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With the increasing number of applications reliant on large neural network

models, the pursuit of more suitable computing architectures is becoming

increasingly relevant. Progress toward co-integrated silicon photonic and CMOS

circuits provides new opportunities for computing architectures with high

bandwidth optical networks and high-speed computing. In this paper, we discuss

trends in neuromorphic computing architecture and outline an optoelectronic

future for heterogeneous, dendritic neuromorphic computing.
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1 Introduction

Carver Mead introduced the term “neuromorphic” in 1990 in an invited article where

he explained the inherent wastefulness of digital computation. In brief, he argued that

each operation in a digital system requires the switching of about 10,000 transistors and

that much of the power required to switch these transistors is actually due to the excess

capacitance on each gate caused by wiring between each transistor. To reduce these

problems, Mead (1990) argued that computing algorithms should be designed for less

data movement and that engineers should use the natural properties of devices to perform

various operations. Despite these arguments, the success of digital computers based on the

von Neumann architecture continued to grow and dominate the market into the present

day (Backus, 1978).

A human brain, on the other hand, is a highly parallelized computing system whose

analog dynamics offer many advantages for high-performance computing. It is estimated

that the human brain can process up to 1023 operations every second compared to the

roughly 109 operations per second possible with a traditional computer based on the

von Neumann architecture (Thagard, 2002). Despite this fact, a desire for deterministic

components has enforced a preference for digital circuits in computer architecture.

Meanwhile, biological neural networks are surprisingly noise-tolerant despite synaptic

efficacies as low as 20% (Stevens and Wang, 1994). Nonetheless, as the trend of Moore’s

Law (Theis and Wong, 2017) wanes, further advancements in computing can no longer

rely on increasing transistor speeds and density. As a result, general-purpose computing

systems are expected to be increasingly replaced by application-specific integrated circuits

(ASICs) in various compute-intensive applications, including neural networks (Solli and

Jalali, 2015; Ranganathan, 2020). While vectorized tensor processing units (TPUs) and

graphical processing units (GPUs) have made traditional deep neural network (DNN)

architectures more practical on digital systems, carefully designed analog andmixed-signal

ASICs can often offer improvements to throughput and system latency while reducing

power consumption.
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Recent progress in the area of silicon photonics has pushed

industry leaders such as GlobalFoundries to develop a co-integrated

process design kit (PDK)—labeled GF 45SPCLO—that allows

circuit designers to place photonic elements and CMOS circuits

on the same physical substrate (Rakowski et al., 2020). This

process opens new doors for optoelectronic ASICs that employ

silicon photonic elements for high-bandwidth data communication

networks (Beausoleil, 2011) alongside CMOS electronic circuits for

high-speed computing structures (Hassan et al., 2023).

In the following manuscript, we will highlight two important

features of biological neural networks from the perspective that

co-integrated photonic and electronic technologies are key to

the future of neuromorphic computing. Section 2 will begin

by describing the advantages of heterogeneous neural dynamics

and discuss the limited number of neuromorphic devices that

incorporate this heterogeneity. Next, Section 3 will discuss the

computational properties of biological dendrites and review

existing approaches to implement dendritic computing. Finally,

we discuss a proposed optoelectronic chiplet architecture that is

capable of supporting these features in a scalable neuromorphic

system.

2 Heterogeneous neural dynamics

Artificial neural networks employ a variety of nonlinear

transformations (activation functions) to guide a model into

choosing an efficient encoding for a given task (Rasamoelina et al.,

2020; Mercioni and Holban, 2023). While artificial neural networks

are considered to be universal function approximators (Hornik

et al., 1989; Lu et al., 2017), it is well known empirically that the

choice of nonlinearity can be pivotal to the success of the DNN.

Similarly, it is known that biological neurons display a wide range

of dynamic behaviors—see Figure 1C for examples of three typical

behaviors of cortical neurons according to the Izhikevich model

(Izhikevich, 2003). However, when designing hardware accelerators

for neuromorphic computing, engineers must decide what level of

specificity or generality is needed to support the various neural

dynamics required for the most common DNNs. Following Mead’s

argument (Mead, 1990), it is far more efficient to use the natural

physical properties of a device to provide nonlinear behavior, but

these properties are often fixed after fabrication and impossible

to program. Even in the case of digital systems, general-purpose

computing elements necessarily consume more physical resources

and power in order to serve the generic case.

For example, Intel’s Loihi processor (Davies et al., 2018) is

designed as a many-core digital system where each “neurocore”

asynchronously updates a set of internal variables using a limited

digital core. In the first iteration of the chip, the internal updates

followed a fixed schedule and computed discrete updates to a

current-based, leaky-integrate-and-fire (CUBA LIF) model that

was not programmable. Loihi 2, however, included a micro-code

programmable neuron that allows an arbitrary neuron model to

be implemented as long as its instructions fit in the core’s local

memory (Orchard et al., 2021). Each core on Loihi 2 has the

same memory size and must contain all the necessary parameters

for neurons and synapses on that core. This means that more

complicated neuron models limit the maximum neuron density

of the core, and neurons which use different micro-code models

must be implemented on separate neurocores. Nonetheless, Intel

invested in this generality despite the additional implementation

complexity because of the expectation that heterogeneous neural

dynamics would hold several key computational benefits.

Biological neural networks are remarkably heterogeneous

regarding individual neuron dynamics and morphological

structure. Koch and Laurent (1999) argues that this heterogeneity

is a direct consequence of the complexity of behaviors and sensory

modalities that the brain must handle. To establish whether

this heterogeneity is advantageous or purely an evolutionary

epiphenomenon, several analyses have compared neural network

structures with and without heterogeneity and shown that the

variability of neural responses in heterogeneous populations

increases the sensitivity of a population code and, therefore,

improves the precision at which it can be read out (Shamir and

Sompolinsky, 2006; Chelaru and Dragoi, 2008; Marsat and Maler,

2010). Population codes are often associated with sensory stimuli

because of their ability to handle noisy input (Averbeck et al., 2006),

and these results show that heterogeneity may be key to balancing

sensitivity and signal-to-noise ratio. Perez-Nieves et al. (2021)

also showed that the heterogeneity of synaptic time constants

in a reservoir network improved generalization, robustness to

hyperparameters, and overall learning performance. While these

results were demonstrated by digital simulation, Mead’s argument

should remind us that an architecture that uses the natural

dynamics of its computing elements would be more efficient than a

digital emulator to implement a heterogeneous neural network.

2.1 Optoelectronic neurons

A number of efforts have been made to design analog photonic

neurons by drawing a bijection between semiconductor laser and

amplifier dynamics and the dynamics of a LIF neuron model (Tait

et al., 2014; Prucnal et al., 2016). These efforts are motivated by

the advantages in bandwidth and throughput of silicon photonic

interconnects (Miller, 2000, 2009; Agarwal et al., 2019; Huang

et al., 2022)—a crucial advantage considering that human synaptic

fan-out is on the order of 10,000 synapses per neuron. However,

optical dynamics are controlled by material parameters that are

fixed after device fabrication and are mostly unprogrammable

(i.e., carrier lifetimes in the gain medium of a laser). As a

result, photonic neurons may not be sufficient to replicate the

breadth of heterogeneity found in biological neural networks. An

optoelectronic approach, however, may be more feasible.

Electronics are preferable for designing programmable circuits

given the long history of well-developed design principles for

CMOS circuits, and many such programmable circuit models

have been demonstrated (Indiveri et al., 2011). An optoelectronic

neuron would combine this programmability with the benefits

of optical interconnects. Under this approach, photodetectors

transduce optical signals into electrical currents and are analogous

to the synaptic receptors in a biological neuron. These currents are

collected by a capacitor in the circuit analogous to the membrane

capacitance. A CMOS circuit behaves like the neuron soma and

provides the feedback dynamics that generate the neuron’s excitable
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FIGURE 1

(A) Diagram of a biological neuron compared to (B) a four-neuron layer of an optoelectronic neural network—a nanophotodetector (nano PD) and

nanolaser (nano LD) perform signal transduction. (C) Examples of various neural dynamics according to the Izhikevich neuron model (Izhikevich,

2003).

(spiking) behavior. In the biological neuron, the membrane

potential is only propagated to the axon when the activity near the

axon hillock reaches a threshold; similarly, in the optoelectronic

neuron, a CMOS amplifier drives a laser only when the neuron

is spiking. Figures 1A, B show a functional comparison between a

biological neuron (A) and a block diagram of the optoelectronic

neuron (B).

Few have demonstrated such optoelectronic neurons with

spiking dynamics, and those existing implementations show

limited or no programmable dynamics (Balle et al., 2013; Tait

et al., 2015). More recently, Lee et al. (2024) demonstrated

a programmable spiking optoelectronic neuron using the GF

45SPCLO PDK. However, because of the lack of on-chip lasers

available in this process, an off-chip vertical cavity laser was

externally connected to the neuron. The neuron efficiency was

projected to improve on a more advanced CMOS node and with an

on-chip micro-scale laser such as a low-threshold ring laser (Liang

et al., 2016). Despite the strengths of this optoelectronic approach,

a new process that can reliably integrate on-chip lasers alongside

these CMOS and silicon photonic circuits is required to make

packaging more feasible. Existing implementations of photonic

matrix multipliers have large footprints, where each matrix element

requires a roughly 900 µm2 area (Ramey, 2020; Feldmann et al.,

2021). This limits the number of synaptic connections and neurons

that are available on a single chip. As such, an advanced packaging

scheme is needed for photonic and optoelectronic neural networks

to be practical at the scales of modern DNNs. A 3D photonic-

electronic packaging scheme has been proposed for this purpose

in which chiplets are stacked and tiled onto an interposer using a

combination of 3D photonic and electronic interconnects (Zhang

et al., 2020). Early results have been demonstrated in other

application contexts (Chang et al., 2023); however, a complete

photonic-electronic neuromorphic chiplet network has not yet

been demonstrated.

3 Dendritic computing

Despite the variety of nonlinearities mentioned in Section 2,

the vast majority of DNNs rely on a point-neuron model that

lacks the temporal and spatial complexity of a biological neuron.

Under this limited model, synaptic integration and nonlinearities

across the network are considered instantaneous. Meanwhile,

biological neurons vary so widely in morphology and dynamics

that a standard taxonomy for neuron classification has yet to

be established (Zeng and Sanes, 2017). For example, pyramidal

neurons in Layer V are distinct from those in Layer II/III of

the human cortex and carry distinct properties for synaptic

integration even within the same cortical area (Spruston, 2008).

This diversity in biological networks has led to the hypothesis

that the increased spatio-temporal complexity could be related to

several major advantages of biological neural networks over the

modern implementation of DNN (Acharya et al., 2022).

Various ion channels line the cell membrane along these

dendritic branches (see Figure 2A), leading to both passive and

active effects that can be modeled by cable theory (Koch, 1984). In

the passive case, propagation along the dendrite is often compared

to a lossy transmission line that propagates a signal with both

attenuation and dispersion (Dayan and Abbott, 2001). Neurons

with dendrite models are also more expressive than point neurons;

Acharya et al. (2022) summarize three major features of dendrite

models: weight plasticity, delay plasticity, and structural plasticity.

Weight plasticity is the synaptic strength as modeled in DNNs. In

contrast, the delay and structural plasticities are unique features
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FIGURE 2

(A) Diagram of a dendritic branch with various ion channels. (B) Diagram of current flow between two synapses along a dendrite and an equivalent

multi-compartment model where current flow is indicated by arrow size. (C) Diagram of a photonic-electronic chiplet architecture for

optoelectronic dendritic computing. Each chiplet (white) shows several multi-compartment optoelectronic neurons and is coupled to other chiplets

through an interposer (blue) containing an inter-chip routing network (red). The neurons contain multiple programmable CMOS blocks (green)

interconnected via a switch matrix; leaf nodes receive optical input through a photodiode (PD), and root nodes emit optical output through a laser

diode (LD). A Mach-Zehnder Interferometer mesh is shown as an example photonic synaptic mesh.

of the dendrite that allow the dendrite to process sequences of

information (discussed in Section 3.2).

3.1 Multi-compartment models

A multi-compartment model can be used to discretize the

dendritic tree into localized segments under which the membrane

dynamics are considered uniform. Such a model is necessary

for neuromorphic computing because the cable dynamics of

a biological neuron membrane are too complex to model in

a continuous manner. Multiple software libraries such as the

NEURON (Migliore et al., 2006) and Brian 2 (Stimberg et al.,

2019) simulators have been written to model networks with such

neurons. Each local compartment model includes active dynamics

and membrane leakage currents, while a conductive channel

models the diffusive, axial current flow between compartments.

This model can be summarized by the following equation where

Vm represents the localized membrane potential, Cm represents

the localized membrane capacitance, Vi indexes the connected

compartments, gk(t) indexes synaptic conductances, Ek indexes the

reversal potential associated with a given synaptic conductance, and

F(Vm, t) summarizes the local membrane dynamics:

Cm
dVm

dt
= F(Vm, t)+

∑

k

gk(t)(Ek − Vm)+
∑

i

gi(Vi − Vm) (1)

Equation (1) highlights the similarities and differences between

synaptic currents and dendritic currents. When a signal is received

on the synapse, its conductance increases, and a current is

generated according to the voltage difference between membrane
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potential and the equilibrium potential related to the given synaptic

receptor. This equilibrium potential is often at the extrema of

possible membrane potentials, and thus, a given synapse results in

a polarizing or depolarizing current nearly exclusively.

In contrast, the conductance between dendritic compartments

is time-independent, and the current flow direction can fluctuate

depending on which compartment has the higher membrane

potential at a given moment. The activity at each compartment is

similar to the point model—a nonlinear response to a weighted

sum—though the location of each compartment changes the

efficacy and delay of its effect on the soma. By studying detailed

models of hippocampal CA1 cells, Poirazi and Papoutsi (2020)

showed that the complexity of these multi-compartment models

could only be mapped onto a two-layer ANN, indicating that a

single biological neuron is equivalent to a two-layer neural network.

This result, however, only considers the rate-coded behavior of the

neuron and does not fully capture the spike-timing sensitivity of

dendritic models.

Biological dendrites are also tapered so that diffusive, axial

currents preferentially flow in the feed-forward direction (toward

the soma). This can be modeled as a decreasing resistance

(increasing conductance) between compartments close to the soma.

Figure 2B shows how this model captures the behavior of a dendrite

with two synapses. The tapered end of the dendrite is shown on the

left, and the increase in cross-sectional diameter toward the right

of the dendrite allows more current flow toward the soma (not

pictured) to the right. Note that the arrows shown in the figure

indicate the directional preference for diffusive currents and do

not represent static current flow. Similarly, the multi-compartment

model has two compartments with synapses and a passive

compartment in between that models the passive length of dendrite

between the two synapses in the biological neuron. The following

subsection discusses the consequences of this feature for sequence

processing and highlights some early attempts at dendritic

computing architectures.

3.2 Temporal complexity

Because the point neuron model lacks temporal dependence,

machine learning tasks involving sequential data require carefully

designed neural network models. Recurrent neural networks

(RNNs) fake temporal complexity and memory by applying the

network repeatedly for some number of simulated time steps

(Elman, 1991; Lipton et al., 2015). Information is retained in

memory based on feedback pathways, but each point neuron

could instantaneously influence the output (Sutskever et al., 2014).

Convolutional neural networks (CNNs) have also been used for

processing sequences because a kernel could be used to detect

a feature at any position in the input sequence. However, both

RNNs and CNNs exhibit poor scaling properties, leading to

difficulties in handling data with long sequences (Werbos, 1990;

Kolen and Kremer, 2010). To combat this limitation, transformer

models (Vaswani et al., 2017), use an attention mechanism that

allows the network to process an entire sequence in a fixed

number of operations while maintaining temporal dependence—

future information is not available in the past. Because the

network is designed for a fixed number of operations, its

maximum sequence length—or context window—is inherently

limited. Multiple solutions have been proposed to circumvent this

limit (Ren et al., 2022; Hatamizadeh et al., 2023), but these solutions

all aim to implement sequential processing on a model lacking

temporal complexity.

In contrast, biological neuron dynamics show a wide range

of temporal complexity. In addition to the heterogeneity of

neural dynamics discussed in Section 2, the spatially distributed

morphology of biological neurons gives rise to temporal delays

that offer an additional dimension of encoding information:

temporal ordering. A single-compartment neuron model is

sensitive to the timing between incoming synaptic signals

but not their order. In contrast, the aforementioned tapered

geometry of biological dendrites allows a distinction between

the stimulation of two synapses in the forward direction

compared to the reverse direction, corresponding to a distinct

temporal order.

Nease et al. (2012) first demonstrated a mapping of the cable

model to reconfigurable analog CMOS blocks on a computing

architecture known as the Field-Programmable Analog Array

(FPAA). The device uses floating gates to set a switch matrix

and control the flow of currents between computational analog

blocks (CAB)—see Basu et al. (2010) for more details. Using

these CABs, the architecture was able to accurately replicate the

dynamics of a passive length of dendrite within its linear regime

and also demonstrate favorable computational properties in the

nonlinear regime. George et al. (2013) applied this architecture

toward modeling a Hidden Markov Model (HMM) for word

spotting. In this demo, the tapered effect of the dendrite was

also modeled, allowing for the detection of syllables in a word

only when presented with the correct sequential ordering. Because

these temporal dependencies were computed using the passive

transmission properties of the dendrite cable, the devices showed

> 1, 000× improvement in multiply-and-accumulate operations

per Watt (MACs/W)—when compared to an equivalent HMM

implemented on a digital system.

Boahen (2022) proposed a similar dendritic architecture

in which several ferroelectric domains control the gate of a

transistor. Under this architecture, the ferroelectric domains align

only when a sequence arrives in the correct order; voltage

is applied at the transistor source terminal while current is

read out at the drain to form a temporal order detector,

much like the dendrite. Boahen also argues that sequential

encodings can sparsify communication because each pulse in

a layer of N dendritic units represents a base-N digit and

thus conveys log2(N) bits. As a result, Boahen argues that this

architecture reduces the heat generated by an on-chip network

and provides a more suitable architecture for 3D integrated

electrical circuits.

These devices show how dendritic models provide a new

dimension for encoding and decoding information that can reduce

the power constraints of neural networks. In each of these

examples, however, it is assumed that the dendrite is deliberately

programmed to be selective to some sequence. Neither of the

two architectures describes a method for learning or training the

sequential encoding.
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4 Discussion

An optoelectronic approach to neuromorphic computing is

better suited to provide the interconnect bandwidths necessary

to support the neuronal fan-in and fan-out required to model

neural networks at biological scales while also allowing for flexible

and programmable neural dynamics. The density of optoelectronic

neurons may be limited due to the relatively larger scale of

photonic devices compared to CMOS circuits. However, because

neurons with dendritic trees are functionally similar to a two-

layer neural network, the incorporation of a CMOS dendrite

network would counteract these limitations by providing increased

expressivity to each neuron. Additionally, a dendritic tree offers

additional architectural flexibility to represent high-fan-in, low-

fan-out functional units as dendritic compartments while low-fan-

in, high-fan-out units are represented as neuron somas. As a result,

an optoelectronic, dendritic-computing architecture is likely the

key to advances in large-scale neuromorphic computing.

Figure 2 shows a diagram of an optoelectronic chiplet

architecture that captures the advantages of neural heterogeneity

and dendritic structures. A programmable electronic switch

matrix connects analog blocks that model active and passive

dendritic compartments. A photonic matrix multiplier—such

as a Mach-Zehnder Interferometer mesh—forms the receiving

synaptic mesh and serves as input to a number of dedicated

leaf nodes containing photodetectors. Each dendritic tree

would also contain a dedicated root node that models the

soma and drives a laser output. Each chiplet would contain

several multi-compartment optoelectronic neurons and be

coupled through a shared photonic-electronic interposer, which

provides a routing mesh between many chiplets. Using this

architecture, neural networks could be emulated with much

greater biological accuracy and at much lower power than existing

neuromorphic solutions.

This optoelectronic approach to heterogeneous, dendritic

neuromorphic computing would make the vision of brain-scale

neuromorphic computingmore feasible. However, this architecture

relies on the development of packaging methods for 3D photonic

and electronic integrated circuits, though an increasing number

of challenges for scaling contemporary electronic systems is

likely to provide a shared motivation toward the development of

such integration methods. Alongside these packaging methods,

more work is needed to determine an optimal number of

dendritic compartments and an optimal analog model that

concisely captures all of the relevant membrane dynamics of

the neuron.

5 Conclusion

Biological neural networks benefit from heterogeneous

neural dynamics and dendrite morphology that have been

largely unexplored in hardware accelerators. An optoelectronic

approach can implement high-bandwidth communication

networks and programmable dynamical systems to provide

a “best-of-both-worlds” solution for implementing biological

complexity in neuromorphic computing architectures. More work

is needed to optimize the architecture and computing model

however, the stark contrast in the energy efficiency of human

brains compared to modern computing systems offers substantial

motivations to pursue novel computing methods.
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