DKI-specific

metrics (MK and AWF) and slightly lower for metrics that are

estimated in both DTI and DKI (FA and MD, which both do not

exceed h2 = 0.8). Higher heritability seems to correspond to

smaller error bars in the tract profiles, suggesting that heritability

of a white matter tissue property is easier to discern when

the signal is more reliably measured. The spatial variability

of heritability across the length of the tracts is notable and

mirrors to some extent the spatial variability of tract profiles of

tissue properties. Variability in the heritability of tissue properties

themselves may reflect interactions with other parts of the tissue,

or different sensitivity of portions of the tracts to environmental or

genetic factors.

4.2 Comparing tract profiles and local
connectome

One of the promises of the large-scale data collection

of the HCP was that the data would illuminate individual

variability in a variety of behavioral measures and differences

in cognitive abilities. There are a variety of different ways to

assess brain-behavior correlations that are at the foundation of

establishing the brain basis of individual differences. Here, we

TABLE 3 Average accuracy for each phenotype and model.

LASSO LC SGL

Age 3e-01 1.8e-01 3.1e-01

Crystalized intelligence 7.2e-02 9e-02 7.6e-02

Fluid intelligence 3.5e-02 2.7e-02 4.8e-02

Global intelligence 6.8e-02 7.7e-02 8.9e-02

Impulsivity 7.1e-03 2.7e-02 8.2e-03

Endurance 1e-01 1e-01 1e-01

Verbal memory 3.3e-03 1.2e-02 3.7e-03

Reading ability 3.9e-02 8.1e-02 4.8e-02

Attention 3.3e-03 6.4e-03 4.4e-03

Spatial orientation 7e-02 6.1e-02 7.2e-02

assessed the information that is available in white matter tract

profiles using regularized regression approaches. As a baseline

for comparison, we used features of the white matter extracted

using the local connectome (LC) approach (Yeh et al., 2016).

We found that both tract profiles and local connectome had

small predictive skill for most phenotypes, with nominal but

insignificant differences in predictive accuracy of models using

tract profiles or LC as their input features (Figure 6). In line

with previous literature, we found that phenotypes varied by

their ability to be predicted regardless of input features, with

some phenotypes like attention, verbal memory, and impulsivity

having predictive accuracies near zero (Rasero et al., 2021;

Roy et al., 2024). Other phenotypes, like age, had average R2

values around 0.30 for all models. Though SGL and LASSO

did not differ in terms of their average accuracy, they differ

substantially in terms of the variability in their feature selection

properties. SGL provides much smoother and less variable selection

of features.

Taken together this set of results suggests that tractometry of

the human white matter extracts much of the useful information

about individual differences that is present in the LC method,

but the number of features is smaller by approximately an

order of magnitude. This indicates that tractometry dramatically

reduces the dimensionality of dMRI data, while preserving

many of the features that are relevant to individual differences,

to the extent that those are reflected in brain white matter

tissue properties.

4.3 Comparing TRK and TRX

The availability of comprehensive and accessible data resources

is instrumental in driving forward research in understanding

brain function in health and disease. File formats and standards

for storing scientific data are an important key component

of the cyberinfrastructure used to disseminate and reuse

scientific results, as intended here. The TRX format is a
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FIGURE 7

Model weights across nodes for tract profile models predicting age. The x-axis encodes position along the bundles, discretized into 100 positions per

bundle. Solid lines show the mean model weight across bootstraps for every tract, across every node, and the shaded area show the 95% confidence

intervals of the model weights. Comparing LASSO and SGL models, the model weights assigned to each node are more consistent for SGL models

and model weights are spread between adjacent nodes in a tract rather than to individual nodes in each tract. The y-axis di�ers between SGL and

LASSO panels to show the patterns of node-by-node model weights in SGL better.

recent proposal to improve storage and access to datasets of

computational tractography results (Rheault et al., 2022). The

use of the TRX file format should help address the challenges

of efficiently managing large neuroimaging datasets that contain

such results.

Our study includes a performance comparison between TRK

and TRX formats in profiling the tracts that we delineated in

HCP. From Figures 8A, B, we see that the means are centered

on the vertical red line, indicating that the time and memory

required for calculation of tract profiles using TRX are comparable

to those using TRK. From Figure 8C, we see that the differences

in the resulting profiles are typically much smaller than 0.01%,

with one outlier having a difference of approximately 0.01%.

Additionally, TRX’s integrated zip functionality and flexible data

saving options enable more efficient use of disk space for

storing tractograms, providing a potential for more than 2X

improvement in storage, with almost no loss in information.

Furthermore, the use of TRX’s built-in grouping feature for

segmented tractograms offers a more convenient approach

compared to TRK to manage results of tractometry analysis.

In TRK, segmented tracts typically necessitate additional files

for storing tract identification metadata, whereas TRX simplifies

this process, enhancing the efficiency of data management in

neuroimaging studies.

4.4 Visualizing the data with Tractoscope

We developed Tractoscope, a NiiVue-based web-viewer

for neuroimaging data that allows users to visualize large

datasets hosted on the cloud. Tractoscope enables visualization

and exploration of cloud-hosted pyAFQ-processed datasets.

Tractoscope is built to work with the Amazon Web Services API,

which allows it to interact dynamically with datasets that comply

with the structure expected for outputs of the pyAFQ software.

This significantly decreases the amount of work developers would
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FIGURE 8

Comparing the TRK and TRX file formats. (A) Box and whisker plots for visualizing the distribution of the ratio of times taken to calculate tract profiles,

per subject. Here, higher values would indicate it took longer to calculate tract profiles using TRX than TRK. There is a vertical red line at ratio = 1.

The color/row corresponds to the tract. (B) Similar plot showing the memory taken to calculate tract profiles, and (C) the mean FA calculated. Note

that in (A–C), the median tightly hugs the ratio = 1 line. (D) The ratio of the TRX and TRK disk space size is shown for each subject in green. There is

again a red line at ratio = 1, but here there is also a blue line at ratio = 0.5. Notice that the TRX/TRK size per subject in green is always near or below

the blue ratio = 0.5 line.

have to do to connect the tool to future datasets. The tool

is also highly configurable, allowing developers to select which

scans and tracts should be made available to the user for

selection through the application graphical user interface. The

tool also has the ability to display tract profiles, such as those

generated by pyAFQ, so long as those are stored in the graphical

output format that pyAFQ generates per default. The result is

a user-friendly, configurable website that can display any and

all structural and diffusion imaging for datasets in the pyAFQ

output format. If available, Tractoscope uses TRX files due to their

increased efficiency, but it is still compatible with datasets that use

TRK files.

Tractoscope demonstrates that the development of standard

ways to represent large datasets facilitates the development of

a wide range of standards-compliant applications, which can

be universally applied to any dataset formatted according to

the standard (Pestilli et al., 2021). By doing so, we ensure

compatibility and interoperability across various research tools

and datasets, significantly enhancing the efficiency and scope

of neuroimaging research. pyAFQ operates according to these

principles, as does Tractoscope. For example, Tractoscope already

also visualizes subjects from the Healthy Brain Network (Alexander

et al., 2017; Richie-Halford et al., 2022), in addition to

HCP tractometry.
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FIGURE 9

Interactive visualization of tractometry results with Tractoscope. Tractoscope is a web application designed to enable interactive exploration of

results of pyAFQ processing. The application uses the NiiVue library to load data from the TRX file format. The implementation of streamline groups

within TRX allows selection of di�erent tracts. Here, we show the arcuate fasciculus, corticospinal tract, cingulum cingulate all in the left hemisphere

of subject 550,436, also shown in Figure 1.
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