AUTHOR=Zhou Zhiming , Wu Xiaojia , Chen Yuanyuan , Tan Yuanxin , Zhou Yu , Huang Tianxing , Zhou Hongli , Lai Qi , Guo Dajing TITLE=The relationship between perihematomal edema and hematoma expansion in acute spontaneous intracerebral hemorrhage: an exploratory radiomics analysis study JOURNAL=Frontiers in Neuroscience VOLUME=Volume 18 - 2024 YEAR=2024 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1394795 DOI=10.3389/fnins.2024.1394795 ISSN=1662-453X ABSTRACT=BACKGROUND: The relationship between early perihematomal edema (PHE) and hematoma expansion (HE) is unclear. We investigated this relationship in patients with acute spontaneous intracerebral hemorrhage (ICH), using radiomics. METHODS: In this multicenter retrospective study, we analyzed 490 patients with spontaneous ICH who underwent non-contrast computed tomography within 6 h of symptom onset, with follow-up imaging at 24 h. We performed HE and PHE image segmentation, and feature extraction and selection to identify HE-associated optimal radiomics features. We calculated radiomics scores of hematoma (Radscores_HEA) and PHE (Radscores_PHE) and constructed a combined model (Radscore_HEA_PHE). Relationships of the PHE radiomics features or Radscores_PHE with clinical variables, hematoma imaging signs, Radscores_HEA, and HE were assessed by univariate, correlation, and multivariate analyses. We compared predictive performances in the training (n = 296) and validation (n = 194) cohorts. RESULTS: Shape_VoxelVolume and Shape_MinorAxisLength of PHE were identified as optimal radiomics features associated with HE. Radscore_PHE (odds ratio = 1.039, P = 0.032) was an independent HE risk factor after adjusting for the ICH onset time, Glasgow Coma Scale score, baseline hematoma volume, hematoma shape, hematoma density, midline shift, and Radscore_HEA. The areas under the receiver operating characteristic curve of Radscore_PHE in the training and validation cohorts were 0.808 and 0.739, respectively. After incorporating Radscore_PHE, the integrated discrimination improvements of Radscore_HEA_PHE in the training and validation cohorts were 0.009 (P = 0.086) and -0.011 (P < 0.001), respectively. CONCLUSION: Radscore_PHE, based on Shape_VoxelVolume and Shape_MinorAxisLength of PHE, independently predicts HE, while Radscore_PHE did not add significant incremental value to Radscore_HEA.